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Theory of multiphoton ionization: Near-resonance effects in two-photon ionization
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I present a perturbation theory of multiphoton ionization based on the resolvent operator.
The theory is applied to a detailed study of two-photon ionization under near-resonance con-
ditions. It is shown that a distinction must be made between linear level shifts and widths,
and resonance shifts and widths which appear in the transition probability. The resonance
shifts and widths exhibit saturation effects and their values tend to be much smaller than
those of the linear level shifts and widths. Using numerical examples corresponding to tun-
able dye lasers and alkali-metal atoms, we show that the above shifts can have a dramatic
effect on the ionization rate even when the laser is not in exact resonance with the inter-
mediate level. The question of "one-step" vs "two-step" two-photon ionization is also dis-
cussed. It is shown that exact resonance does not necessarily imply a two-step process. In
fact, in most cases it is quite the opposite. A quantitative criterion for this distinction is
established. Finally, a distinction is made between instrumental saturation and saturation
of the transition probability. The two are shown to be of different nature. Further exten-
sions of the work are also discussed.

I. INTRODUCTION

Multiphoton ionization has received renewed at-
tention in the last two years or so. A number of
interesting experimental results have been re-
ported' " and new theoretical work'2 25 has re
vealed new facets of the process. At the same
time, advances in tunable, narrow-lindwidth lasers
have opened possibilities for further quantitative
experiments dealing with some of its subtler as-
pects. In addition to their importance in under-
standing the process itself, many of these aspects
are of central import to possible applications of
multiphoton ionization, such as producing spin-
pola, rized photoelectrens, "isotope separation„
ete.

Several of the above-mentioned experiments' "
involved at least one resonance (or near resonance}
with an atomic state. Most previous theoretical
work has given only cursory attention to the de-
tails of resonance effects on multiphoton processes
with intense lasers. That such details can be sig-
nificant and surprising is a priori expected in view
of the high light intensity and the narrow linewidth.
But it is also indicated by a number of unusual
features observed in experiments. Some of these
features can be explained, at least qualitatively,
by using relatively straightforward expressions
for shifts of atomic levels under an external elec-
tromagnetic field. However, in many important
cases a variety of effects come into play and con-
siderable care is required. Otherwise, one may
commit serious errors in calculating, for example,

a transition rate.
He so nance multiphoton processes have often

been discussed as if they were inherently different
from off-resonance processes. As a consequence,
terms such as "one-step" and "two-step" processes
have been used, the latter referring to a reso-
nance process, and the implication being that the
second step is independent (has no memory) of
the first step. Physically pleasing as this picture
may be, it is not necessarily correct. As we show
in this paper, resonance alone does not imply a
two-step process. It is also the light intensity
that determines whether the second step can be
considered independent of the first, even at reso-
nance. And more often than not this is not the
case. As discussed in detail in Sec. VI, a neces-
sary condition for the two-step picture to be mean-
ingful is that the lifetime of the intermediate
state be determined by spontaneous emission.
Thus, whether resonant two-photon ionization in
a given experimental situation is indeed a two-
step process ean be decided only after careful
consideration of the induced radiative lifetime of
the intermediate state.

In any case, such a separation of resonant from
off-resonant multiphoton processes is rather arti-
ficial. From a fundamental viewpoint, one should
be able to so formulate the problem as to obtain
the resonant as well as the off-resonant processes
as special eases. In doing so, one would account
for radiative shifts and widths of intermediate
states. When the laser frequency is tuned suffi-
ciently far from resonance, such shifts and widths
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would become small compared to the detuning
and the off-resonance case mould be obtained. This
was in effect pointed out several years ago by Bebb
and Gold, "who mere the first to present. quantita-
tive calculations of multiphoton ionization rates
for atoms other than hydrogen. But somehow
their message seems to have been overlooked,
although their calculations have been quoted widely.
Bebb and Gold, however, did not consider the
details of the process near resonance.

It is the purpose of this paper to present a sys-
tematic formulation of the problem. The method
is based on the resolvent operator, which has been
used successfully in a variety of problems. ""
The resolvent-operator technique has been dis-
cussed repeatedly in the literature. Its mathe-
matical aspects mere explored in considerable
detail more than 20 years ago by Schonberg. '
A brief discussion in a form useful to atomic phys-
ics problems has been given by Messiah. " The
most complete and self-contained exposition of the
method, as applied to quantum mechanics, is that
of Goldberger and Watson. " It is their develop-
ment, but without the use of projection operators,
that is followed in this paper. Actually, the may
it is employed here is related somewhat to Heit-
ler's damping theory. " In addition to the refer-
ences quoted above, the technique has been applied
quite extensively to optical-pumping problems by
Cohen-Tannoudji, Haroche, and co-workers. ~ "
It has also been generalized by the authorM to the
solution of the Liouville equation obeyed by the
density matrix, and applied to a problem related
somewhat to the subject of this paper.

The present paper is mainly concerned mith the
formal solution of the problem and its application
to two-photon ionization. Actually, the results
are applicable to N-photon ionization as long as
it is only the first transition that is resonant. %e
are here particularly interested in the types of
situations that are apt to arise in high-resolution
experiments with tunable dye lasers. Ne study in
considerable detail the shifts and widths of the
intermediate, as mell as the initial, atomic state,
and their effects on the transition rate. One of
the interesting results is that the shifts can be
quite significant and can have a dramatic effect
on the ionization rate even mhen the intermediate
state is well outside the laser line, i.e., relatively
far from resonance. This provides one illustra-
tion of the artificiality in the distinction between
resonant and off-resonant processes. The effects
discussed herein can have a significant influence
on the spin polarization of the photoelectron. Pre-
viously reported results"'" should then be modi-
fied accordingly. This mill be discussed in a sub-
sequent publication. Several of the above effects

have most recently been observed in three-photon
near-resonance ionization of atomic sodium. "

Resonance effects in multiphoton ionization
have very recently also been discussed by Gontier
and Trahin, " and Chang and Stehle, " The present
work differs from these papers both in the approach
and the applications. For example, unlike Gontier
and Trahin, "me find it necessary to take full con-
sideration of the shift of the intermediate as well
as the initial state. One of the reasons may be
that we are here considering a single-photon reso-
nance which connects the initial and intermediate
states.

It has occasionally been claimed (most recently
by Rachman, Laplanche, and Zaouen~~) that some
of the experimental results' z' for near resonance
multiphoton ionization suggest the breakdown of
perturbation theory. The implication is that per-
turbation theory cannot predict "irregular" behav-
ior such as that observed. That this is not the
case is amply demonstrated by these results as
well as those of Refs. 19 and 22. Moreover, it
should be noted that the suggested alternative
interpretations" are rather dubious, as the meth-
od" employed does not account for any resonance
effects whatsoever, not to mention the fact that
the related calculations are performed for the
hydrogen atom while the experiments have been
conducted on more complicated atoms. Also, the
light intensities used in the experiments have in
most cases been mell below the commonly accepted
limits" for the breakdown of perturbation theory.
It is not my intention to imply that perturbation
theory mould not eventually break down for suffi-
ciently high light intensity. I simply wish to cau-
tion against premature postulation of such break-
down when perturbation theory can account for
the observed behavior. Furthermore, whatever
nonperturbative method one attempts to use for
the interpretation of the above experiments, it
should account for resonance effects, at least in
the low-intensity limit.

Section II is devoted to a more or less self-
contained introduction to the resolvent operator
as employed in this paper. Sections III-V deal
mith its application to two-photon ionization and a
detailed study of shifts, midths, and the transition
probability near resonance. In Secs. VI and VII,
a quantitative study of these quantities for a model
problem is presented, and in See. VIII, some
generalizations and directions for further research
are discussed.

II. FORMAL THEORY

Ne shall be concerned with a quantum-mechani-
cal system whose Hamiltonian can be written as
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q(f) =e-'"'q(0) -=U(t) ls&, (2.3)

which defines the time-evolution operator U(t).
The rate of a particular process can be calculated
from the matrix element

(fIU(t) ls&-=U„(t),

where l f ) is the appropriate final state to which
the process under consideration leads.

The operator U(t) can be obtained from the re-
solvent operator" '"

(2 4)

(2.1)

where H is the unperturbed part with eigenstates
assumed to be known. Throughout this paper, all
Hamiltonians are understood to have been divided

by I; thus all energies will be denoted by +'8 and
measured in sec '. L« ls), lb), lc), . . . be the
eigenstates of H with respective energies (u„cu„
&„.. . . It is further assumed that H can be writ-
ten as

(2 2)

where H" is the Hamiltonian of the free atom and
0" the Harniltonian of the free radiation field.
V w'ill be the interaction between the two.

At t =0 the system is assumed to be in one of the
eigenstates of 8 . %'e shall reserve the symbol
la) for the initial state; i.e., q(t=0)=-la). Since
the total Hamiltonian H is time independent (no

coupling to other systems), the total wave function
of the system at a later time t is

E(z) and 9(z) such that 9 has only diagonal matrix
elements that are equal to those of G. That is,
we define

9~.(~) =9..(~)5~ -=G,.(~)5~. , (2.8)

which implies that, by definition, Q„=G„. Having
9 so defined, we now define F(z) through the equa-
tion

G(~) =-&(~)9(~},

which, owing to the diagonality of 9, leads to

(2.9)

~ha +be ~ca ba ~oa ' (2.10)

(z -ff') zs.-l + vms. (2.12)

Taking the aa matrix elements of both sides, and

making use of the previous equations, we find

(i —~.}9..=1+(vl)..s..
Introducing the operator

(2.13)

This equation obv1ously imposes a con818tency
condition on I, namely,

(2.11)

Thus the off-diagonal matrix element C„ is ex-
pressed in terms of E„and the diagonal matrix
element G„. The reason we are particularly in-
terested in matrix elements of the form 6„ is
that our initial state is la) and we wish to calculate
transitions from that state to others.

Substituting Eq. (2.9) into Eq. (2.V) we obtain

G(~) =1/(. -ff)
through the inversion integral

(2.5)

(2.6)

z(~) =-vz(s),

and solving for 9„, we obtain

19..(&)=G,.(Z}= ~ ( ),

(2.14)

(2.15)

where z is a complex number. The appropriate
contour (C) of integration is shown in Fig. 1. Each
matrix element of U can be obtained from the cor-
responding matrix element of G through Eq. (2.6).
The problem is then reduced to calculating matrix
elements of G. %e are interested in matrix ele-
ments of 6 in the representation that diagonalizes
H because we are dealing with processes that can
be described as transitions between eigenstates
of H.

To set up the equations from which the necessary
matrix elements of C may be obtained to the de-
sired degree of approximation, one starts with

Eq. (2.5) written as

which is a formal but exact expression for C„.
Taking the off-diagonal matrix element ba of

(z -a'- V) G(x) =1. (2.7)

It is convenient to separate the diagonal from the
off-diagonal matrix elements of G. This is ac-
complished by introducing two new operators

FIG. 1. Contours of integration for the inversion in-
tegral as given by Eq. (2.6). Contour C~ applies for t &0

and C2 for t & 0.
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Eq. (2.12), we find

(z —(d,)E 8„=(VE)„9...
from which it follows that

(z —(d~) F~ = QV~, E„

(2.16)

(2.1'Ia)

(z —(d~) Fq, = V~+ Q V(„E~,
csea

(2.17b)

(z -»)Fa. =&~ (2.18)

which shows that there is a. one-to-one corre-
spondence between E„and R„. Knowing one, the
other can be obtained from Eq. (2.19). The same
is not true for the aa matrix element, because
E„=l, while from Eq. (2.14) we have

H..(z) =g V„F... (2.20)

which shows that R depends on all off-diagonal
matrix elements of E.

The program carried out in the following sec-
tions consists of obtaining and solving approximate
equations which, to the desired degree of accuracy,
describe the process under consideration. Gur
iteration and approximation procedure will be based
on Eqs. (2.17).

In calculating the inversion integral of Eq. (2.6),

where b 4 a. This clearly indicates that all (in-
finitely many, in general) matrix elements of F
are coupled through a set of as many equations,
which are integral equations when the spectrum of
H (or part of it) is continuous. In the latter case,
the summations are replaced by integrations over
the continuous part of the spectrum (see Sec. V).
Depending on the particular problem to which this
method is applied, one either truncates the set of
equations retaining only a finite number of them on
the basis of physical arguments, or one retains
only a finite number of matrix elements thereby
rendering the set of equations finite. It is in the
first ca,se that this method is particul, arly useful.

By combining Eqs. (2.14)-(2.16) and (2.10) we

can also obtain a formal solution for G~, namely,

G„(z)= R„(z)
( )

. (2.18)1 1

a aa

The formal solutions (2.15) and (2.18) are very
useful in studying the general properties of the
matrix elements of G(z}. But for the actual calcu-
lation of such matrix elements one usually resorts
to some approximate calculation of the matrix
elements of R(z). Then it is more convenient to
work with Eqs. (2.1V). From Eq. (2.16) it is clear
that

it is useful to note the following property of G(z).
For positive values of f (which is what interests
us here), one can replace z by x+ iq, carry out
the integra, tion over the real variable x from —~
to +~, and then take the limit for g-+0. The re-
sult is the same as if one integrated on the con-
tour of Fig. 1. This is a general property of the
resolvent operator"'" and we shall use it in sub-
sequent sections. In denominators that contain
nonvanishing imaginary parts, q can obviously be
omitted and z simply replaced by x; otherwise q
must be carried through and the limit taken (see
Secs. IV and V).

Ne have here given a brief introduction to the
theory of the resolvent operator which should
enable even the unfamiliar reader to follow the
development of the subsequent sections. For fur-
ther details the reader is referred to Goldberger
and Watson's exposition. "

III. APPLKATION TO TWO-PHOTON IONIZATION

The nonrelativistic unperturbed Hamiltonian
8' of the problem under consideration consists of
two parts: the atomic Hamiltonian 0" and the
Hamiltonian 0" of the radiation field. The eigen-
states of H" will be denoted by ( I), ~ 2), I 3), . . . ,
with respective energies ~„~„(d„.. . . Thus
H"~1) =(d, ~l), etc. The Hamiltonian H" will be
written in the second-quantization formalism, i.e.,

H"I( («))) = I ( («) ~ ll,) l(~(«)i),

(3.2)

where the term —,
' leads to the well-known infinite

part of the energy of the field. " Ne wQl omit it

H = 0 g +2 (3 1)
kX

where k is the wave vector and ~ the polarization
index of the (kA)th photon mode, a-„„and a-„ the
usual creation and annihilation operators, and

» th- frequency of the (KX}th mode (»=ck). We
describe the incident light beam by a superposition
of free space modes with the appropriate spectral
and angular distributions. The modes appearing
in Eq. (3.1) are the modes of a large box of linear
dimension I. with periodic boundary conditions
and are therefore discrete. Qf course a laser
beam has a continuous, albeit narrow, spectrum.
The transition from the discrete to the continuous
is accomplished by letting I -~ at the appropriate
point in the calculation (see Sec. V}.

The eigenstates of 0" are of the form
~. . . , n(k, X,), n(R, &,), . . .), for which we will also
use the symbol ~fn(kX))). For such a state we have
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from further considerations since it cancels out
when one calculates transitions. Also, we shall
omit the polarization index ~ in order to compress
notation. It will be assumed included in k but it
will be taken explicitly into account whenever
necessary. For the initial state of the system
atom plus field, we take

la&-=li&l. . . , n(k, ), n(k, ), n(k, ), . . .&, (3.3)

where l 1) will be the ground state of the atom,
unless otherwise stated. With this initial state,
the final state of the system for two-photon ioniza-
tion must be of the form

l f)=l3&l. . . , n(k, ) —l, n(k ) —l, n(k ), . . .&,

(3.4)

where two photons have been removed from two
arbitrary modes and the atom is in state l3), which
is assumed to be in the continuum. For each such
state

l f), we have a matrix element Uz, (t}. But
there are infinitely many possible final states,
because the two photons may be absorbed from
any two modes. Of course energy conservation
imposes restrictions as to which modes can par-
ticipate but this will show up later in the calcula-
tion. The probability that at time t &0 the atom
has undergone two-photon ionization (i.e., it is
in some state of the form of

l f )) is given by

G~, =Ey, G„. (3.'I )

Then we need E&, and G„, and for the latter we
need R„.From Eq. (2.20) we have

b b

{36}

Given that la) has the form of Eq. (3.3), V„ is
different from zero only for states lb& of the form

lh'(&)&=- lm& l, n(k)+1, n(k'), . . .), (3.9)

where lm) is any atomic state, and one photon
is either added to or subtracted from one arbitrary
mode, while the number of photons in all other
modes remain as in la&. Since lm) and k are
arbitrary we have

going the transition, e- the polarization vector of
the % photon mode, and f. the linear dimension of
the quantization cube. In this paper we are con-
sidering a one-electron model of the atom. In
writing Eq. (3.6a), we have made the dipole ap-
proximation, and have used the r Tf.

' form of the
interaction" (S being the electric field) in which the
A' term does not appear. Thus V has nonvanishing
matrix elements only between field states differing
by one photon in one mode.

From Eq. (2.10), we have

(3.5}

If there are contributions from more than one
atomic ground state (or initial state, in general)
the above expression will have to be averaged over
such initial states. Moreover, the state of the
incoming radiation field is not a pure number
state l(n(k)}& but a superposition of such states
This means that expression (3.5) must also be
averaged over initial photon states„which leads
to well-known photon correlation effects. 40 We
shall not consider such effects here in order not
to obscure the main aspects of the present study.

The basic quantity therefore is U&„which can
be obtained from G&, , and which shifts the impor-
tance of the calculation to Gf, . For this we also
need to specify the interaction V, which can be
written" "as

V = i pL, '~'Q&a', ~'[(r ~ e-)a- —(r ~ V}a-],
k

(3.10)

For near-resonance two-photon ionization, there
is one particular atomic state (to be denoted by
l2)) via which the transition proceeds Unde.r the
assumption that all other atomic states are suffi-
ciently outside the linewidth of the light, we need
consider only the m =2 term in the above sum. If
ll) is the ground state (as is assumed here), then
the b'(k), terms will lead to antiresonant contribu-
tions because a ground state can only emit photons
in virtual transitions; that is, it must reabsorb
what it emits. This means that the h'(k} terms
will make a contribution to the vacuum (Lamb)
shift" of , . Vacuum shifts do not interest us
here, and will be understood to be incorporated
in the atomic level energies. Thus +, is assumed
to contain that part of R„ that leads to a vacuum
shift. As will be seen later there is also a part
of the b (k) terms that contributes to the vacuum
shift. That too will be included in ~, . Conse-
quently, it is only states of the form

(3.6a)

p=- (2 we'jN)'~', (3.6b)

and r is the position operator of the electron under-

lf(k)&-=I2&l . , n(k)-1, . . .&

that contribute, and R„becomes

ff..= PV* F
brk)a b&k)a

k

(3.11}

(3.12)
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Now we need I, for which Eq. (2.17b) gives
b{k)a

c&a

Again, given the form of
~
b(k)& and V, it is only

states ~c& of the form

~c ('k 'm, )) =~m& ~. . . , n(k) —1, . . . , n(R') +I, . . .&

(3.14)

that give nonvanishing contributions. I et us as-
sume for the moment that there are no atomic
states below

~
2& to which it can decay, except the

ground state ~1&. In Sec. VIG we remove this
restriction and show how the results are modified.
Under the above assumption, there are two kinds
of states ~c& that give nonvanishing contributions:
states of the form

i"(k )&-=I»l. . . , n(&) -1, . . . ,.(k ) +I, . . .&,

(3.15)

where we must have %'ab R, owing to the restriction
cuba in Eq. (3.13), and states of the form

ic (t&')&=-i3&i. . . , n(k) —I, . . . , n(I&') —1, . . .),
(3.16)

where, according to our convention adopted in Eq.
(3.4), ~3& is assumed to be in the continuum. The
selection of the above two forms of states simply
reflects the fact that when only three atomic states
are important, the intermediate excited state can
either decay back down to the ground state or be
ionized. Thus Eq. (3.13) becomes

(z —&u )F =V - + V', , E, -,b(k) b(k)a b(k)a c (k')b(k) c ('k')a
k'~k

+ V*, E
c (k')b(k) c (k')e

k'

(3.1'I )

As will be seen later, restrictions of the form
t&' 0 k are inconsequential when the transition to
the continuum is made, but we shall carry them
along for the sake of consistency.

Carrying the iteration one step further, we con-
sider the equations for E,+(k.„and E;,k.„.For
the first we have

c+&'k')} c+('k')a Vc+(k')a+ ~ Vdc+(k') Fda
4&e

(3 IS)

From the form of (a) and ~c'(k')& it is obvious
that V,+&-„& =0. One of the states ~d& for which

Vd, +&„.
&

is nonzero is the state (b(k)&. We now

write

Z —K +c+(k')} c+(k')a Vb(k)c+(k') b(k)a

+ ~ Vg +(kt) Eg
(f &a, b{k)

(3.19)
Obviously there is a whole set of other states
~d& that makes a nonvanishing contribution (of
higher order) to the sum on the right side of Eq.
(3.19). For our purposes, however, we may ne-
glect the sum completely and take

.c+(k')a= ~Z c+(k') I " b(k)c (k') b(k)a '

(3.20}

The same procedure and reasoning as above, and
the same approximation, lead to

c (k')e ~ c (k )I " b(k)c (k') b(k)e '

(3.21}

The significance and motivation for the approxi-
mation employed mill be discussed somewhat
later (see Sec. VII).

Substituting Eqs. (3.20) and (3.21) into Eq. (3.1'l)
we obtain

l&c'(k')IVI&(k)&l' Q l&c (k')IVI&(k)&l'
b(k) b(k)a b(k)a b(k)e '

c+(k')
k c (k')

(3.22)

Introducing

g l&c'(k')IVII (k)&l'
b&k&a

Z —(&& +(k b)

,g I& (k')I VII (1'}&I'

c (k')

and solving for Eb(», , we find

&h(k)IVia&
b&k)a(

Z k& D (Z)b(k) b(k )a

(3.23)

(3.24)

which is an approximate expression sufficient for
our purposes. (We have been using both notations,
V„and &a~ V~5&, for matrix elements, and we will
continue doing so in order to avoid confusion of
the various levels of subscripts in the more com-
plicated formulas. )

Using Eq. (3.24} for Eb&», , Eq. (3.12) gives

„(,) P l&@k)IVI a&l'

-„z ~b(k) -»(k&.(z)

Ne now turn to the evaluation of Ez, . Again the
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starting point is Eq. (2.17b), which gives

(4 k) }+fa 2 ~fZ+ifai (3.25)

because the term Vf, vanishes. There are two
particular states d that we will separate out. %'e

call them lb, ) and i&,&, and they are

Ib, &=12&l . , n(k, ) —1, n(tt. ), n(k, ), . . .& (3.27a)

i b, &
-=i 2&i. . . , n(k, ), n(k, }—1,n(k, },. . .) .

(3.27b)

The remaining sum now contributes to higher-order
transitions from ia& to

i f & as well as to the shift
width of the final state. Since this state is in, the
continuum, we do not worry about such effects in
this paper (they come in at much higher light in-
tensities) and we take

(3.29)(z —(oy)Ey, =V~k J'k, +Vyk I'k, .

The problem now is to evaluate E, , and E,bye 52a '

This proceeds along the same lines as the evalua-
tion of E,(-„„,except that now the iteration mill
be carried one step further. This is to be ex-
pected because R„ is a correction to the amplitude
C„, while E, , itself is an amplitude and, there-

b) a

fore, to obtain approximations of the same order
the iteration of J(, , and Eb, should be carried one
step further. The main steps of the calculation
are given in the Appendix. The result is

Vp o
Z, .(z) = ' . . . j =1, 2.

Z —~ -D~, I Z)0

Expressions for D, , and D, , are given in the
Appendix.

Now we are in the position to write down an ex-
pression for G~, . Combining Eqs. (3.30), (3.29),
(3.7), and (2.15), we find

(3.30)

1
G~.(z) =

(z —~z)[z —&u, -R.,(z)j

V~~ V~, V~~ P'~

Clearly these are the two intermediate states that
lead from ia& to i f ) via a two-photon transition.
We write Eq. (3.25) in the form

(z —(u~)E~ —V~k Ek, +V~k F„,+ Q V~g+~,
a~a S ayt

(3.28)

IV. TRANSITION PROBABILITY-FORMAL EXPRESSIONS

The complexity of G~, ( z) arises from the fact
that R„(z) and D, ,(z) are rather complicated
functions of z. To invert the integral exactly,
one must first find the roots of the equations
z —~, -R„(z)=0 andz —~, -D, ,(z)=0, j=1,2.
These roots constitute poles of ke integrand and
the integral can be calculated by a straightforward
application of the Cauchy theorem. The solution
of the above equations is a. complicated task and
in most cases must be done numerically. It turns
out, however, that this is not always necessary.
In fact, in many applications it is sufficient to
approximate R„(z) and D...(z) by appropriately
chosen constants.

Consider R„ first. If the inequality iR„(z)i« ~, is satisfied, and it certainly is in our case,
A„ is important only for values of z near
Then R„(z) may be replaced by its value at z = ~, ,
if it is also true that it varies sufficiently slowly
in the vicinity of (g), , which will usually be the
case. If this variation is not sufficiently slow„
one can use higher terms of the Taylor expansion
of R„(z) around z =(d, + iq. With the above con-
ditions in mind, we would replace R„(z) by
R„(~,). But R„(z) itself has a resonance struc-
ture as shown ~y Eq. (3.25). The same reasoning
leads to the replacement of D,(k „(z) in that equa-
tion by D,(»,(~,(»). Therefore we replace R„(z)
in Eq. (3~ 31) by

where

l&b(k)i Vi.&l'

((L). —(d a( ~ )
-»{~ )

Dk(k& Dk(k (k((Nk))

= Z I&"(k )IVlb(k)&l
k' &k CO~(] —(d + ] + gq

proximate expressions for R„and D, , are given
in Eqs. (3.25} and (A17). The series of approxi-
mations made were dictated by the physical process
(two-photon ionization) under consideration. In

principle, substitution of this expression into the
inversion integral (2.6) yields the transition ampli-
tude Uz, (t) But the above expression for G&, is
still too complex for the inversion integration to
be performed. Further approximations, again
based on the physics of the process, will be nec-
essary. This is the subject of Sec. IV.

(3.31) , g l&c (t(')IVlb(k)&l'
~o(T) ~c-(p ) + &0

(4.1b)

which is a formal, approximate expression for
the amplitude of the resolvent operator. The ap- and Ib(k)), lc'(k')&, Ic (k')& are given by Eqs.
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l«(k")II I'(&')&I'
(d + {p» )

—4)~ {~ gg ) + g g
(4.2b)

and lc'(%'}&, Ic (k')&, and ld(k")) are now given
by E(ls. (A2), (A3), and (AS). And as before,
D, is obtained from D& by replacing fp, and %, by
5, and R„respectively.

The z-independent quantities R„Db, and D,,
are in general complex. We introduce the defini-

(3.11), (3.15), and (3.16).
Considering now D», (z }, we proceed in an identi-

1
cal fashion. In the expression for D, ,( z) [E(I.
(A17)], D, +-(k„( z) is replaced by its value at z
=(d,+(k.&, and then D, .(z) is replaced by

1

I('(&')I y lb, & I'
D» =D». "»

~» —~ + k' D + k')k'~k 1 c ( ) c (
1

g l(c-(&')ll lf, &l'

~b —~c-(] ') + '~
(4.2a)

where

tions

(4.3a)

(4.3b)D —S sI' y —1 2
J

where S and -I' are the real and imaginary parts.
It should be clear by now that R„and D, , are

bye
the shift-width functions of the states I((& and It(, &,
respectively. It is a general result of the theory"
of the resolvent operator that I; and Ib are non-
negative quantities. In our case, they are positive
because they represent the transition probabilities
out of the initial and intermediate states, re-
spectively, and in the presence of a near-resonant
field these transitions obviously have a nonzero
probability. One does not have to use the general
theorem about the I"s but can proceed to calcu-
late them and find that they are indeed positive.
This property is important in calculating the tran-
sition probability.

Thus the matrix element G~, becomes

V~b Vb, Vyb V ~
Gq, (z) = 2 2

(z —&()(z —(((c —Sc+ iFc) z —(d» —S» + iF» z —(c(» -S» + iI'» (4 4)

The evaluation of Uq, (t} is now straightforward. The integrand of the inversion integral has three simple
poles. Each such pole gives rise to an exponential, and thus we obtain

e 't'V V ~-t(we+8~)t- Igt V V

(v& —(((, -S,+»F,){&u& —(((» -S» +»1» ) ((d, +S, iI; —-(((&){(((,+S, —i F, —(((» —S» + iI'» )

-$(t(&b +8b ) t Fb t
V Vi 4 fb b~o

((d» +S» —iI'» - (((y)((((» +S» -il» —(c( —S + iF )
(4.5)

From this expression, and using a mell-known
procedure, "one can obtain the transition proba-
bility per unit time. Briefly, one calculates
IU~, (t)l' retaining only the nondecaying contribu-
tions, and then one integrates over all final ener-
gies. The result, which still depends on the photo-
electron direction of propagation, is given by

Vyb Vbe
dW~, =2((p(~,)

(2
47 +S (db $b +

grab

Vyb Vba

{d -S -~ -5 +jla e b& b& b2

Recalling that I f & is a pure state of the form
I3&l . , n(&, )-I, . , »»(&, )-I,".&, ~~~~~ I3& is
in the continuum, it is evident that the total transi-
tion probability per unit time for two-photon ioniza-
tion is

Wz(" ——
~

dQK Q Q dW~c,
k1

where K is the wave vector of the photoelectrcm,
and dQ-„ its direction of propagation. To proceed
further, we need explicit expressions for shifts,
widths, and matrix elements vrhich are obtained
in the following section.

(4.7)

V. TRANSITION PROSABILITY-
EXPLICIT EXPRESSIONS

In multiphoton processes the polarigation of the
incident light is quite important because even total
cross sections depend on it.'" We shall therefore
always assume that the light is polarized, the
exact polarization to be specified whenever neces-
sary. Another reason for this assumption is that
multiphoton experiments are generally performed
with polarized light. Thus we take
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V = '(2 gk)'I'I, 'i'Q 'I'(r a-„—r a-„„),

(5.1}
where r =-r ~ «e» denotes the projection of r on
the A. polarization vector, and r * the complex
conjugate. From the definition of the states ~e},
~b), and

~ f), we have

V a(2veag)I)1/a I -ala~I/a r& [n(g )] I Ia

(5.2a)

2IIea s ir„*i'(n(tI')+1)
D~(k) = ~ Q (dka

(4)2~ —(rt)k + g. 'g

~ 2IIea s ~r" ~an(%')
+ ~ L,

"
3(dkg

%23+ ka+ 'L'g
k'

Now take the limit as g-+0, using the identity"'"

(5.4)

(5.5)

matrix elements (c'(R')~ V)b(k)} and (c (II')~ V~b(k)),
and the energy differences as we did above, Eq.
(4.1b) gives

&d~ —(al = CO —(d —(d = —((d —(d )3 2 k2 k 32 ~

~X —~s ="s —~a ~a =-(~a —~sa)~
2 1

(5.3b)

(5.3c)

V =I(2.egi} ~ I. ~ '~ r" [n(f, )]'~
f

(5.2b)

where j'W j, and r„,r~ are now atomic matrix ele-
ments. For the energy differences, we have

Idy —(d = 4I —(d —(da —(da ——((t)a +(d —&tlsI)a 3 1 k~ k2 kg k2

(5.3a)

J
3 3 ~a&~k

k 8~ ~ 0 &A«k
(5.6)

where 0-k is the direction of propagation of the k
photon. It is evident now that the restriction tI'
~k in the sum has no effect on the integral. De-
noting by s, and y2 the real and imaginary parts
of D~(k), we obtain

where 6' denotes the Cauchy principal value and
6(x) is the 6 function; also replace the summation
over tt' by integration using the usual formula"

where ~„
Consider now R, as given by Eq. (4.1a}, which

involves Ds&» in its denominator. Calculating the

Dg, (k) =- ~2 —&r2

where

(5.'la)

278 j «gaj, (2 (n(k')+ I)dQa n(k') dQ+6
rt8 g C p ~ (IL)2~ —(dk, p ~ Cgk 4P

(n(k')+»5(~» —~, ) dQ&

k'

(r,",~'(u,', dec, , n(%')5((ua, —~„)dQ-„, (5.'te)

I(~,)=,', n(%) dQ-„,k 8~ 3~2 (5.8)

where I(m, ) is expressed in number of photons
per cm' per second per unit frequency. More
generally, one can introduce the quantity

The quantities &2 and y2 represent shifts and widths
of the state ~b(k)). In the expression for sa we
shall neglect 1 from the factor (n(E')+I) because
it represents a contribution to the vacuum shift.
Vfe shall retain I, however, in the expression for
y2 because it represents the spontaneous decay of
the intermediate atomic state ~2). It is more con-
venient to express the light intensity in terms of
the photon flux through the equation"

df (asa, Q-„)/dQ-„, which also involves the angular
dependence of the photon flux. But for most cases
of experimental interest one can assume a rea-
sonably uniform angular dependence, and there-
fol'e WOI'k wltll I (~a).

Note that the matrix elements ~rsa~a have been
left under the integral over (4)k . The reason is
that ~3) is in the continuum and as a result the
matrix element depends on k . This dependence,
however, will not be terribly important in most
cases owing to the narrow linewidth of laser light.
The terms involving ~rsa~' must be multiplied by
the density of final states of the outgoing electron
since the continuum states have a &-function nor-
malization. " Q' the wave vector of the photoelec-
tron is K, its energy is



TH RORY OF MUI TI PHOTON IONIZATION. " NEAR -8 E SQNANC E. . .

while the density of final states" is

(5.9)

p(&dr }= (mK/6«2)2) dQ-„,

where QK is the direction of K. If the ionization
energy of the atom from its ground state is , ,
then

(5.10)

R3 = (&t)~ + 43K,

which implies

(d = 50K + (&t)~ —(&L) = 42K+ (&L)~

(5.1 la)

(5.11b}

where &» gives the energy of ionization from the
excited state I2). The state I3) will be charac-
terized by the wave vector K, i.e., I3)=IK), and
the matrix element r„will be also denoted by
r «2. Noting further that e2/hc -=&2 is the fine-struc-
ture constant, we can write

Eq. (5.12d), and also to the fact that the matrix
element rK, itself depends on the energy of the
outgoing electron. With the narrow spectral widths
of lasers, however, this dependence is not very
significant. To obtain y, «), we sum over a.ll
possible light polarizations because the spontaneous
emission is unaffected by the polarization of the
exciting light. It is evident now that sg(y) and y2(y)
are the induced shift and width of the state I2) due
to resonant transitions to the ground state, while
s,«) and y, «) are the corresponding quantities
due to transitions to the continuum. These quan-
tities are further discussed in Sec. VI.

Having obtained explicit expressions for D„-„),
we now turn to the calculation of R, itself. The
matrix element (b(k)IVI«) is

l/ 1(2ve2/h)l/2L -2/2&dl/2 2, & [s(t&)]1/2

2 2(1) 2(K) ~

where

(5.12a)
while

(5.14}

s2«& =2&&+Ir&2 I
+

JlJ p (&L)~~
—(d

x.
I

2 — I &&2I dg8~'e
K

(5.12b)

&df (&d)

(5.12c)

(5.12d)

~2 —~2&T1 = ~& —(~2 —&d2) = &d2 —&d2& (5.15}

Using now 22 —&y2 for D,&-„, , Eq. (4.1a) gtves

h (d~ —(&t)
~

— ~ jy

(5.16)

Replacing as before the summation over k by inte-
gration, and separating the real and imaginary
parts of R, , we obtain

the last integration being over all directions of
propagation of the photoelectron. Now rK, has the
same dimensions as +y2 Similarly, we write

R, =S, —jl", , (5.1'ta)

y2 y2(p) + y2(1) + y2(K) &

where

y2&o&
—2(+/c }~2&Ir&2I

y, &„=-2«'aIr, "2*I'&d»I (&d»),

(5.13a)

(5.13b)

(5.13c)

q I,
""

&d(&d —&d„—S,)I(&d) &i&d

&d —&d21 —82 + 2

(5.17c)

(5.13d)y2&&&)
= 2&& &2 f( &d)I &dIrdr2&d.

p

In the last equation, r-' is to be evaluated at
K2

(dK =& —~~, owing to the presence of the & function
6(&d,. —&d») = 6[&dr —(&d, . —&d„)] . In all of the above
equations, ~, , which is a dummy variable, has
been replaced by +, and the & functions in the
expression for y, have been used in performing
some of the integrations. The remaining integra-
tions require specification of the light spectrum
I(&d) and knowledge of the functional dependence
of rK', on K. This dependence is due to the pres-
ence of K [which from Eq. (5.9) is (m&d«/&')'/2] in

where

+(],2)
=—S~ —iy~, (5.18a)

&( )d
C0 —CtP2~

(5.16b)

and where the quantities s, and y, depend on the
intensity and spectral shape of the incident light
[Eqs. (5.12) and (5.13)].

The calculation of D, and D, proceeds in a
by 2

similar fashion. Qne calculates D,+(» first
[see Eq. (4.2b)]. Using the definitions of the Ap-
pendix and the explicit form of V, and carrying
out the mathematical manipulations, we obtain
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y, =2m 'a[ r,",('&u„l(~„). (5.18c)

Now s, and y, represent the shift and width of
the state c'(k'), which involves the ground atomic
state. For this reason there is no vacuum-field
contribution to y, since the ground state can only
make a transition by absorbing photons,

» =S~ —&I'a
1 1

(5.19a,)

Using now these expressions for D,+&» in Eq.
(4.2a) in combination with the explicit expressions
for the matrix elements and the energies, we

obtain

S -2sa~r "[' " ' 2 a$' der d~ ~r' ~' (5.19b}

I'q = —m ~,', I
&„I'+2s'air„ I' ', + 2v'~ ~f (~)lr„',I'd~,2 g -).~ p

'6~I(~)d~
0 ~ —~2i+~i '+

~ (}

(5.19c)

where we have again omitted contributions to the
vacuum shift. Proceeding in the same fashion
we find that D& =D&. This should have been ex-
pected because the states (5,) and (5,) differ sim-
ply in the number of photons of the two modes, and

since»& and D+ involve integration over all
modes, the difference disappears. Physically,

D& represents the shift and width of the state of
the whole system (atom plus field) in which one
photon has been absorbed and the atom is in the
excited state

~
2) . Owing to the large number of

photons present it does not make any difference

from which mode the photon has been absorbed.
Mathematically this is taken into account when we
replace n(R') by the laser spectrum I(~). There-
fore we should have D@ =», . From here on we'2 .
shall denote both by D, = S, —iI;.

The quantities S, , I;, S, , and I", are now con-
stants which, however, depend on the incident
light spectrum and polarization. Using now the
explicit expressions for the matrix elements Vz, ,

and V, ,(j =1, 2), and for the energies, Eq. (4.6)
Qga

gives

2 2 2

~a —~a~+ an+ ~ ~ ~a —~2j. + at+~ g1 2

(5.20)

S,~-=S, -Sq,

and K is to be evaluated at

K=[(2m/I)(~, +~, —~,}]'~'.

(5.21)

(5.22}

Summing over all photon modes, integrating over photoelectron directions, using Eq. (5.12d), and replac-
ing summations over k by integrations, we obtain

Wr"'=8w'o." ', d~ d~')rr", (')r,', ('~~'f(~)f(~') .
&

+
co — + S ~+iI'~ ' —(d2g+ S g+ &I'g

(5.23)

where for simplicity we have now replaced ~~kg

and M~ by and ~' since they are dummy vari-
ables. This is the total transition probability per
unit time for two-photon ionization. The photo-
electron angular distribution is dWr"'/dQ-„and is
obtained from the above expression by replacing
)r', (' with (mK/Bw'h)[r-„, )'. As expected, the
angular distribution is determined by the dipole

matrix elements of the transition.
If we neglect shifts and widths in Eq. (5.23), and

replace the light spectrum by a & function, we

obtain the usually quoted formula for 8'~( ', except
for a factor of 4, which has been neglected in
previous treatments. It is evident now that the
general equation, with all intermediate states
taken into account, is
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rn
r~ oo

W»' =8»'~t' „dAK,g
d~ d~'~~'I(td)E I K 8&3@ 0

r-' r'
Km ml Km nal

4P —N ~+5 ~ +il~ 4P —(d ~+5 ~ +/I~
Nl ftt fit

(5.24)

where the summation is over all atomic states m.
This is obtained by going back to Eq. (3.10) and
proceeding from there as we have done, but car-
rying along the summation over m. For a narrow-
width light source whose center frequency is many
linewidths away from any ~ „ the shifts and widths
can be neglected. Then we obtain the usual form of
the off-resonance two-photon ionization rate. If,
however, one or more atomic states lie near or
within the light-source linewidth, shifts and widths
will generally be important and must be included.
In case the center frequency of the light is very
near one particular atomic level while all other
atomic levels are far away, then one can adequately
describe the process by retaining only one term
of the sum over m. Strictly speaking, even then
the sum gives a background contribution which
should be included, but in many cases of interest
this background is several orders of magnitude
smaller around the resonance. The background
becomes important in the case of near resonance
with two closely spaced levels. Then at some
point between the levels, interference between
the two amplitudes can cause the cross section to
drop to very low values, in which case the main
contribution may come from the background.
Whether this happens depends on how narrow the
light source is.

For off-resonance processes the shape and width
of the light source is not importaot and the total
flux is all that matters. This is obvious from Eq.
(5.24) if one replaces I(&u) by a 5 function and
neglects the widths and shifts. But for near-reso-
nance processes, the details about I(~) can be
important not only because 8"~" involves integra-
tions over the spectrum but also because shifts
and widths depend on. it. In Sec. VI, we study this
case in some detail.

It is in going from Eq. (5.20) to Eq. (5.23) that
photon-correlation effects would enter the ex-
pression for the transition probability. If Eq.
(5.20) is averaged over all possible field states
the resulting equation for the transition probability
W~ ' would involve a second-order field correla-
tion function instead of I (~)I(~'). Since otherwise
the results would be the same (and since photon-

correlation effects have been discussed else-
where") we do not consider this question any
further.

ln the most general case, Eqs. (5.23) and (5.24)
should contain the step function e(++ ro' —ruz) under
the integrand, where e(») =1 for » ~0 and zero
otherwise. However, for a single laser beam cen-
tered at +, with width 24~ such that 2&, —2&~»~,
the step function becomes redundant and as a re-
sult we have not included it in the equations of this
paper. For near-threshold two-photon ionization it
would have to be included.

VI. APPLICATION TO A MODEL PROBLEM

We are now in the position to explore some of the
details of resonant and near-resonant two-photon
ionization on the basis of Eq. (5.23). As a model,
let us consider a one-electron (alkali) atom and a
laser with a linewidth of the order of a few wave
numbers. It is with such lasers that most present
day high-resolution multiphoton ionization experi-
ments are performed. The laser line shape usual-
ly looks like a triangle. It turns out, however,
that a square line shape gives most of the essen-
tial features of the process while at the same time
it yields easily tractable analytical results. Thus
we take

K, =-[(2m/h)(2(u, —(u, )]'~'.

Denoting that value by ~r'»~, ~', we can write02

&2'=ax'n'[r" i'(r~ )'(v'q

where

(5.3a)

I(&u) =I, for ~, —n~ (~ ~ &u, + g~

= 0 otherwis e,

where ~, is the laser center frequency and 2g~ its
linewidth.

Over linewidths of the order of a few cm ' or
smaller, the matrix element rKK, is essentially con-
stant. Also K, as given by Eq. (5.22), is an ex-
tremely slowly varying function of energy over the
range 2m~. We can therefore take (r'»~, i' outside
of the integral, replacing it by its value at

(6.3b)
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and where

~21 +21 Sab (6.3c)

Note that the total light flux I in photons per cm'
per second is

%e have also replaced ~~' by ~', as ~~' varies
insignificantly over 2~~. It is Q that now contains
all the resonance and line-shape effects. Per-
forming the integrations, we obtain

I =I024~ .

The shifts and widths also depend on the light
spectrum. The formulas obtained in Sec. V ap-
plied to the case of square line shape give

Q = I'0(2 gl+ (4&z/1"3}g2+2g'2) (6.4a) ~b ~2(O) + ~2{E)+ ~2(1) s (6.6a)

(~0 -~21+&I.) +13
(~0 —(d21 &i) +1 0

(6.4b) I 2(o) y2(o) 3((2/c )(d2 lr„l', (6.6b)

2&L, l"b
g, —= arctan

(~0 —(d21) +10-&I, (6.4c)
2(r) =y«) =2)I' lr'r, .l' oI (6.6c)

12(,) =2r(rlr»
I I, —,y,ln, + ((d» —s, ) arctan2 1 yl+ ( 0 21+Sl+QJ)

— )1+ (do M21+Sl AL
2 21 1

(sL)0 (d21 + S 1 +
(6.6d)

The quantities y, and s, are

y, =2r'air, ', I'(d„I, if I(d, (d„I &a—~

and

=0 if I(d, —ld„
I
& Z~ (6.Va}

s, =l ts~,', PS (1 ~ "1 I ' " 'I
(tl SSs)

2&I. I ~0 —~21 +I, I

The shift Sb is given by

Sb = S2(X) + S2(1)

where

sar) =2ralr'~~ 2I'In. ~

and

(6.8a)

(6.8b)

2r~lrX3sl2I 1 Yl ar t n yl L 21 1 ln ( 0 21 1 nI. ) Ysl

2n ~ ((dll —idol + S1) + yl —4g 4b.I (&do —&d21 + Sl —61 } + yl(~)
~~ ~ ~ ~ r l~

~
L

~~c n
0 2} i

2
I i2

~
~

~
n

0

~

2 2 I ~

~

2

~

~

~ (6.8c )

S, is given by

«

a
~ 2 ~i

2 I
ii~i

~
t

0 2I 2 2
~ i ~

ii

0

~

2 I

~

2

~

i
ii2h2 2

y22~L, ~21+S2; (~0 —~21 —so+&i} +'Y2

2n, ((d, -(d„-s,) +y', -d, 4g ((d, (d„—s, g ) +y,
(6.9a)

where

2(1) «) 1 2(E) (6.9b)

(where we have used the relations s,(,) =-s, and

2(r)
= 2(r)}s

y2 =y2(0)+ y«)+2r'~lr, 2'I'~»I0 & I~.-~., I «.
= y2(o)+ y2(r) if

I ~0 —~211~ &I, (6.9c)

and where S«), y«), and y«) have been calculated
above. The sequence of equations (6.3}-(6.9) shows
that given the atom (i.e., the matrix elements of
r~) and the characteristics of the laser (i.e., I„
~~, and the polarization A. ), we must first calcu-
late y1 s1, y„and s» then use their values to cal-
culate S„Sb. and 1 „and finally calculate the tran-
sition probability gI(» . The quantities y, and s,
are, respectively, the width and shift of the initial

atomic state I1) under the influence of the incident
light. Except for the vacuum shift which is con-
tained in ~„ there are no other significant contri-
butions" to either y, or s, because Il) has been
assumed to be the ground state. Thus 1/2y, is the
lifetime of ll) in the presence of the light. Sim-
ilarly, y, and s, are the width and shift of the
atomic state I2) in the presence of the light. Note
that y, contains three terms: y@,), which is the
natural width of I2); y«& which is the width due
to the probability that the excited state I2) may
make a transition to the continuum; and y2(1) 2K N

xlr~»*I2&d»I0 due to the probability that the atom may
make a transition back down to the ground state
under the influence of the exciting light. The last
part is the resonant contribution and vanishes if
the excited state is not inside the linewidth of the
light. In other words this is the induced-emission
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part and is equal to y„as it should be, because
absorption and induced emission have the same
probability. The lifetime of ~2) then is 1/2y, . The
shift s, also contains two parts (the third part, the
vacuum shift, is included in u&, ): —s„which is
the resonant contribution and is the opposite of s„.
and S,«)=s«), which is due to the possibility of a
transition to the continuum. Both -s, and 8,«)
are due to induced processes and vanish in the ab-
sence of the light. The induced shifts of

~ 1) and

~2) are finite and do not present the well-known di-
vergence of the vacuum shift. 4' The reason is that
the spectrum of the light has a cutoff and therefore
the integral is finite. The divergence of the vac-
uum shift in the nonrelativistic approximation
arises from the fact that the integration over ru is
from 0 to ~ and one must impose a cutoff in order
to obtain a finite result. As the above equations
show, the induced shifts and widths depend linearly
on the light intensity, which should be expected
since they are due to linear processes —absorption
or emission.

The transition probability Wz') has a resonance
structure, but the shifts S, and Sb, and the width
l b appearing in Eq. (6.3b), are not the shifts and
width of levels ~1) and ~2) discussed above. Con-
sider I'b first. It contains three contributions, as
y, did. The natural (spontaneous) decay and the
continuum contributions are the same as in y, .
But the resonance contribution is much more com-
plicated and certainly is not linear in light intensity
[see Eq. (6.6d), and note that s, and y, depend on
I]. As we shall see later on, I;&,) reduces to y&, )
for sufficiently low intensity. Thus, in general,
the width of the resonance is I'b, which is not the
width of the intermediate state. Similarly, the
shifts S, and Sb occurring in the expression for
W~) are not the shifts of the atomic states (1) and

~2), although they do reduce to s, and s, for low in-
tensity.

The difference between level shifts and widths,
and the shifts and widths appearing in the transi-
tion probability, occurs in the resonant contribu-
tions, i.e., in the contributions due to transitions
between ~1) and ~2). As we shall show subsequent-
ly, for relatively low light intensity, the lifetime
(and hence the width) of the intermediate state )2)
is determined by spontaneous emission. Then I,
is equal to y,«). With increasing intensity, how-
ever, it is the induced process (and particularly
induced emission to ~1) ) that dominates. As the
intensity keeps increasing the lifetime of ~2)be-
comes shorter and shorter and hence the width y,
increases linearly with light intensity. But the
width I'b of the transition probability eventually
saturates to approximately the width of the laser.
Physically, this is simply due to the fact that in-

duced transitions must take place within the line-
width of the laser since there are no photons out-
side it to stimulate transitions. Similar considera-
tions apply to the shifts.

Let us now discuss our results in a more quan-
titative manner. First consider the ratio of the
stimulated-emission width y&» of ~2) to the spon-
taneous width y&,). From Eqs. (6.6b) and (6.9c)
we have

(6.10)

For optical frequencies, and as an order of mag-
nitude calculation, we can take ~»—- 10" sec '.
The ratio of the radial matrix elements depends on
the particular polarization A. , but multiplied by 3,
as in Eq. (6.10), it will not be much different from
unity. Then we can write

~"-10-'I,=10-'- I
ygo) 2&r,

(6.11)

s2 ———S 1& (6.12b)

with s, as given by Eq. (6.Vb).
Again, for an order of magnitude estimate, let

us take ~r~»*~'= 10 "cm', which is a typical ma-
trix element for some of the excited levels of the
alkalies. Then, up&jng ~»= 10", we have

y@,)
——(0.14x10 ')I/2m~ .

If we take I = 10"photons/cm'sec, and again a
linewidth of 5 cm ' [the linewidth in &u units
(~ =2wv) is 2n~ =2mx 5x3x10"=9.42x10"sec '],
Eq. (6.13) gives y&,)= 1.5x10" sec ', which is
almost two orders of magnitude larger than the
natural width y,«). Suppose furthermore that ~,
is chosen so that ~, —~» =0. From Eq. (6.7b) we
obtain s, = 0.45X10' sec ', which is totally insig-
nificant compared to either ~» or z~. Under these
conditions Eq. (6.6d) gives

If, for example, we have 2g~-5 em ', it is equiv-
alent to ~~ = 9&& 10" sec '. Thus, if I is larger
than 10"photons/cm'sec, ) &,) will be larger than

y,«). Usually two-photon ionization requires in-
tensities of 10"photons/cm'sec or more. For
such intensities y&»» y,«), and this is true in most
cases of interest. It also turns out that yp(y) is
much larger than y«), at least for the low-lying
excited states of the. alkalies. But this must be
verified in each particular case. The same is true
for the shifts. Consequently, for light intensities
such that two-photon ionization is observable under
typical experimental conditions, we can take

'Y2=—&p(&)=2" ~lri2 I ~2ilo



2006 P. I.AMBRGPOUI OS

r,(„=2s(r
~
r~~,

*pI, (u„arctan(-2y, /n, ,}

=- »'& I»'2*1'Io~2i =
y2o) (6.14)

where me have used the fact that y, =y&» and that
arctan(-2y, /a~) = s when 2y, /n~ «1, as is the
case here. This proves an assertion we made
earlier, namely, that I', =—I @»= y,&»

for sufficient-
ly low intensity. Gf course how low is "sufficient-
ly low" depends on the radial matrix elements,
transition frequencies, etc. Similarly, we find
that S, = —S~=—s„which as we saw above is negli-
gible.

We have a situation in which the shifts are negli-
gible and I', «a~. Then Eqs. (6.4b) and (6.4c) give

g, -=0 and g, = s, which substituted into Eq. (6.4a)
yield Q =I,202s (2n.~/1', +((). With the numbers of
our present numerical exa.mple, me can take

I', 2s2S—~ /I'„w hi chcan also be written

Q = 27(I /I (,2n,~. Substitutlllg into Eq. (6.8a) we

find

(6.15)

The first thing to be noted in this result is that the
denominator contains the product I,2~~, which in
our numerical example is equal to yg»2~x. This
is to be contrasted to what w'e mould have obtained
if we had taken the off-resonance formula and in-
tuitively inserted an imaginary part to represent
the width of the intermediate state. Then the de-
nominator mould have been y&», which is almost
two orders of magnitude smaller than y,&»2AI .
Second, this particular result for the denominator
is due to the assumed specific form of the line
shape of the laser. For a different line shape, but
the same width, the denominator will in general
turn out to be y&» p.2~~, where the coefficient p,

depends on the detailed shape of the spectrum.
Usually we will have p. «1. Third, if we recall
that in this case

1(, =y2o) =2~ (rlr&p I (4)2&Ia

= 2s'o.
[r,",~'(u„(I/2n~),

we obtain from Eq. (6.15)

Wr) = Bw'n
~
r'z~+ ~'&uP, (6.16)

which mea, ns that at this value of I partial satura-
tion has set in and the rate depends linearly on the
light intensity. Such effects have been repeatedly
observed in multiphoton ionization. This comes
about, in the present case, vixen the intensity is
such that the stimulated deexcitation of ~2) is much
more probable than the spontaneous decay. For
much lower intensity, such that I",=—y@ &» y&»,
the rate would be proportional to I' because y,«&

is independent of I. In most cases, however, this

situation is of little practical interest because for
such lom intensities two-photon ionization mould

probably be unobservable. Off resonance of course
the process does go like I' even for high I.

At first sight, one might be tempted to infer that
Eq. (6.15}represents a "two-step" process. in-
deed 5 ~ is proprotional to the product of the squares
of the matrix elements for the transitions (1)—( 2)
and j 2) ~ @ multiplied by the lifetime (2y,(,)) ' of
the intermediate state. This, however, does not
mean that we have a "tmo-step'" process, in the
sense that the second transition retains no memory
of the first transition. Qn the contrary, the life-
time of the intermediate state is determined by
the exciting fieM and there is a definite correla-
tion between the first and second transitions. The
process must be treated as a single transition be-
tween an initial and final state. That the two
"steps" are not independent is readily seen if one
recognizes that the polarization of the light de-
termines which magnetic substates of ~2) are ex-
cited, and only such substates participate in the
ionization process. A case in which the process
could be truly considered as a two-step process is
when the incident light is unpolarized and its in-
tensity is such that I'~ =y,«&. Then it can be con-
sidered as two step because it would be the same
even if the intermediate state had been excited by
any other means, say collisions.

Another circumstance in which a two-step pic-
ture is meaningful is when the atoms also interact
with a third system (or with each other if the pres-
sure is sufficiently high), and as a result transi-
tions between magnetic substates take place with-
out deexciting the intermediate state. This has re-
cently been discussed by Lambropoulos and Ber-
ry." In that case, one must make sure that the
collisional relaxation is faster than the dominant
radiative lifetime of ~2) and not just the natural
lifetime. In an experiment mith a single laser
beam, in most circumstances it will be the stim-
ulated lifetime that dominates. And as we sam
earlier, under typical experimental conditions this
lifetime is of the order of 3&10 " sec or shorter,
i.e., several orders of magnitude shorter than the
spontaneous lifetime. From an experimental
standpoint it is perhaps preferable to use two light
beams of different frequencies. By keeping the
intensity of the beam with the resonance frequency
low enough, one may be able to achieve a radiative
lifetime comparable to the collisional lifetime, as-
suming the latter can be made shorter than the
natural lifetime. The resultant loss of intensity
can then be made up by increasing the intensity of
the second beam which is not in resonance with
the transition ~1)- ~2), again assuming that the re-
sulting lifetime (2y, (r)) due to ionization from
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I'„= I',(,)
——2o.~/s, (6.1'I )

which proves what we had asserted earlier; name-
ly, that although the width of the state (2) keeps
increasing linearly with I, the width I', which ap-
pears in the transition probability eventually sat-
urates to a value of the order of the laser width.
The exact saturation value depends on the detailed
laser line shape. Here it is 2o~/v because of the
chosen square line shape.

Substituting now into Eqs. (6.4) and noting that

g, -= 0 and g, =—0,6395, after some algebraic manip-
ulations we obtain Q=—20I'„and from Eq. (6.3a),

~2) can be kept longer than the collisional relaxa-
tion. (See also Sec. VIII for further discussion of
two-photon ionization with two laser beams. )

In connection with the question of two-step ver-
sus one-step processes it is often said that when
the linewidth of the exciting light is larger than the
width of the intermediate state, then we have a
two-step process; i.e. the emission is independent
of the absorption. This is usually based on a dis-
cussion of resonance fluorescence (which is a two-
photon process) presented by Heitler in his classic
book on the quantum theory of radiation. '3 One
must be very careful in extrapolating that state-
ment because Heitler explicitly considers the
weak-field case in which the natural decay is the
dominant mode of deexcitation of [2). As we saw
above, when the field is intense the stimulated
lifetime dominates, and Heitler's statement is no
longer applicable. Moreover, even in Heitler's
example, if the exciting light is polarized, albeit
broadband, only certain magnetic substates of (2)
are excited and this, strictly speaking, is not a
two-step process. Again to make it a true two-
step process either the light must be unpolarized
or else there must be eollisional relaxation of the
magnetic substates. Heitler constructs a single-
step process by taking the linewidth of the light
source to be much smaller than the linewidth of
the intermediate state. In the intense-field re-
gime, however, we have a single-step process
even when 24~ » y, .

To look at the other extreme case, let us assume
that the total photon flux is much larger than be-
fore, say, I= 10"photons/cm' sec, while the line-
width 2~~ remains the same. Also assume that
we are still on resonance, i.e., ~p A2y %e state
without proof at this point that the shifts are small
compared to g~ and we shall neglect them for the
moment (see also Sec. VIII and Table I). Now the
width of ~2) is y,

-=y«~= 1.5&&10" sec ', which is
two orders of magnitude larger than the laser
width. Since we have y, =@&»»p~, from Eqs.
(6.6) we find

&'r"= 1-60''o'Ir'r
o I'lr2il'~of oE'p2

which shows that the transition probability now is
proportional to I'o or, equivalently, to (I/2d, ~)'

The transition probability for resonance two-
photon ionization for low I is, as we saw earlier,
proportional to I'. As the intensity increases and
the stimulated-emission width of the intermediate
state starts to dominate the natural width, the
process becomes proportional to I. Finally, as
the intensity increases further, y, keeps increas-
ing but I, eventually saturates to a value of the
order of A~. Then the rate of two-photon ioniza-
tion again becomes proportional to I'.

It should be noted that in an actual experimental
situation, the observed quantity, i.e., the number
of photoelectrons per laser pulse, is given by

(6.18)

(6.19)

TABLE I. Level shift (s&), resonance shift (S~), and
resonance width (I'~) as functions of detuning 6 = (coo

(4)2 f ) /QL ~ (~0 is the laser cente r frequency, (a) 2 &
the

frequency of the atomic transition, and AI the laser
line half-width, For the parameters used in the calcu-
lation, see Sec. VH. )

2s (/Al

4.0
3.0
2.0
1.5
] 4
1.3
1.2
1.1
1.05
0.95
0.9
0.8
0.7
0.6
0.5
0.4
0,3
0.2
0.1
0.0

1.158
1.571
2.490
3.648
4.061
4.617
5.435
6.901
8.417
8,304
6.674
4.980
3.932
3.142
2.490
1.921
1.403
0.919
0.455
2.038x10 3

0.879
1.226
1.444
1.407
1.361
1.290
1.183
1.013
0.899
0.595
0.622
0.624
0.595
0.545
0.480
0.401
0,311
0.212
0.108
0.389x10 3

0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.211
0.266
0.347
0.410
0.465
0.510
0.550
0.580
0.603
0.617
0.661

where v is either the laser-pulse duration or the
time the atoms spend in the light field (whichever
is smaller), p the density of atoms in the interac-
tion volume, and v the interaction volume. It may
happen that Wr' v =1 for some intensity f. Further
increase of the intensity will produce no increase
of the signal because all atoms in the interaction
volume are ionized. This in fact happens quite
often in multiphoton ionization experiments, "and
it is a saturation effect quite different from the ef-
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fects discussed above. It is, so to speak, an in-
strumental effect and can occur in any of the in-
tensity regimes discussed above. At what intensity
it will occur in a given experiment depends on the
particular atom (i.e., the matrix elements) and the
time v. It can, for example, be avoided by reduc-
ing the time the atom spends in the field, while
the broadening and satura. tion effects discussed
earlier are inherent in W'~~2), depend on I, a,nd can-
not be altered by changing the time the atom spends
in the field.

Vll. SATURATION EFFECTS

As in Sec. VI, we shall again consider a square
laser line shape. The main contribution to the lev-
el shifts will generally be the resonant contribu-
tion s,&, )

= -s, . Using as an illustration the pa, ram-
eters ~„=10"'sec ', ~r,",~' =10 "cm', and

2zL =9 x 10" sec ', which correspond to some of
the first few excited states of the alkalies, we con-
sider first Eq. (6.7b). It is evident that if the la-
ser is tuned exactly on resonance (i.e., &u, = &o»},

the shift s, is 2mo. jr,",
~

I„which even for I as high
as 10"will be -5&10"sec '. This is about one
order of magnitude smaller tha, n 2~L. Of course,
if I were larger and/or 2n.~ smaller, s, would be
significant even on resonance. This is discussed
later in this section, but for the moment we con-
tinue with the above numbers. The point to be
made here is that exactly on resonance, the loga-
rithm in Eq. (6.7b) vanishes because ~, —~» =0.
Slightly off-resonance, however, the logarithm
will make the dominant contribution since it is
multiplied by ~»/2n~, which is much larger than

unity (typically of the order of 10'). The loga-
rithmic term dominates when the absolute value of
the logarithm is larger than 10 ' in our numerical
example, or more generally larger than 2n, ~/~».
Clearly, the logarithm is a large positive number
if ~, —co„ is near ZL) and a negative number with

large absolute value if (d, —~» = —ZL. The fact
that s, diverges for e, —~„=z~L is simply an
artifact of the jump discontinuity in the assumed
laser line shape. In rea, lity, the intensity in the
wings of a laser line drops to zero in a continuous
fashion and the divergence does not arise, and

this divergence certainly has nothing to do with the
well-known vacuum-shift4' divergences.

Despite the somewhat special laser line shape,
the emerging conclusion is basically correct;
namely, as the laser line approaches the excited
level, the shift s,&,)

increases. Its value remains
high a,s long as the intermediate level is near the
edge of (just inside or just outside) the laser line.
Obviously, the more a,bruptly the line shape drops
to zero, the larger the shift will be, other things

being equal. In other words, the level shifts s,
and s, can become very la, rge when a very narrow
laser line is near the level, without being centered
exactly on it.

However, it is not s, and s, but S, and S, that ap-
pear in the transition probability. In Sb, as in s„
the dominant contribution will usually come from
the resonant term Sp(y) thus for near-resonance
conditions, we have S,=—S&» = —S,. The quantity
S„=S,—S„which appears in Eqs. (6.3) and (6.4)
for the transition probability, will then be equal
to 2S, . As it turns out, S,. does not reach high val-
ues as s, does. To see the mathematical reason
for this, let us introduce the abbreviations

and

As long as the intermediate level is outside the
laser line, the widths are negligible and we can
take

~+&
si = —82= 27fl7ir2ii I ln

L

S = —S =2vn~r'~'I " 'ln+s ~+1 —s
24~ 5 —1 —S2/n~

(7.4)

As discussed above, s, and s, become large when
5- z1, but this does not occur in S, owing to the
presence of s,/n. ~ in the argument of the logarithm
in Eq. (7.4). When 6-+1, the shift s, is positive,
thus preventing the argument of the logarithm from
attaining large values, and similarly for 5- -1
because s, is then negative. This is essentially
a saturation effect and it was already apparent in
the equations for 1"„I „S„and S, derived in Sec.
V. It is very similar to the situation which occurs
in calculating a usual transition probability of
resonance absorption or emission" of photons. In
that ease„ the probability diverges as the reso-
nance is approached. If the level widths are in-
cluded, however, the result is finite. In the pres-
ent case, the shifts S, and Sb also have a resonance
structure. Their values saturate when higher-or-
der corrections are taken into account. These cor-
rections are significant when the level shifts s,
and s, become larger than the laser width 2ZL,
which often does happen at the light intensities used
in rnultiphoton transition experiments.

The above discussion was based on Eq. (7.4),
which is applicable as long as the intermediate lev-
el is outside the laser line. When it is inside, the
widths are not negligible any longer and the full
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eq ations for 8 ) 5~, 1 y
and I"~ mustbe used.

These equations are more complicated and the
saturation effect is not obvious from their analyti-
cal structure. The effect is present nevertheless
as one would have expected on the basis of the
more formal results of Sec. V.

As an example, we have calculated shifts and
widths for various values of 5 using the parameters
of our numerical example and I =10". Recall that
when 5 =g, the center of the laser line is n laser
half-widths away from the transition frequency u2y.
The results are given in Table I. As these results
show, when the laser is tuned a few half-widths
(n~) away from &u», the shifts 2s, and S„are ap-
proximately equal. As the laser is tuned closer
to cu„, the level shift s, increases rather rapidly,
whereas S„increases at first, reaches a peak
rather quickly, and then begins to decrease again.
After cu„enters the laser line, s, also begins to
decrease, while S„begins to increase again, but
after a small peak it resumes decreasing. Vfhen

cu, is exactly equal to u„, both s, and S„obtain
rather small values. Similarly 1", cha, nges as &,
approaches ~», reaching a maximum at w, = cv2i

(5 =0), whereas y, and r,~» remain constant owing
to the special laser line shape. The general trend
indicated by Table I is to some extent independent
of the exact laser line shape. However, the de-
tailed behavior of shifts and widths as functions of
5 does depend on the details of the laser spectrum.
For example, exactly where S,~ and I', peak, or
how many peaks they exhibit, and so on, is deter-
mined to a considerable extent by the form of the
laser line. This is important to keep in mind,
since often the laser spectrum itself has more
than one peak and is not a simple function of fre-
quency. One of the interesting results emerging
from Table I is that shifts a,nd widths do exhibit a
rather complicated behavior even when the light
spectrum has a very simple structure.

In view of the above results, one would expect
shifts and widths to have a significant effect on the
transition rate. This is indeed borne out by the
calculation of the rate using the same parameters
as in the calculations of Table I. As shown by
Eqs. (6.3) and (6. 4), the transition rate is propor-
tional to the quantity

4 = 2 gi+ (4&1,/I y)g2+2gz ~

which contains the dependence on 5, and where g,
and g, are given by Eqs. (6.4b) and (6.4c). In Fig.
2, q is shown a,s a function of 5. If we use a line
not with a jump discontinuity but with a finite slope
at the edge, and then take the limit as the slope
goes to infinity, we find that q follow's the dashed
line around 5 =1. Thus, although s, diverges at
that point, the transition probability is finite. The

first interesting feature in Fig. 2 is that the rate
does not have the usual simple I.orentzian shape
normally found in broadened lines of single-photon
processes. Not only is q depressed exactly on
resonance (which is a typical saturation effect) but
it also exhibits a second small peak in the wing.
What is perhaps more remarkable is the effect
illustrated by curve B of Fig. 2. This curve rep-
resents the transition rate when the intermediate
level is outside the laser line but with shifts ig-
nored completely; the widths in this case are zero
because the level is outside the laser line. Then
q varies according to (&u, —v») ', which is the
usua, l off-resonance formula for two-photon ioniza-
tion. Since ~„ is outside the laser line, the dif-
ference between curves A and B is due solely to
the shifts. Clearly, the shifts have a significant
effect on the rate even when ~, is several laser
linewidths away from resonance. This effect be-
comes more pronounced as the light intensity per
unit frequency (I, =I/2b~) increases, which is
illustrated in Table II. This calculation has been
performed with the same parameters as in Fig. 2

except for 2@~, which now has been taken one or-
der of magnitude smaller; thus I, is one order of
magnitude larger. It is interesting to compare 2s,
with S,~ (recall that in the present ease S„=2S,}.
The level shift s, is larger than S„and for certain

tI)
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FIG. 2. Transition probability {in relative units) for
two-photon ionization around a resonance with an inter-
mediate state. Curve A represents the transition prob-
ability with all saturation effects included. Curve 8
has been obtained using the off-resonance formula with
all shifts neglected. The quantity 4 is defined by

{~(j ~2f)j+L, where ~p is the laser center frequency,
~2& the frequency of the atomic transition in resonance
with the laser, and 4~ the laser line half-width. For the
relation of q to the absolute magnitude of the transition
probability see Eqs. {7.5), (6.4a), and {6.3a).
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TABLE II. Shifts and transition probabilities as func-
tions of detuning 4 = |'uo —cu»)/61. |The parameters
used in this calculation axe the same as in Table I ex-
cept for the laser line&dth, vrhich has here been taken
one order of magnitude smaller (Ml =0.4775 cm ).
For the other parameters see Sec. VG. The calculation
of Q has included all satuxation effects; for Q' all shifts
have been neglected; for Q" the linear approximation
(2s~) for the resonance shift P~) has been used. For
the relation of Q to the transition probability, see Eqs.
(6.3a) and (6.4a).]

2s )fAI S~fbi 10 Q 10 2TQI 10 27@II

values of 6, s, is two orders of magnitude larger
than S,. If the formal treatment of Sec. III had
been truncated one step earlier, the resulting ex-
pression for the transition rate mould contain 2s,
instead of 2S, . In view of the above differences be-
tween s, and S„ the resulting numerical values for
the rate would be expected to be much different.
This is also illustrated in Table II, where me list
the values of Q (denoted by Q") obtained by using
2s, instead of S„. Obviously, for certain values
of 5, there is a very large difference between Q
and Q". For example, for 5=1.5, Q" is almost
three and a half orders of magnitude smaller than

Even more important, Q" decreases signifi-
cantly as the laser line is tuned closer to the lev-
el. Similarly large discrepancies are also found
when the intermediate level is inside the laser
line, in mhich case the widths must also be in-
cluded. For example, if me calculate Q with the
parameters of Fig. I but using s, and y, in place
of S, and I"„me find that exactly on resonance
(6 =0) Q assumes a value 30 times smaller than
that plotted in Fig. 2.

These effects are very pronounced in the process
discussed in this paper because the resonance
transition between ~1) and ~3) is a single-photon
transition and the related probability can be very
high. In higher-order multiphoton processes, one
can also have higher-order resonances. For ex-
ample, in three-photon ionization, absorption of
tmo photons can lead to an intermediate state which

may happen to be in resonance. In that case, me

mould have a tmo-photon resonance which is a
meaker process. Then„saturation will in general
not be as significant as in the present case„unless

the intensity becomes much larger. As a result,
the shifts s, and s, may be satisfactory approxi-
mations. But these would contain only nonreso-
nant contributions to lowest order and a resonant
contribution of higher order. The details of this
case mill be discussed in a subsequent paper. For
the moment, however, we wish to point out that
one must be very cautious in invoking shifts non-
linear in the photon flux I for any arbitrary multi-
photon process.

VIII. CONCLUDING REMARKS

The main purpose of this paper was to show how

the resolvent operator can be used to develop a
systematic theory of multiphoton ionization. This
technique lends itself to adaptation to a large va-
riety of situations that can occur in near-reso-
nance processes. The exact, formal equations for
the matrix elements of the resolvent operator can
be replaced by approximate equations appropriate
to a given process.

In the present paper, attention was focused on
tmo-photon near-resonance ionization. The approx-
imation procedure was guided by the fact that in
this case, not only the transition probability, but
also shifts and widths do in general exhibit a res-
onance structure. Thus the iteration of the equa-
tions was continued to higher orders until the dom-
inant contributions to saturation effects were in-
cluded. The resulting expressions essentially con-
stitute a continued-fraction expansion of shifts and
widths. For relatively lower light intensities, the
shifts and widths assume the more familiar ex-
pressions" which are linear in the light intensity.

Although we have considered only one light beam,
the generalization to the case of two light beams
with different frequencies is self-evident. Then,
in Eq. (5.23), only one of the two terms makes
the dominant contribution, namely, the term for
which the photon frequency is approximately equal
to ~». The double integration over v and ~' is
over the line shapes of the two light beams. Final-
ly, in Eqs. (6.3), ~', is replaced by the product of
the frequencies of the two beams; Io is replaced
by the product of the two intensities divided by the
respective linewidths; and the integrand of Eq.
(6.3b) is simplified to

20.0
10.0
7.5
5.0
4 0
3.0
2.0
1.5

22.69
45.49
60.81
91.91

115~ 79
157.11
249.02
364.81

14.80
13.84
11,95
8.88
7.31
5.54
3.56
2.45

0.17
0.35
0,52
1.03
1.56
2.74
6, &V

10.86

0.49
1,99
3.57
8.17

13.03
24.21
62.73

143.01

0.11
0.064
0.042
0.021
0.014
0.0077
0,0031
0.0015

(8.1)

where ~ vaxies over the spectrum of the one beam
which is in near resonance with ~». The integra-
tion over ~' is then trivial as the integrand's de-
pendence on &u' comes only through I(e'}.'The ex-
pressions for resonance shifts and widths of course
mill only involve that light beam which is in near
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resonance.
Similarly, it is easy to treat the case in which

there are other states, besides I1), below I2).
If I 2) can decay to such states, and the light is
still in resonance with ru„, then 1"b should also
contain the sum of the spontaneous decay widths
of

I 2) to all states below it. The shift S, should
also contain similar contributions which, however,
are vacuum contributions and as such have already
been assumed included in e~.

The near-resonance effects studied in this paper
result from the influence of the laser light on a
single atomic state. Thus the dips in Fig. 2 are
not due to any interference between the amplitudes
of adjacent levels. These dips therefore are of an
origin different from that of a similar dip in the
Chang and Stehle paper, "which is the result of
interference betmeen the resonant and nonresonant
amplitudes. To be sure, such interference does
occur, but the point to be made here is that the
shift and broadening effects alone can create very
unusual line shapes in multiphoton processes. Such
effects can in practice be even more pronounced
than indicated by our results because even a fairly
monochromatic tunable dye laser may have more
than one narrow peak inside its linewidth. It is
then conceivable that one of these peaks, being
even narrower than the over-all be3m, m'ill shift
the level much more than anticipated. Preliminary
calculations tend to support this prediction.

In considering higher-order processes in com-
bination with light and photoelectron polarization
effects, one is faced vrith a plethora of phenomena
that require an even more detailed analysis. There
are cases of multiple resonance with the associat-
ed saturation effects. The problem of partially
(or e11ipticaBy) polarized light presents an entire-
ly new facet because both polarization components
can lead to resonance effects with different hyper-
fine structure levels. These problems mill be dis-
cussed in forthcoming papers.

~' c (k'){3 &8 R{..-(kd)) Vb&c (k') Fbjff

For E,+(k.)„consider the equation

(Z ~c+(k'))Ec+(K')a Q Vdc+(k') Eda ~

d vs a

(A5)

(A6)

where we have used V,+(k ), =0. This can be writ-
ten

(z ~c+{k'))Ec+( k' )a V»{»+(k') Eb~a

+ ~ ~~a+(k )+~a
d &a,by

(A7)

Given the form of
I
c'(k')) as in Eq. (A2), we see

that V„,+{k.} is nonvanishing if
I
d ) is of the form

l{f%")&=-12&
I

. , (k ) - I

n(k') + 1, . . . , n(k" ) —1, . . . ),
k" ab k' (A8)

where again we disregard vacuum-shift contribu-
tions. Then we obtain

+c+(k )) c+(k')a V»{» (k )Ebba'

~~(k-)c'(k ) +~(k-), .
K" ~ k'

(A9}

Writing now an equation. for E~(k. )„we have

Thus we have

(Z —k}b,)E»,a = Vb, a+ g Ve+(ka», Ec+(kaa
k'vd k~

+ ~ &'c-(kgb, &'c-(k')a-
h'

For F,-(k.)„ it suffices to use the same approx-
imation as in Eq. (3.21), the reason being that the
free-electron state

I 3) does not "decay" back to a
bound state. Therefore

APPENDIX

From Eq. (2;17b) we have

d{k'')} d(k") a Z 9d(k'') }a ~

J A{2

(A10)

(z —{a}b,)E»„=Vb, , + Q V,*,,E„. (Al) where we have used V«k .), =O. Separating out the
j =c' (%'} term we write

Given the form of
I b,& and V, the matrix element

V,*,, is different from zero for
I c) of the form

"d(k") d(k") = Vd{k") +(k )E.+{k~

or

I
c' (k')) -=I I& I. . . , n(k, ) —I, , n(k') + I, . . .&,

k' ab k, (A2)

Ic (k')) —= I3&I . , n(k, ) —1, . . . , n(k'} —1, . . .).
(A3)

+ Q Vdd(kit}Ed, (Al 1 )
g ~a, {.+(k')

Now we are ready to drop the sum and take

Ed(k" }a (z ~d{T' ')} Vd(k'')c+{k '}Ec+(k')a ~

which substituted into Eq. (A9} gives
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(A13)

Introducing

and solving for E,+&k, & we obtain

(c' $')i Vib, )
c'(k') ~ c+&k'y ~ ~

(A15)

Substituting this and Eq. (A5) into Eq. (A4) we find

Introducing now

and solving Eq. (A16) for E, , we obtain

Obviously, I'b, is given by an expression similar to the above with b, replaced by b» and in the expres-
b2a

sion for 0, , as well as in the previous equations, k, replaced by k, .
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