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Using the method of configuration interaction as applied to autoionization by Fano, ex-
pressions involving the reaction matrix K in the basis of the original configurations are given
for the width and resonance energy. The expression obtained for the width is a Fermi "golden
rule" type formula similar to that proposed by Miller. The expression for the resonance en-
ergy changes only slightly as the independent energy parameter varies, and therefore it is
possible to consider a particular resonance among closely spaced resonances without elabo-
rate search procedures. Application is made to the (nl2) lS autoionizing states of He below
the n =4 threshold. No significant near-neighbor resonance interactions were found despite
the small energy intervals between adjacent levels. The results indicate the 5s2 state falls
below the n =4 threshold, which is reflected in the small width given by our results. %idths,
resonance energies, relative decay probabilities for each of the open channels, and Fano-
Cooper cross-section parameters are given for all the states considered. Comparison is
made with experiment and other theories where possible.

I. INTRODUCTION

Pano's configuration-interaction (CI) theory for
autoionizing states' has provided the basis for
Inuch of the experimental work and has supplied
many useful relationships between the various
theoretical approaches to resonances. Fano as-
sumed a basis set of bound and continuum subsets
which diagonalize the Hamiltonian within but not
between subsets. He then provided a prescription,
not unlike the CI theory for bound states„ for con-
structing the formal solution of the Schrodinger
equation in this basis. He obtains formulas for
the shape of the resonance curve in terms of a
phenomenological shape parameter q, the reso-
nance energy E", and width F of the auto-
ionizing state. These formulas give the shape
of the spectral line for a radiative transition from
the ground state, ' and the shape of the electron
elastic scattering cross section near a reso-
nance."As such they provide the basis for the
interpretation of photon absorption and elastic
scattering experiments. '

In providing relationships to other theories,
Fano originally compared his CI theory to the
resonance theory of Breit and %signer. ' Sub-
sequently Fano and Prats' linked the CI theory
with the Lippmann-Schwinger scattering theory'
and more recently Ressayre and Lefebvrea related
Fano's CI approach to the Green's-function
method. Miller's technique' is related to Fano's

work by the present authors (Sec. II 8). Its reia-
tionship to the Kohn variational principle when
applied to the Feshbach equations, "to the well-
known close-coupling theory, ' and to the quantum
theory of decaying states" is also apparent.
Finally the several quasivariational techniques'
may be regarded as methods for obtaining bound-
state functions which may be subsequently used
in a CI calculation. "

Despite the central role of the CI theory in
developing our understanding of resonances, it
has not been widely utilized as a computational
technique. The single direct application known
to the authors is limited to one channel. " The
barrier to wider applications of Fano's theory is
the requirement for prediagonalization; i.e.,
one must have sets of bound and continuum func-
tions which diagonalize the Hamiltonian within
their respective subspaces. Fano and Prats'
give a technique for diagonalizing in the continuum
subspace. However, to our knowledge they have
never presented expressions for E"and I' in terms
of the original matrix elements for the general
N bound states and M continua case. Altick and
Moore"'4 accomplished the diagonalization nu-
mer ically.

In the present work we complete and extend
some of the ideas mentioned above and apply
the CI method to some resonances in He. In
Sec. II we review the generalized CI formalism
which, following Prats and Fano, "avoids the
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prediagonalization procedure. We generalize
their work by derving final expressions for the
resonance energy E" and width I' which involve
only the matrix elements of the original basis
set for N bound states and M continua. Like
Fano and Pratse we relate the present approach
to the Lippmann-Schwinger scattering theory,
thus permitting the identification of the matrix
representation of the reaction operator k. The
poles of the scattering matrix S, obtainable from
K using the procedure of Breit and Wigner, ' then
give the resonance energy and width as defined
by Mandl'6 and Seigert. "

Recently we briefly reported" the results of
an application of the CI formalism to the (nf2) '8
states of He with n =2-4, / «2 and e= 5, L =0 with
energies in the range 57.96-75.51 eV above the
ground state (i.e., the region in which the n =1-3
channels are open). We present these results
more fully and with corrections in Sec. III.

Neutral atoms support an infinite number of
Rydberg series of autoionizing states since a
positive ion has a long-range attractive Coulomb
potential for an electron. Helium is the simplest
system having this property and hence is an
attractive object of calculations. Each nl' state
is the lowest member of a Rydberg series. In
all the experimental and theoretical studies of
He, resonances from only the first few series
have been considered. Experimentally, no reso-
nances above the n=4 threshold and only three
states above the n = 3 threshold have been ob-
served. " Only the quasivariational techniques
have been attempted on states above the n = 3
threshold. ""

As n increases, the spacings between adjacent
levels decrease and hence one would expect that
at some large n the effects of near-neighbor
resonance interactions will be important. The
effects of near-neighbor interactions of closely
lying or overlapping resonances in scattering
have been considered by Mies, '~ Breit and %'ig, e'er, '
and Feshbach. " In scattering theory a resonance
is the solution of the Schrodinger equation with
normal-scattering boundary conditions at a com-
plex energy E =8"+iI' such that the scattering
amplitude possesses a pole."'" By its nature,
the CI formalism more directly gives the reso-
nance energy and width from the Feshbach ap-
proach. "'"This approach defines the autoionizing
state as being bound, with respect to some ioniza-
tion threshold, by an energy e. Upon coupling to
a degenerate continuum the autoionizing state
becomes a decaying state of energy E"= ~+4 with
width I'. I' is proportional to the magnitude of
the interaction between the bound and continuum
states, and 4 is the energy shift associated with

this interaction. The effects of near-neighbor
interactions, discussed more fully in Sec. II B,
are the distinquishing factor between the Feshbach
and Seigert approaches. We consider, in Sec. III D,
the resonant interaction effects of the higher reso-
nances in helium.

One further aspect of the higher resonances
prompts a more complete investigation. In the
Hartree-Fock" atom, as n increases the ns'
energy approaches the next lowest threshold [the
energy of the (N —1) state of He+] and at no- 7

actually falls below it. Therefore, for n~ 7, ion-
ization is accompanied with a change in principal
cluantum number of two [ns'-(n —2)sksj or more
by the target electron. As one proceeds to the
correlated system (e.g. , many bound configura-
tions) one might expect this phenomenon to occur
at some other value of principal quantum number
n. Indeed, for the atom in which the electrons
do not interact at all, it is easily seen that the
4s' state cannot decay to the Saks state. Nn viola-
tion of the Wigner-Von Neuman noncrossing rule
is involved here, since the rule assumes the
interaction of two stationary states having real
energies. However, in our case one state is 3
continuum and the other is nonstationary with a
complex energy. Mandl" has shown that non-
crossing rules apply for complex energy curves
but this still implies that the real parts of the
energies can cross provided the imaginary parts
are different at the crossing point. What happens
to the width of the ns' resonance because of the
closing of the (n —1) channels can be determined
only by a more complete calculation. These ef-
fects are considered in Sec. III 8.

If.. FORMAL CI THEORY

A. Solution of CI equations

The task of the CI theory is to determine the
wave function 4» by evaluating the coefficients
a„and b, of the linear expansion

e„(r,r') = Q a„(gs)y„(r, r')

5, (jE)g„,(r, r') de,

such that the full Hamiltonian is diagonalized;

In Eq. (1) p„denotes the discrete configurations
and g, the continuum configurations at energy

The subscripts j and E denote the state, r
gives the coordinates of the incident electron,
and r' denotes those of the electrons on the target
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atom. %e write the matrix elements

&y„]ff]y.,&= V„.„
& f( ~(J) t t&=5 i5(e —6)+8

&4~& lffl(&'m~c & =«~~ &(e-e'&+ V e~" ~

(Sa)

(Sb)

(Sc)

(3d)

(Se)

(Sf )

where Z (j E) is an integration constant to be
determined by normalization and P means the
CRuchy principal part, which is to be taken in
integrals arising when Eq. (4) is substituted into
Eqs. (1) and (2). The resulting equations can be
solved following the procedure of Fano and Prats'
for continuum states (the presence of the bound
configurations is not a significant complication)
giving for the coefficients the expressions

where for later convenience 8 and V represent
small residual quantities in both the diagonal and
nondiagonal cases.

The application of the CI theory to autoionizing
states necessarily implies that some of the dis-
crete configurations are degenerate with some
of the continua, thus introducing a singularity.
To obviate this singularity, Pano' defines a new

coefficient d„,(jE) by

b, (jE) =P d, (jE)+5(E—e)Z (jE), (4)
1

N

a„(jE)=-g P [(K"-e'-E1) ']„,

x K, s Z„(jE).

d, (j E) = $ K~~ .s Z„.(j E),

where we have defined

KPP HAPP + KPQ(E1 eo Koo) lK QP

K„~= V„,-ES„,+ g P
fft'

N

( VII('e ' E~n((('a')Ksa'c'~~
E-e

(V,e.,i —ES~ i, )K~,.„d,
E —6

N ( TI' K'Q

m~ g NIcm'g weft'g E-e (10)

(~lsa~c' E~i(N('a')Ki~s'a'n ~ p

Equations ('7)-(11) are simply an alternative
expression of the original problem [Eq. (1) and

(2)]. The integral equations have a striking
similarity to the operator equation for the reac-
tion matrix K,

nances.
The integration constants Z„(j E) [Eqs. (5) and

(6)] can be related to the phase shift induced
by the interactions among the configurations g„,

6 ~ 15

j?'=f'+Pl - ~ f?,
I

(12)

as derived from the formal Lippmann-Schwinger
scattering theory' with H = H + V, and P denoting
the Cauchy principal part. Indeed the matrices
K~~, K~~, K~~, and K~~ can be interpreted as
just the matrix representations of the operators
PKP, PKQ, Qj?P, and QKQ in the basis of the
original configurations. " The operators P and

Q are the Feshbach projection operators, the P
operator projecting onto the continuum con-
figurations and Q = 1 —P. Equation (7) is the
complete reaction matrix including the singular
term which is responsible for the observed reso-

5„(jE) represents the contribution to the phase
shift induced by the residual potential [V, Eq.
(Sf)] and arises solely from the mixing of the
continuum functions, whereas 5'„(jE) is the reso-
nant part of the phase shift owing to the interac-
tion with the bound configurations. %'hen physical
conditions establish the proper asymptotic re-
presentation, the phase shift is determined, and
Eq. (13) determines the constants Z (jE).

Electron scattering is described conveniently
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by the incoming wave form,

1 (-i}
+/s css(r ) r (2sI )I/2

x (eie z8 6 8-&e z) (14)

involving the scattering matrix 8» where k„
=(2e+[(z —I)/s]'3' ' is the linear momentum of
the electron in the nth channel,

g„,=k„r+ In(2k„r) --,'sl,

Inversion of [(8')'/'] * (1+isK~r) gives Z and
defines the scattering matrix in terms of the
reaction matrix K by the usual relation,

8=(8')' '(I-fsK )(I+fwK ) '(8')' ' (16)

8. Determination of the resonant reaction matrix, wjdths

energies, and cross sections

The determination of the normalization constants
Z„(jE) gives the final wave function 4'&z but not
the resonance widths and energies. %e need to
obtain the reaction matrix K' due just to the reso-
nances. In Eq. (12) we distinguished between the
nonresonant /5 (jE) and resonant F (jE) parts
of the total phase shift. Upon excluding all discrete
states in the CI, the resulting reaction matrix is
just E~~, the nonresonant reaction matrix. Know-
ledge of the total residual reaction matrix K
Eq. (7), and the nonresonant part R allows us to
evaluate K" directly giving,

c„(r') includes the target eigenfunction and the
angular part of the total wave function (all factors
irrelevant in this consideration), z is the nuclear
charge, and / is the orbital angular-momentum
quantum number of the incident electron. %'ith
this choice for the asymptotic representation
Mies" obtains the following expressions for the
constants Z:

—[(80)1/2] w(1 +I sKPP)Z (16a)

8 =(8')'"(1 —a vK")Z, (16b)

where 8' is a diagonal matrix with 8~, = exp(2I6,', ),
and 6'„, = —arg I'(I + I+i(z —I)/h„) is the phase
shift of the initial functions,

r!2
g„,(r, r')-c„(r') — sin{e„,+6'„, ) .

m'k'„

(17)

EI] -18-1/2y (21)

where F = —n YK Y'. Diagonalization of the ex-
pression in square brackets, such that

D=S ' '(e'+R«+sF)S '/'=UE" U+

and defining

(22)

and

v„„=[C' Y]„=[C'Kop(1+(vK~~}') /'], (24)

N

gt ~ ea. e 8
as

pg 8

the familiar form for K".""%e identify the
partial widths I'„„as 2w

~
v„„~' and the resonance

energies E„" as the eigenvalues of D.
The net effect of the integrals in Eq. (22) is to

introduce coupling among the zero-order bound
states owing to interactions with each other and
to their mutual interactions with the continua
{represented by the Koo and F terms). These inter-
actions produce shifts in the resonances according
to the Feshbach definition. Mice" has defined a
new set of shifted resonance states g„',

which diagonalize these interactions giving ener-
gies F.„"." Since KP~ provides for the complete
coupling among the zero-order continuum functions

, in the absence of any bound states, Mies
similarly defines a set of intermediate continuum
functions 4,~ which diagonalize these interactions
at energy F,

{KPP+g g )] )

where to simplify notation we have introduced
the expression

V=K' [1+(zK")']-'".
Rearrangement to a more symmetric form utilizing
a procedure similar to that employed by Breit and
signer' for rearranging 8' gives

KP y+8 1/2[8 1/2(e + K«+ z~)8-I/2

&&(I+(~K }'}' '] da.

x(zo-EI+K«)-'V] '
Equation (35) can then be written

(26)



1984 D. E. RAMAKER AND D. M. SCHRADER

Therefore p„ is the interaction of the nth reso-
nance state p„' with the continuum tjt},z in accord
with the Feshbach definition.

We can relate Eg. (28) here to the "golden rule"
type formula recently proposed by Miller, '

(29}

The resonant scattering matrix 8" can be ob-
tained from E|l. (25) using the rearrangement pro-
cedure of Breit and Wigner, '

where the oth partial wave of the continuum func-
tion y is simply

(30)

where

(35)

and where k'=2p. E. Miller used the operator
H -E instead of 0 to remove the restriction that

y ~ be orthogonal to p„. Also Miller showed that
if p„ is a good approximation (apart from a multi-
plicative constant) to the exact scattering function
+,.~ in the interaction region, and if the phase
shift e, of y ~ is the same as the nonresonant
potential scattering phase shift, then Eq. (2S)
yields the correct width. ' All of these conditions
are met by Eg. (28). With enough discrete con-
figurations, {t)„' can approximate the short-range
part of the exact scattering function to any degree
of accuracy, and the intermediate continuum f«
has the asymptotic form of Eg. (30) with the proper
phase shift. This suggests that, provided one in-
cludes the asymptotically correct continuum func-
tions, one should concentrate on optimizing the
discrete part of the function in the interaction
region to obtain the best widths.

By defining a relative partial width y„= 1 „„j
I'„~, the total width I'„=Q F„can be given

by

The parameters l '„and E„"e are termed the "effec-
tive" width and resonance energy and hence we
append the superscript "e" to the corresponding
variables. The matrix 0 is a complex orthogonal
matrix defined by

and diagonalizes the interaction matrix between
neighboring resonances.

The same rearrangement procedure applied to
the total scattering matrix [Eq. (18)j gives the
total cross section

v(21- + 1){2$+ 1)
2k„'(2l +1)

1'.=»i(4:Iff -&I Q &..0',&I'

=2~(y„'fa Efe", &/', -
where the linear combination of continua,

(31}

n ~ I+lg ~ +go. ~ aE &

= 5(E -E ) g y„.~.„.

embodies the total configuration interaction be-
tween the nth resonance and the hf open channels. "
There are M -1 remaining orthonormal continua,
+"~, m =2, 3, . . . , ~V, which are orthogonal also
to {t)„' and give rise to potential or background con-
tributions to the over-all scattering. The +"lg
functions of different n are not necessarily orthog-
onal and Mies" defines an overlap matrix 9, by
the equation

(e"„~e „, &
= 5(E —E'}e„.

where a and P indicate the incident and scattered
channels, 0„ is the wave number of the incident
electron, L and 8 a.re the total angular momentum
and spin of the system, and g=yF '(S')' '. The
total cross section consists of a contribution from
each resonance plus a nonresonant part accounted
for by the matrix T . The parameter ~g„8~' is
the relative probability that the nth resonance de-
cays to the Pth channel.

Using the Pano-Cooper"'9 profile parameters,
the fundamental lin. e-shape formula,

o{E) (u- P) =o, (u- P)+&i",(u- P)
(e"+ Ca)'
1+(&")'

(39)

is i:stained where e" =2(E E.")l&., q"z is the-
shape parameter, and 0'", and ~ represent, respec-
tively, the resonant and nonresonant parts of the
total cross section. A parameter p,"8 = [o",/(o",
+o,")I' ' has been introduced by Fano and Cooper"
and '- interpreted as the corre1ation coeffici: nt
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between the state reached by direct excitation and
the state reached by resonant excitation.

Equations (25) and (34) give the energy depen-
dence of K" and 8" explicity, provided E"„„E„"&,I „,
and I"„vary slowly with E." The representation
for K" involves the fundamental parameters I'~
and E"„which are shown by Eqs. (22) and (24) to
be defined in accordance with the Feshbach view-
point. The quantities E„"& and l"„are the funda-
mental parameters in the Seigert approach, since
at the complex energy E =E„"'+iI"„the scattering
amplitude has a pole and the "everywhere outgoing-
wave boundary condition"" on the scattering state
is satisfied. The relations between E"„and E„"&

and I'~ and I"~ in Eqs. (35) and (36) show that
the two definitions are identical for an isolated
resonance, a conclusion also reached by Mandl"
using second-order perturbation theory. For
closely lying resonances ((E"„—E"„,) ~ ~I'„) the
two definitions are identical only when G is real
or when the matrix v'v is diagonal. From Eq.
(33), this is true only when 8 is diagonal. 8„
has been interpreted as the overlap of the con-
tinua to which the &th and mth resonances couple
or autoionize. Hence resonances which couple to
orthogonal continua do not "overlap" or interact
with another, and the widths and energies obtained
from the two definitions are equal. %'hen neigh-
boring resonances decay to nonorthogonal continua
the widths and resonance energies defined by the
two approaches may not correspond. "

III. APPLICATION TO He

A. Computational considerations

The choice of basis functions in the application
of the CI theory to the (n&') 'S states of He is mo-
tivatedpartly by convenience. From the arguments
of Miller' discussed in Sec. II 9, the continuum
functions need be correct only in the asymptotic
region, provided the discrete functions Q„ade-
quately approximate the scattering function in the
interaction region. With this in mind we use for
the continua, P „asymmetrized product of
screened hydrogenic orbitals (spin functions are
suppressed throughout this section):

(40)

Assuming the long-range distortion is negligible
in the presence of the Coulomb field, the asymp-
totic behavior of g, is exact to within a constant
phase shift and this is corrected by the CI treat-
ment.

The necessary bound functions for |I[)„canbe ob-
tained by any of the quasivariational. procedures. '

Again for convenience, in this application we use
a product of orbitals,

(41)

Calculations were performed using both the hydro-
genic orbitals and Hartree-Fock orbitals for Q

above. The results using hydrogenic orbitals were
less satisfactory'o so only the Hartree-Fock re-
sults are given here. Qur method for obtaining
the Hartree-Fock orbitals has been reported pre-
v ious ly."

The basic numerical problem in employing the
CI theory is to construct the matrices foe, Lo~,
K , and K . Qf these, g and K,

~ require
the solutions to a set of coupled integral equations.
All of the energy and overlap matrix elements,
Eq. (3), are obtained by procedures previously
described. ' '" Qther somewhat similar techniques
have been given. "" The Cauchy integrals are
evaluated numerically by the procedure of Altick
and Moore. " The infinite limit on these integrals
is reduced to some finite limit & consistent
with the accuracy in the evaluation of the Coulomb
matr ix elements. ""

The quantities E"„,E"„'I"„,and I '„are slowly
varying functions of E over the energy range E"

1
ff

To determine the corresponding energy-
independent quantities E"„, E"„e, I"„, and I'„', which
represent the fundamental properties of the reso-
nance state, we apply a least-squares curve-fitting
technique" to the equations

ri, +q,E+tan 'fbi'„/(E-E"„)]

=tan '(-'I'„(E)/[E —E'„(E)]) (42)

and

C

(E —E"')2 + (2 f"„)'

These represent the phase shift and Breit-signer
line shapes (see Fig. l). The parameters qo, q„
A, and B above account for any nonresonant behav-
ior. The energy-independent partial widths I'„
and I"~are obtained by Lagrangian interpolation
of the points I'„(E) and I"'„(E)at the energy E"„
and E„"~, respectively.

Qne practical advantage of the CI treatment is
that a single calculation at some reasonable ener-
gy E determines all the energies and widths of the
resonances accurate to within the range of varia-
tion of E"„(E)and E„"&(E) Thus the CI tech. nique
greatly reduces the search procedure which in
regions of closely lying resonances could be pro-
hibitively time consuming. Elaborate search pro-
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tions indicated in Table I, the calculations con-
verged satisfactorily at least for the lower / states.
The addition of n'P(n') n+ 1) configurations was
not tested; however, they should have a very small
effect. The configurations sin'i (n') n) should also
have a small effect because of Brillouin's theorem. ~
Similar calculations using hydrogenic conf.'gura, -
tions did not converge as satisfactorily, indicat-
ing the effect of optimizing the configurations.
Tables indicating the convergence of both the hy-
dzogenic and Hartree-Fock results have been giv-
en elsewhere. " All calculations were limited to
a maximum of ten bound-state configurations.

-1, 5
8. Energies and widths of the (nl ) 5 states

FIG. 1. Fit of phase shift and +reit-Wigner line
shapes, Eq. (42} and (43), to the calculated points for
the 5s2 state.

cedures have been necessary37 when using some
other techniques not sharing this advantage.

Table I indicates those bound configurations Q„
included in the calculation for each resonance.
The coefficients C„are those in Eq. (23) evaluated
at or very near E'„. From these coefficients we
determine a spectroscopic designation for each
level following Lipsky and Russekss and Ormonde,
Vfhitaker, and Lipsky. se The nota, tion is used with
less validity however above n =3, The second col-
umn in Table I gives the level designation, the
first column gives the configuration from the inde-
pendent-particle model which correlates with each
state according to the position within each cluster
of the same n. U'sing the Hartree-Fock configura-

In Table II, we list our calculated positions and

widths and compare them with a selection of those
in the literature. A complete bibliography of pre-
vious results has already been given. '0 Despite
the relatively large uncertainties indicated in our
widths, the agreement with other work is very
satisfactory. The widths of the nn states (the
nsnd and nnsf ' states also contain components
of nn ) may be particularly uncertain because as
indicated by Eq. (21) they are the (sometimes
small) difference between larger quantities (i.e. ,

the width of the ~ state in the limit of strong
coupling is the difference between the geometric
and arithmetic means of the widths of the ns' and
nP' configurations). The CI technique is not unique
in this regard; we expect similar difficulties in

other techniques as well. This is true of all states
characterized by a linear combination of one-elec-
tron orbitals coupled strongly with opposite signs.

Our resonance energies are consistently slight-
ly higher than those obtained by the close-coupling

TABLE I. Resonant-state eigenvectors (bound part) of the (nE2) '8 autoionizing states of He belovr the n =4 threshold.
[Coefficients C~ in Eq. (23) evaluated at or near the resonance energy S„. The Hartree-Pock orbitals are given in
Ref. 21.]

Level
State designation E"{eV) 3s

2s
2P'

57.99 0.856
63.16 0.507

0.519
-0.851

3p2

-0.0381 -0.0626
-0.0433 Q. 142

4s2

0.005 56
-0.132

3s
3P2
3d2

33+
333d
333d'

69.44
70.50
72.75

0.751
0.535
0.358

0.642
-0.455
-0.583

0.163
-0.718

0.648

—0.0380
-0.0349
-0.0535

4f2

—0.0689
0.0582
0.0904

Ss2

-0.0307
0.138

-0.218

0.000 339
-0.0364

0.322

5f2

4s2
4p2
4d2

5s2

444d
444f +

55+

73.58
73.95
74.61
75.51

0.687
0.516
0.402
0,001 55

0.677
-0.210
-0.497
-0.0222

0.265
-0.768

0.106
-0.0260

0.0443
-0.332

0.775
-0.001 27

-0.0388
—0.0334
-0.0363

0.638

-0.0743 -0.0408
0.0292 0.121
0.0686 -0.0335
0.690 0.339

-0.0123
0.0774

-0.218
0.0736
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approach; hence our energies must contain a pos-
itive electronic correlation error which may be
accounted for by including the «&'& configurations.
In spite of this our resonance energy for the 3s'
state falls below the lowest resonance feature of
the experimental ls-2s He electron-impact cross
section of Daly and Powell, 4' which supports the
remark of Burke and Taylor~ that the energy
scale of the Daly and Powell experiment is about
0.5 e7 in error. The results of Oberoi, '3 utilizing

the Feshbach QHQ formalism, "do not include the
negative shift 4 (see Table V) arising from cou-
pling with the continua. Nevertheless their rig-
orous upper bounds, which include most of the
electronic correlation, are always below our res-
onance energies.

A systematic comparison of the widths I"„can
be made by scaling out the n dependence. Pano
and Cooper' have reasoned that when using orbi-
tals from the independent-particle approximation,

TABLE II. Comparison of resonance energies and widths for the (nl2) '8 states with experimental and other theoret-
ical results.

Method

28~ {22+)
Era fb

2P (22-)
E r

3s (33+)
E" I'

3P'(33ad-) 3d (333d+)
gr f

Close coupling without
correlation c

Close coupling with
correlation

57.86 0.1406 62.81 0.0188 69.37 0.0860 70.37 0.2246 72.04 0.0249

57.84 0.124 62.13 O.0073 69.39 O. 1650 70.39 0.4054

Multiconfiguration energy
bound method e

Feshbach QBQ ~

Truncated diagonalization &

Natural eigenvalue theory"

57.87

57.82

57.94

59.30

62.13

62.07

62.30

69.45

69.37

69.38

69.37

70.54

70.41

70.43

72.06

72.01

72.02

This work' 57.99 0.0942 63.16 0.0028 69.44 0.0523
+0.002 +O. 002 ~0.01

70.50 O. 1130 72.75 0.0449
~0.02 +0.02

Experiments 57.82 ~

9l, m
69.8(g "

Multiconfi guration energy
bound method ~

Feshbach QHQ ~

4s2 {44+)
Er I'

73.65

73.20

4p2 {444d-)
Er I'

74.07

73.92

4d2 (444f +)

74.64

74.51

5s'(55+)
E" r

Natural eigenvalue theo ry " 73.58

This work' 0.0345 73.95 0.0383 74.61
+0.01 +0,02

0.00655 75.51 0.0156
+0.02 +0.01

' Resonance energy (in eV) above ground state. %e have used 1 a.u. = 27.210 70 eV and the ground state of He
=-2.903 724 a.u.

b%idth {in eV).
n =2 results: P. G. Burke and D. D. McVicar, Proc. Phys. Soc. Lond. 86, 989 (1965); n =3 results: Ref. 39.
n =2 results: P. G. Burke and A. J. Taylor, Proc. Phys. Soc. Lond. 88, 549 (1966); n =3 results: Ref. 42.' Reference 22.

~n =2 results. Ref 47. n =3 results: Ref. 43.
&n =2 results: Ref. 38; n =3 results: Ref. 39.
"G. V. Nazaroff, J. Chem. Phys. 48, 3517 (1968); 52, 5873 {1970).
' The uncertainty in I' is that estimated from a convergence study with increasing numbers of nl configurations and

increasing k ~ Cthe upper limit on the integral over the continuum orbitals, Eq. (I)]. Errors in I" due to the absence
of nln'I, (n &n') and n'Ekl (n' & n) configurations are difficult to evaluate and therefore are not included in 41". %bat un-

certainty introduced by finite k~~ is a major component of DI'.
~ N. E. Rudd, Phys„Rev. Lett. 15, 580 (1965).
"Reference 41.
l J. A. Simpson, G. E. Chamberlain, and S. R. Mielczarek, Phys. Rev. 139, AI039 (1965).
~N. Oda, R. Nishimura, and S. Takira, Phys. Rev. Lett. 24, 42 (1970).
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FIG. 2. Reduced total
width P~ vs n, the prin-
cipal quantum number of
the ns2 (nn') resonance
states. Only the points
are physically significant.
Estimations or extrapola-
tions are indicated by
dotted lines.

the major contribution to the matrix element
(n'lnl )r»'( mlkl) for the width f'n» comes from the
interaction region. Since for large &, the hydro-
genic orbitals at small & change only by a normal-
izing constant proportional to n '~', they argued
that the quantity (n —d)'f'„» should be approxima-
tely independent of n. Thus they conclude that
the relationship among partial widths of succes-
sive states of Rydberg series is given approxi-
mately by F, = »(n —d)'I'„», where d is the quantum
defect defined by E"„=—Z'/(n -d)'. T', is called
the reduced width and is approximately constant
for all members of a series decaying to the kth
channel. For our system, we conclude that the
widths for the lowest «' state in each Rydberg
series is given by T'»=»(n —tf)»I'„». Figure 2 re-
veals that I'~ is indeed reasonably constant for
each of the partial widths of the ns' states. How-
ever, the total reduced width I'=Q»l'» varies ap-
proximately exponentially because of the increased
number of open channels for each higher state.

The 4f' state was found to be very near the n =4
threshold. Due to threshold effects which are not

accounted for in the CI theory, we did not reliably
determine the 4f' resonance parameters. The
5s' state definitely lies below the n =4 threshold.
Although it is evident the m =3 channels partially
compensate for the closing of the m=4 channels,
the effect on the width of the 5s' is clearly visible
from Fig. 2. The dotted curve is our estimate of
the manner in which the reduced total width would
increase if the m=4 channels were open.

Our computer codes are limited to five open
channels, hence the isks channel was omitted
from the n=4 and m=5 resonances. An extrapola-
tion of I' is indicated in Fig. 2. The error in omit-
ting the 1sks channel as indicated by Fig. 2 is then
about 3% for the 4&' state and 2% for the 5s' state.
The error in the higher angular momentum states
(l& 0) is even less.

C. 5 wave cross-section parameters

In Table III we give our results for the relative
probability ~g~(' for decay to each channel as de-

TABLE III. Probability for decay of the (n l~) 'S autoionizing states to the degenerate {nial ) '8
open channels.

1sks 2sks I (eV)

2s2 (22+)
2p2 (22-)
3s2 (33+)
3p2 (333d-)
3d2 (333d+)
4s2 (44+)
4p 2 {444d )
4d2(444f+)
5s2 {55+)

1.00
1.00
0.101
0.000 964
0.004 67
0 03
0.000 06 ~

0.002 ~

0.02 ~

0.766
0.185
0.245
0.158
0.0227
0.0915
0.101

0.133
0.806
0.751
0.0508
0.106
0.235
0.0279

0.352
0.304
0.205
0.447

0.378
0.218
0.304
0.3S3

0.0329
0.350
0.165
0.0250

0.094 25
0.002 762
0.052 26
O. 1130
0.044 88
0.034 54
0.03S 28
0.006 562
0.015 62

' Estimated values as determined by Fig. 2 for the nsm states or comparable figure for the
np2 and nd2 states.
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termined by the total cross section, Eg. (38). Our
estimates from Fig. 2 for T'„and its effect on the
total width F„ is also indicated in Table III. Since
we are considering just the '8 wave, only the
(nial} 'S open channels are available for decay in
L -S coupling. The widths are repeated for con-
venience. It can be seen that the preferred decay
mechanism involves the smallest change in prin-
cipal quantum number of the helium ion for all
states studied here. But during decay it is evident
an interelectronic transfer of orbital angular mo-
mentum may often occur. Physically this is to be
expected since during decay a large transfer of
kinetic energy (linear momentum) between the in-
cident and target electrons must also take place.

The Fano-Cooper cross section parameters q"

and p" are given in Table IV. The magnitude of
q is determined by the phase-shift difference be-
tween the resonant and nonresonant scattered
waves, and determines the point E —E",—a+I",
at which the cross section reaches a minimum.
/he sign of q therefore determines whether the
minimum is below or above the resonance energy.
Comparison with the experiments" is inconclusive,
however our results which indicate q is negative
for the n = 2 states do agree with the Fano-Cooper
analysis. ' Our results also agree with the theoret-
ical close-coupling results of Burke and Taylor~
and Ormonde et aI. 9 which indicate all partial-
wave contributions to q"„~„~are plus for all the
n =3 levels. Mendez" has shown that as p-0,
o(E) approaches the l,orentzian line shape, and q
in the Pano parameterization becomes insensitive.
Therefore in those instances when p is small the
value of q has littl. e physical meaning even though
the Fano parameterization still satisfactorily de-
scribes o(E) near the resonance.

The correlation parameter p gives the ratio of
the reduction of the total cross section at the min-

imum near the resonance (located at ~" = —q")
compared with an energy infinitely far away from
the resonance (e =a~).' With only one channel
accessible for decay of the n =2 levels, o, equals
0 and p" i.s identica, lly equal to unity. Table IV re-
velas that p" in some instances is still very close
to one for the n =3 levels which can decay via
three channels. Physically, this means that these
resonance states happen to decay into the same
linear combination of states that a.re excited by
electron impact directly from the ground state.
The implications of such have been discussed by
Macek and Burke" for the n =3 resonances in
e -H scattering.

D. Components of the energy shift

In Table V we give the components of the total
energy shift of the final resonance energy F.„"e

from the single configuration Hartree-Pock en-
ergy e„. One obvious feature of Table V is that
the shift due to the near-neighbor resonance inter-
action is several orders of magnitude smaller
that either E „and +. Thus the near-neighbor
resonance interactions for the resonances con-
sidered in this work are negligible and the Fesh-
bach and Seigert approaches give the same reso-
nance parameters. This is expected since we
have found I'„« ~E„' —E„",~. Here E„" represents
only those resonances explicitly considered in
the CI, hence only the (nP} 'S states. The presence
of several (nin'I) 'S configurations in the CI would
enhance any interaction effects beyond that ob-
served from Table V. However, since the posi-
tions of the n = 2 and n = 3 states agree well with
experiment, any interaction effects must be small
at this energy. Our results do indicate a general
enhancement of interaction effects as n increases,
and at still higher n they may become significant.

nlkl n 2s2 2P2

1sks q -1 26 —1 37 -2 21 -0 532
p 1.00 1,00 0.260 0.192

1.26 0.0184
1.00 0.758

0.251
0.161

0.308
0.688

TABLE IV. 'S @rave Fano-Cooper resonance profile
parameters q~ 8 and p„" 8 for scattering from the incident
channel e = lsks to the outgoing channel P = nlk/ for the
n =2l and n =3l autoionizing states. [The lsts open
channel was not included in the calculation for the res-
onances above the third threshold {see text). The un-
certainties in these numbers are similar to those indi-
cated for the widths in Table II.]

State Ecorr b

(eV)

C E8
fl n n

{10 ~ eV) (10 5 eV)

At

E e

(eV)

2s
2P2

3s
3P2
3d2

4s2
4p2
4d

2

-1.446
1.100

—0.8533
-0.6005

0.8704
-0.5373
—0.5575
—0.1458
-0.3601

3.676
-0.8380
—12.58
-68.03
-3.754
-0.4979
—42.44
-26.10
-4.000

2.991
-1.126

6.033
74.70

-57.56
11.04
5.033

-3.687
-7.392

-1,442
1.099

-0.8658
-0.6678

0.8660
-0.5377
-0.5998
—0.1719
—0.3642

TABLE V. Components of the total energy shift E„'
a

2P+ q
p

1.35 -50.0
0.998 0.0355

2y12
0.549

' e„ is the single-configuration Hartree-Pock energy.
E~«=E„(CI result, bound states only) -&„.

ECI
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Column 3 of Table V reveals that, except for
the 2s' state, ~ is always negative. Previously
Bhatia, Temkin, and Perkins" concluded A is
always positive for the 'S states. They, however,
obtained their values by comparing their eigen-
values of QHQ with the resonances energies ob-
tained by Burke and Taylor~' using the close-
coupling theory with correlation. An interesting
state-dependence pattern for the sign of ~ has been

developing. For instance, Altick and Moore"
found from a calculation using hydrogenic con-
figura, tions that ~ for the 'P' states is consistently
negative, that for the 'P states positive. Chung
and Chen" in the same system found the '8 states
gave a negative A while for the 'S states ~ is posi-
tive. Our result is consistent with that of Chung
and Chen since their variational approach to the
Feshbach equations is similar to the CI technique.
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