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Scattering of electrons by hydrogen atoms at intermediate energies*
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The algebraic variational xnethod has been applied to the scattering of electrons by hydrogen
atoms at intermediate energies. The atom was represented by an eleven-state expansion, in-
cluding exact 1s, 2s, 2p, and 3d states plus seven pseudostates. The pseudochannels are al-
lowed to be open. Results are presented for 1s-2s and ls-2p excitations for energies between
10 and 12 eV, and for 1s-1s elastic scattering from 10 to 30 eV.

I. INTRODUCTION

The scattering of electrons by atoms at inter-
mediate energies is a topic of much interest at
present. This work is an application of the alge-
braic variational method" to electron-hydrogen
scattering in the energy range 10-30 eV. The
atomic states are described in terms of pseudo-
states" and the pseudochannels are allowed to
be open. The general theory of this approach has
been outlined elsewhere, ' and some preliminary
results have been reported. '

Previous pseudostate calculations for the elec-
tron-hydrogen system have emphasized the low-
energy region below the u =2 threshold at 10.2
eV,"and the region between the n =2 and n =3 ex-
citation thresholds. ' In these calculations all pseu-
dochannels are closed. Two studies have been re-
ported in which pseudochannels are open. '" In
the first of these calculations, ' the excitation of
the 2s and 2P levels was studied using the three-
state close-coupling expansion, supplemented by
an s and a p pseudostate with energies of 13.6 eV.
The second calculation of this nature" employed
three s-type pseudostates in addition to the exact
1s and 2s atomic states in an investigation of the
convergence of the pseudostate expansion for
states with 1.=0 and S=O,

In the present work, the exact 1s, 2s, 2p, and
3d states are supplemented by three additional s-
type pseudostates, three additional p-type pseudo-
states, and a single d pseudostate, giving an elev-
en-state expansion. The parameters of the pseu-
dostates are varied in order to avoid the unphysi-
cal pseudoresonances which may exist below the
pseudostate thresholds. "

II. PROCEDURE

Let us denote the channels relevant to the elec-
tron-atom scattering problem by the symbol 1 &.

The quantum numbers which specify 1", include the
conserved quantum numbers describing the total

orbital angular momentum, spin, and parity; the
orbital angular momentum of the atomic state and
of the scattered electron; and all other numbers
(y, ) required to determine the atomic state. Inso-
far as is convenient, we will use the notation of
Burke." The total wave function is expressed as

rF), = 0& '~'(sin&; 5;, +cos6; K;,) (k& &0),

rF;] )k~~r (y2(0) (2c)

&, =k;r -l, m/2. (2d)

The stated form of the boundary conditions is ap-
propriate only if the atom in the fina1. state is neu-
tral; that is, if no explicit account is taken of the
possibility of ionization. The K matrix is real
and symmetric, and is related to the S matrix by

s=(i+ iz)/(i- ~'z).

Cross sections are computed from the elements
of S by standard procedures.

The atomic function R(y„ l„r) is determined
as follows: For fixed l„choose a set of compo-
nent functions, here assumed to be Rater-type

e(r, , x„x,)= (2)-"'(1-Z„)g q (r „x„Z„o,)Z„(r,)
(&)

in which x; denotes the space and spin coordinates
(r;, o;) of particle i; the function g is formed from
the radial atomic function R(l„y„r), combined
with spin and angular momentum functions for both
electrons so as to form a state of quantum num-
bers I'&. The incident channel is specified by I'&.
The operator P„ interchanges coordinates and
spins of both electrons. The radial function F„
describes channel i when an electron is incident
in channel j and obeys the specified boundary con-
ditions

(2a)
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orbitals of the form

g, (r )= r"3 e '-3" (4)

(kr)j,(k, r)= sin(kr-2 l w)

+[f(f+1)/2kr]cos(kr 2-f w), (9a)

and diagonalize the Hamiltonian for an isolated
hydrogen atom on this basis. The resulting eigen-
functions are

F;,(r)= o«S,(k, , r)+ o., & S,(k;, r)+4;,(r), (8)

where the 8 are functions having a specified as-
ymptotic form and 4,~

is a normalizable function.
The coefficients n are in accord with Eq. (2b),

Oj i ij (7a)

(Vb)

If the basis set q, includes all the components
making up a particular exact hydrogen-atom wave
function, that eigenfunction will be obtained from
the diagonalization. It is convenient to choose the
expansion so that some of the low-lying states of
greatest interest are included exactly. The other
states will be called pseudostates.

The possible results of the scattering calculation
are determined by the choice of pseudostates, and
at present it is necessary to proceed mainly by
trial and error. One hopes to find a set such that
the scattering cross sections of interest will con-
verge to the correct results. We have experi-
mented with several sets of pseudostates. The
criteria employed in the choice of pseudostates
and the results of this experimentation will be dis-
cussed in Sec. III.

The calculation proceeds in a rather straight-
forward manner after the pseudostates have been
determined. The matrix variational technique of
Nesbet' was employed. The results of three-state
close-coupling (CC) calculations using this method
have been reported previously, "and we will only
outline our procedure here.

The function F„ofEq. (1) is represented as
follows:

(kr) «i, (kr)= -cos(kr-2 l w)

+[l(f+1)/2kr] sin(kr-2 lv) . (9b)

The functions j, and n, coincide with the usual
functions for l= 0, 1, but differ for higher E. The
exponent n; in (8) is chosen so that as r-0, S,
-r'i ". Hence,

ni=l, +2, I;&0

l;=0.
This truncation of the asymptotic function has

the practical advantage of reducing the time re-
quired for the computation of "free-free" inte-
grals (our major limiting factor). The computa-
tion of integrals with large negative powers of ~
and correspondingly large powers («2;) of the cutoff
function is quite time consuming, and may involve
large errors of cancellation. Hence, from a prac-
tical point of view, it is highly desirable to elim-
inate these terms. Moreover, in the case of elec-
tron-hydrogen scattering, as opposed to scattering
problems involving only short-range interactions,
the correct asymptotic functions are not simply
spherical Bessel and Neumann functions, but are
modified because of the long-range off-diagonal
potentials connecting degenerate channels. " Equa-
tion (2b) is, however, still valid. One must rely
on the square-integrable function 4 to supply the
required correction to the square-integrable part
of the asymptotic functions. Hence, we incorpo-
rate relatively long-range, oscillatory functions in
the set in which 4 „is expanded. Use of the trun-
cated functions j and n does not produce any loss
of accuracy.

The expansion employed for 4j& is

4 „(r)=gcI"„«), „(r}+ d,"2 s, p(r) .(s)

The functions n, . „are taken to be Slater-type or-
bitals

The specific forms of the functions 8 employed
here are

(2g }21+3 1/2

I'(2l + 2)
(12a.)

S,(k, , r) = (1-e «')"& k;j, (k; r), (8a)

(8b)S,(k, , r)=(l-e «")"~k, H, (k;r).
If channel i involves the 1s atomic state, j, and

n, , are the usual spherical Bessel and Neumann
functions. For other states, these functions are
obtained from the ordinary spherical Bessel and
Neumann functions by deleting all terms decreas-
ing more rapidly than y '. Thus, except for the
1s state,

s„(r)=(1-e «")'"sink;r/r', (12b)

s„(r)=(1-e «")"'cosk;r/r'.
The slow oscillatory decay of 4 at large dis-

Thus, the exponential pari of 4 is a combination
of functions all containing the same power of r,
but of differing exponential dependence. The ex-
ponents g „are selected to give as good a repre-
sentation of the scattering wave function as is
possible. The functions S;, are
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tances, which is caused by the long-range dipole
coupling, is difficult to represent if only expo-
nential functions are used in the expansion. Hence,
we have included functions of the form (12b) in the
basis set to represent this oscillatory behavior,
although this makes the basis set energy depen-
dent.

The central part of the algebraic variational
method is the determination of a matrix whose
elements are denoted 9g,'~„with i and j being
channel indices and s, t (= 0, 1) specifying asymp-
totic forms according to Eqs. (8a) and (8b). This
matrix can be expressed as

3gii ~ii + Q M inc (I-t)mm ~ni (13)

The terms appearing in (13) are specified below.

(i) Free-free integrals:

&l'i =(i) (1"i) 8.(&i) I (H-&)(1-&is) I i) (1'i)8i(&i)) .
(14)

The functions g (I"i}are the combinations of atomic
functions and spin and angular functions for the
scattering electron which appear in Eq. (1), while
the 8, are defined by Eq. (8). The operator H is
the complete Hamiltonian for the two-electron
system, and E is the total energy of the system.
The computation of these integrals is the most
time consuming portion of our calculation. Ana-
lytic methods are employed; the procedure in-
volved in the particularly troublesome exchange
part has been described in detail elsewhere. "

(ii) Bound-free integrals:

in which b „ is either a Slater-type orbital (b„=n, „}
given by Eq. (12a), or a function of the form s,
as given by E(1. (13b). The computation by ana-
lytic methods is straightforward if 5„ is a Slater-
type orbital. " The required integrals were ob-
tained from the free-free integral program when

8„ is a harmonic function (b„=Si~).
(iii) Bound-bound integrals:

M „„=(ij(r' ) b„)(a-E)(1~f „)i q(r„) b.). (18)

The functions b„and b„are as specified in the pre-
ceding paragraph. When both b's are Slater-type
orbitals, very simple analytic formulas may be
employed; the other integrals are obtained from
either the bound-free or free-free integral pro-
grams.

Four procedures based on the Kohn variational
principle are available for extracting the X matrix
from SR. These are the Kohn and inverse-Kohn
methods, ' and variants employing a preliminary
orthogonal transformation of R: the "optimized
minimum norm" (OMN) and "optimized anomaly-
free" (OAF) methods. 's The reader is referred to
Refs. 1 and 16 for derivation and description of
the specific procedures. Some brief comments
follow.

In the Kohn method, the E matrix is obtained
from the expression

Anomalies can occur in the Kohn method near en-
ergies for which the submatrix SK» is singular'.
A somewhat similar formula, which will be called

TABLE I. Comparison of E matrices from four methods. The elements of the E matrix and the partial cross sections
for elastic scattering, 18-2s, and ls-2p excitation are given for L = 0, 4 2= O.S1 as computed according to the four meth-
ods described in the text. QS is the sum of the eigenphases. The entry det refers to detgV«) for the Kohn procedure,
det(3g&s) for inverse Kobn, det(3gt&) for OMN and det(3got' ) for OAF.

4'= 0.81,

Koln

Singlet
Inverse

Kohn OMN OAF Kohn

Triplet
Inverse

Kohn ONN OAF

det

%~2
K(3
%22
%23
%33

~ye -28
0'gs-241

o'g~

3.114x 10"3

1,715
1.474
l.692
3.517
3.643
2.655
1.621
0.5564
0.0589
0.0260

0.3698
1.718
1.480
1.692
3.523
3.643
2.655
1.623
0.5564
0.0587
0.0261

-5.392
1.764
1.567
1.763
3.689
3.777
2.758
1.627
0.5569
0.0594
0.0259

0.9962
1.721
1.490
l.694
3.557
3.648
2.656
1.631
0.5562
0.0586
0.0263

-8.458 F10-4
21.21
-0.3853

0.6005
-0,5030

0.1972
1.795
2.100
3 ~ 692
0.0012
0.0006

-8.743&& 10 '
21.27
-0.3953

0.5747
-0,5000

0.2013
1.805
2.105
3.692
0.0013
0.0006

0.0223
21.30
-0.3972

0.5728
-0.5047

0.1992
1.792
2.098
3.692
0.0013
0.0006

0.9966
21.22
-0.3896

0.5962
-0.5053

0.2001
1.803
2.100
3.692
0.0012
0.0006
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TABLE II. Parameters of basis states.

l =0
Standard

TABLE III. Comparison of phase shifts and eigenphase
sums for L =0 k2=0.49 and L =0 42=0 81

L =0, 4' =0.49

Standard

1.0
0.5
0.5
0.8
0.2

-1.0
-0.25
-0.10932

0.03073
1.7073

Variant 1

Present work
Ref. 7

Ref. 4
Ref. 18

Present work
Six state CC Qef. 8)
3s3P3tf (Ref. 8)
Correlation Qef. 8)

0 917
0.917
0.881
0.930

1.623
1.518
1.559
1.618

1.778
1.777
1.777
1.780

(Zs~ r

2.105
2.084
2.104
2.097

1.0
0.8
0.5
0.2

-0.25
-0.10900

0.03515
1,2413

1.0
0.5
0.2
0.5

-0.25
-0.10936
-0.02392

0.81793

0.5 -0.11111
0.00065

0.8 -0.11111
0.18820

the inverse-Kohn method, can be derived for the
computation of the inverse matrix E '.

The inverse-Kohn formula may yield anomalous
results in the neighborhood of energies for which

%~ is singular.
Nesbet originally proposed to select the Kohn

formula if
~
det(%||)»- det(SR M) 1; the inverse-

Kohn formula if not. ' In practice, we find excel-
lent agreement between the Kohn and inverse-Kohn
results for energies lower than the n =2 threshold,
so that the question of choice does not arise in this
energy range. The a,greement is not so good above
this threshold, and a decision must in fact be made
between the results of (16) and (17). Since the

proposed criterion will lead to differing choices
as a function of energy, it is possible that a,rtifi-
cial discontinuities will occur in the predicted E
matrix. %e do not believe that this problem is
particularly serious when a relatively coarse grid
of energies is used, but we are more concerned
with the possibility that the energies at which
singularities of It,~ and %«occur may not be
greatly different, so that it may be quite difficult
to obtain reliable results in some energy regions.

Therefore, there is considerable interest in the
alternate approaches furnished by the OMN and
OAF methods, both of which introduce a prelim-
inary orthogonal transformation of the matrix

In the OMN method, this transformation is
constructed from the eigenvalues and eigenvectors
of a symmetric approximate E matrix, which in
turn is constructed from the N eigenvectors cor-
responding to the N smallest eigenvalues of the
2@x 2N matrix Sg, 5g. The OMN procedure ap-
pears to give good results, except near energies
where the transformed submatrix SK,', is singular.
The OAF method introduces an orthogonal trans-
formation which converts the matrix SR to upper
triangular form. " The K matrix is determined
in the transformed coordinate system in a form
that should have no singularities, and then trans-
formed back to the physical system.

The results of all four methods appear to be of
comparable accuracy except near an anomaly.

TABLE IV. Eigenphase sums forI =0, 1, 2 andA'2=0. 76, 0.78, 0.81, 0.83, and 0.85.

Triplet
L =1

0.76
0.78
0.81
0.83
0,85

-0.473
1.677
1.623
1.622
1.621

-1.189
0.658

-0.359
-0.757
-0.970

-0.261
-0.778
-1.323
1.687
1.727

1.010
2.938
2.105
1.710
1.386

-0.440
1.462
0.658
0.403
0.333.

0.839
0.425
0.179
0.139
0.074
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TABLE V. Exponents of Slater-type orbitals I, Eq. (12a)].

4.0 2.5 1.5 0.9 0.6 0.4 0.2 0.1 0.05

This is illustrated in Table I, where the computed
E matrices and cross sections are exhibited for
I =0, k' =0.81, using our standard set of psuedo-
states (see Sec. III). It will be seen that there is
a reasonable degree of agreement among the meth-
ods, except that in the singlet state, the OMN
procedure has given a K matrix whose elements
are noticeably larger than the three other methods
described. Studies of the calculation of the E ma-
trix in the three-state close-coupling approxima-
tion show that there is no strong reason to prefer
any one of the four methods on grounds of consis-
tently closer agreement with published K matrices
based on numerical integration of the coupled equa-
tions. Ne have not relied on a single method in
the computation of cross sections reported in Sec.
IV, but have, in the case of disagreement between
methods, selected an apparently "best" value on
the basis of criteria of internal consistency and
continuity.

III. CHOICE OF PSEUDOSTATES

The choice of pseudostates to be employed is a
central problem of the present calculation. Ideally,
one should increase the number of pseudostates
until adequate convergence is demonstrated; how-
ever, limitations of the computing facilities avail-
able to us prevent a thorough investigation of this
point. Some evidence of reasonable convergence
for states with I.=0 is furnished by comparison
of the results obtained here with those obtained by
extrapolation from complex energies (see Sec. IV
below) and with our previous results employing a
smaller set of states. '

Our present calculations have been performed
using a set of eleven states: five of s type, four
P type, and two d type, with 1s, 2s, 2p, and Sd
exact hydrogenic states contained in this set. Some
results have been reported from a preliminary
calculation using eight states (including exact I&,

2s, and 2p).' The formal expansion for these
states is given in Eqs. (4) and (5). The states are
defined for given 3 by the choice of orbital ex-
ponents j, and power n, . Several sets of pseudo-
states mere studied for L =0 with k' =0.49 and
0' =0.81, where the computations are relatively
simple. However, for the reasons specified be-
lom, me have found it undesirable to employ only
a single set of pseudostates.

Each set of pseudostates possesses a series of
"false" thresholds corresponding to the opening
of some pseudochannel. Broad resonances may
be found in the vicinity of these thresholds. " %e
believe it is desirable to avoid these unphysical
resonances by shifting the pseudostate parameters
so that resonances are not obtained in the energy
region in which the calculation is made. %e have
therefore employed three sets of pseudostates: a
"standard set" and two variants. All basis sets
employ the same s-l.ike functions. Variant 1 con-
sists of standard s and d states, but the P function
re ""is replaced by r'8 '". Variant 2 contains
the standard s and P states, while the d function
t''e ""is replaced by r'e "".These basis sets
are shown in Table II.

The standard pseudostates were chosed by an
extensive series of tests subject to the following
criteria: (1) the set should contain exact Is, 2s,
2p, and 3d functions; (2) it should give a reason-
able approximation to the 3s and 3p energies; (3)
the sum of the eigenphases for I. =0, k' =0.81
should equal or exceed those reported by Qeltman
and Burke'; and (4) the s-wave phase shifts for
I =0, k'=0.49 should equal or exceed those re-
ported by Matese and Oberoi. ' Considerable ar-
bitrariness still remains in the choice of pseudo-
states, and further investigation of different basis
function sets is desirable. The results of these
comparisons are shown in Table III. It will be
seen that the s-mave phase shift, mhile still belom
the "exact" result of Schwartz, "is still substan-
tially improved with respect to the earlier pseudo-
state calculation of Burke, Qallaher, and Qeltman. 4

In Table IV our eigenphase sums are given for
I =0, 1, and 2 and k' =0.76, 0.78, 0.81, 0.83 and 0.85.

TABLE Vj. 1s 28 excitation cross sections in the range & =0.76 to &2=0.85 (units of 7('ao).
The contributions 'Labeled "Bight-" were obtained from Refs. 8 (I = 3) and 20 (L& 3).

Singlet
L =1 L=2 High L

Triplet
I =1 4=2 Total

0.76
0.78
0.81
0.83
0.85

0.037
0.041
0.059
0.062
0.055

0.008
0.003
0.003
0.004
0.006

0.053
0.057
0.061
0.067
0.074

0.000
0.000
0.001
0.002
0.003

0.0005
0.0008
0.0013
0.0015
0.0017

0.037
0.045
0.053
0.057
0.056

0.000
O. 000
0.002
0.005
0.006

0.004
0.004
0.013
0.015
0.015

0.140
0.151
0.193
0.214
0.217
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TABLE VII. 18-2p excitation cross sections in the rangek =0.76 tok2=0. 85 (units of mao).
The contributions labeled "High L" vrere obtained from Befs. 8 (L = 3) and 20 (L & 3).

k2 L =p
Singlet

L=1 L=2 HighL L =0
Triplet

L=1 L=2 High L Total

0.76
0.78
0.81
0.83
0.85

0.028
0.035
0.026
0.025
0.025

0.066
0.049
0.053
0.059
0.066

0.091
0.091
0.112
0.129
0.152

0.000
0.001
0.004
0.006
0.009

0.0004
0.0004
0.0006
0.0009
0.0011

0.038
0.041
0.047
0.048
0.046

0.000
0.002
0.006
0,009
0.012

0.001
0.012
0.041
0.054
0.063

0.224
0.231
0.290
0.331.
0.374

It was apparent from the results of the tests of
the pseudostates that the s-wave phase shift below
the n =2 threshold would be improved by emphasiz-
ing short-range pseudostates, which describe
short-range correlations. This conclusion is con-
sistent with the results of Matese and Oberoi. '
However, the eigenphase sum at k' =0.81 is im-
proved by the inclusion of longer-range functions.
A compromise is therefore required, and this
compromise leads to the standard set employed.

The variants were introduced to avoid encoun-
tering pseudostate thresholds at inconvenient en-
ergies. Thus, the highest p state of the standard
set opens at k' =2.24. This prevents meaningful
results from being obtained at k' =2.25. Variant 1
has a lower threshold for the upper p state (k'
= 1.82) and was used in our calculation for both
k' =1.96 and k' =2.25. The second d pseudostate
in the standard set opens at k' =1.00065. Variant
2, which displaces this threshold to k' =1.19 was
used in calculations for k' =1.0.

IV. RESULTS

We present results for elastic scattering and
excitation of the 2s and 2P states in the region

between the n = 2 and n=3 thresholds, and for
elastic scattering in the region from the n=3
threshold up to k =2.25. We have considered states
of total angular momentum I.=0,1,2. The calcula-
tions become more lengthy as L increases, as a
result of the increasing number and complications
of matrix elements, mainly the free-free integrals
[Eq. (14)]. The limitation to states of L ~2 does
not permit reliable determination of excitation
cross sections above the n=3 threshold, since, for
example, at k' =1.0, more than —,

' of the total 1s
-2P excitation as computed in a three-state close-
coupling calculation occurs in states of I. «3." In
contrast, elastic ls-1s scattering is dominated by
'S, 'P, and 'S states, and for k' =2.25 only 2% of
the total cross section involves I. ~ 3.

Our calculations employed a basis set of nine
Slater-type orbitals g» [Eq. (12a)] in each chan-
nel (see Table V) as well as two harmonic functions
s;~ [Eqs. (8a) and (8b)] in each open channel except
1s. The exponents of' the g, „are listed in Table
IV. The bound-bound matrix M [Eq. (15)] had di-
mension 205x205 in the largest cases, and 18
channels were open.

The partial cross sections for 1s-2s and 1s-2p
excitation for the energies calculated are given in

TABLE VIII. 1s-1s elastic-scattering partial and total cross sections in units of mao. The
"HighL" contribution is obtained as described in the text.

L =p
Singlet

L=1 L =2 HighL L =0
Triplet

L=1 L =2 High L Total

0.76
0 ~ 78
0.81
0.83
0.85
0.90
0.95
1.00
1.10
1.21
1.30
1.44
1.69
1.96
2 ~ 25

0.645
0.608
0.556
0.527
0.505
0.476
0.417
0.393
0.329
0.288
0.258
0.230
0.186
0.145
0.124

0.002
0.001
0.001
0.001
0.002
0.004
0.004
0.006
0.008
0.010
0.011
0.013
0.019
0.016
0.024

0.048
0.056
0.061
0.063
0.062
0.058
0.062
0.056
0.057
0.048
0.045
0.047
0.050
0.045
0.032

0.010
0.010
0.011
0.011
0.012
0.014
0.015
0.016
0.018
0.021
0.021
0.021
0.018
0.015
0.012

3.945
3.841
3.692
3.597
3.506
3.292
3.098
2.920
2.606
2.315
2.113
1.846
1.482
1.197
0.975

2.088
2.042
1.971
1.921
1.870
1.776
l.683
1.588
1.444
1.292
1.192
1.062
0.864
0.705
0.595

0.121
0.123
0,126
0.127
0.129
0.130
0.134
0.136
0.136
p.139
0.142
0.139
0.136
0.122
0.108

0.031
0.033
0.634
0.035
0.036
0.039
0.036
0.036
0.038
0.040
0.040
0.040
0.039
0.038
0.036

6.890
6.714
6.452
6.282
6,122
5.789
5.45
5.15
4.64
4.15
3.82
3.40
2.79
2.28
1.91
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TABLE IX. Comparison of the L = 0 contribution to
the 1s-1s elastic-scattering cross section (units ws/)
according to the present calculation, as deterxnined by
extropolation from coxnplex energies (Bef. 25}.

A=0, S=o
Present Bef. 25

1.21
1.44
1.69
1.96
2.25

0.288
0.230
0.186
0.145
0.124

0.296
0.226
0.178
0.146
0.123

2.315
1.846
1.482
1.197
0.975

2.320
1.846
1.485
1.195
0.985

Tables VI and VII. The contributions from I. ~ 3
are taken from Befs. 8 and 20. The cross sections
a,re in fairly good agreement with the six-state
close-coupling calculation of Ref. 20 and the
pseudostate calculation of Ref. 8. However the
present results tend to be a few percent lower
than those mentioned. On the whole, the present
excitation cross sections are in better agreement
with the three-state plus 20 correlation-function
calculations of Taylor and Burke." There is good
agreement with recent experimental measurements
of the Is-2s excitation cross section" '" except
for 0' =0.78, where our values are too low by
about 10%. The cross sections for the excitation
of the 2P state are uniformly larger than the mea-
sured values. '4 This feature is shared by the re-
sults of the comparable calculations reported in
Refs. 8, 20, and 21. %e suggest that it would be

desirable to repeat this experiment.
Our results for the total elastic-scattering (Is

-Is) cross section are given in Table VIII. The
contribution from states of I. -3 was estimated
as follows: For 0' ~0.90, the results of Refs. 8
and 20 were employed; at energies larger than
this, our estimates were obtained from the three-
state close-coupling calculation of Ref. 19. Since
we found that, for L, =2, our Is-Is cross sections
are larger than those of Ref. 19 by a factor of
about 1.5, we have arbitrarily multiplied the par-
tial cross sections for L ~ 3 contained in Ref. 19
by this factor. Ne have also interpolated between
the published values as necessary. Such proce-
dures are, of course, extremely crude; however
the entire contribution from L ~ 3 is never as large
as 3'fo of the total, and the error introduced by
these rough estimates is not significant. The final
cross sections we obtain are uniformly larger than
those given in Ref. 19 by approximately 15%.

A significant check of the present method is
furnished by comparison of the results for ela, stic
scattering at I.=0 with those obta. ined with the
method of extrapolation from complex energies
by McDonald and Nuttall. " This is done in Table
IX. The agreement, although not perfect, is rath-
er good and increases confidence in both methods.

Additional tables containing partial cross sec-
tions for Is-28 and ls-2P excitation from A'

=0.90 to k' =2.25, and K matrices at certain en-
ergies can be obtained from the authors or from
ASISlNAPS. *

~See NAPS document No. 02330 for 6 pages of supple-
mentary xnatex'ial. Order from ASIS/NAPS c/o Micro-
fiche Publications, 305 E. 46th St., New York, N. Y.
10017. Remit in advance for each NAPS accession
number $1.50 for xnicrofiche or $5.00 for photocopies
up to 30 pages, 15' for each additional page. Make
checks payable to Microfiche Publications.
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