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Analysis of scattering and excitation amplitudes in polarized-electron-atom collisions.
II. Scattering on two-electron atoms
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A general analysis of polarization effects, resulting from exchange collisions between
electrons and two-electron atoms, is given using density-matrix techniques. The formalism
is presented in some detail. In particular, collisions on spin-1 atoms are discussed. Gen-
eral equations are derived which relate the quantities, characterizing the polarization state
of the final beam, to their counterparts before scattering. Both sets of quantities are con-
nected by functions of the scattering amplitudes. Thus, from these general equations we
can read off what infor~ation can be extracted from experiments with particles in any given
initial polarization state. Furthermore, some of the obtained expressions may be useful
in discussions of other reactions, for example, processes in which spin-orbit and tensor
interactions are important, .

I. INTRODUCTION

A general analysis of spin-polarization effects
in collisions between electrons and spin--,' atoms
has been given by Burke and Schey' and was further
discussed in a previous paper' (references to this
will be designated by I). It is the purpose of this
paper to generalize these results to the case of
two-electron atoms. ' Spin-orbit coupling, hyper-
fine interaction, and nuclear spin are neglected.
Under these conditions a description of the elec-
tron-atom system does not involve any explicit
spin-dependent force, and polarization phenomena
arise from implications of the exclusion principle.

Most of the paper deals with electron collisions
on spin-1 atoms. Singlet-triplet and triplet-singlet
transitions are only considered in Sec. VI. Al-
though most of the quantities arising in this dis-
cussion might be beyond the reach of present ex-
perimental techniques, we present the formalism
in some detail, because the techniques used and
some of the equations obtained are of interest for
studying other reactions (which may include ex-
plicit spin-dependent forces).

It is our main aim to derive general equations
in which the quantities, characterizing the polar-
ization state of the electrons and atoms, are re-
lated to their counterparts before scattering. Both
sets of quantities are connected by functions of
the scattering amplitudes. Thus dynamical and
geometrical elements are separated and from
these general equations one ean read off what
information can be obtained from polarization
measurements with an arbitrary polarized initial
beam.

We proceed as follows. In Sec. II we give a
rather pedestrian excursion on how to characterize

the polarization state of the initial beam in terms
of the density matrix p. . %'e derive expressions
for the density matrix useful not only in our case
of interest, but in other reactions in which spin--,
and spin-1 particles participate.

VYe then investigate the scattering process of
electrons and spin-1 atoms. Vfe study the alge-
braic properties of the spin scattering matrix M,
which transforms the initial spinor into the final
one. This is done in some detail in Sec. III.
Starting with the definitions of the M-matrix ele-
ments in terms of some simple "basic reactions, "
we derive the most general form M can have in
terms of the Pauli and spin-1 matrices.

From the obtained expressions of p. and M, we
derive in Sec. IV equations expressing polariza-
tion vectors and tensors of the final beam in terms
of the initial one. A discussion of these results
and some applications follow in Sec. V. Inelastic
reactions are discussed in See. VI.

II. CHARACTERIZATION OF THE POLARIZATION

STATE OF AN ENSEMBLE

The spin state of an ensemble of spin-S particles
in general must be described as a statistical mix-
ture of the pure spin states in which the particle
may be found. It is convenient to describe this
mixture in terms of the density matrix p.4 Rep-
resenting any pure state of the beam in the form
of a column vector aI") (where ), runs from 1 to
2S+1 and n denotes the nth pure state of the mix-
ture) the elements oi the (2S +1)-dimensional
density matrix are given by

(n) (n)*



ANAL YSIS OF SCATTERING AND EXCITATION. . .

where p„ is the probability of finding the nth pure
state in the given ensemble and the asterisk de-
notes the complex conjugate.

Ne remember that the expectation value of any
operator in spin space is given by the following
trace:

(0)=trpQ, (2)

and because the o, are traceless they are orthog-
onal to e. p is given in terms of this set by the
familiar equation

(4b)

where the brackets denote the expectation value.
The complex numbers p, &

characterize a given
ensemble. Because p is Hermitian, there are
(2S +1)' independent parameters. Normalizing
the density matrix to

trp =1,

there remains (2S +1}'—1 independent parameters
containing all the information of the polarization
state. Instead of assigning the elements (1), we

can expand the density matrix in terms of (2S+1)'
Hermitian "basis matrices" M, which form a
complete set in spin space; that is, there is no

operator in this space which is not a linear combi-
nation of these matrices.

In the space of these Hermitian matrices we
define an inner product (M, , M,.) =tr(M, , M,.) =C&...
where C is a normalization constant. Thus the
basis set is orthogonal in the sense that the prod-
uct of any two of these matrices has trace zero.
It is convenient that one of these basis elements
be the identity matrix. In this case the orthogo-
nality relation requires all other basis matrices
to be traceless.

In terms of this set, the density matrix can be
written as p =Q, a,M, where a, = trpM, ./trM f
= (M, )/trM', Thus the state characterized by p
is represented by the expectation values of the
basis elements. The expectation value of the iden-
tity matrix specifies the normalization, the re-
maining expectation values determine the pola, riza-
tion state of the system.

For example, in the case of spin--,' particles a
basis set is used which consists of the 2~2 iden-
tity matrix e and the Pauli matrices c, (i =x, y, z).
The orthogonality of the Pauli matrices follows
from the well-known relation

of spin-1 particles is a 3&3 matrix; thus nine
basis matrices are needed to expand p. Besides
the three-dimensional identity matrix F. and the
three spin-1 matrices S, , we use the following
set S],.'

S, , = —(S,S,. + S,.S,. ) —25, ~E

(i,j =x, y, z). We are using the standard repre-
sentation of these matrices. Definition (5) is in
accordance with the "Madison convention" ' in
nuclear physics.

These matrices have simple properties under
rotation. The S,. transform as the components
of a vector (like the Pauli matrices); the S,, trans-
form as the components of a symmetric second-
rank tensor.

This set of ten matrices span the spin space;
however, since only nine are needed this set is
overcomplete. Remembering the relation Q,.S,'
=S(S+I)E for spin-S particles, we get

Note that owing to this overcompleteness this set
of matrices is not orthogonal.

This overcompleteness can be avoided by using
irreducible tensors. However, the use of Carte-
sian tensors simplifies the description of experi-
ments and because the overcompleteness causes
little trouble, we prefer to use this set.

The properties of the S, and the S„,, required to
go through the details of the calculations in this
paper, may be condensed to the form:

+fc,, S„S,. +ie, , S,.S ),

which governs the algebra of these matrices.
Equation (7) is analogous to Eq. (4a) which sum-
marizes the algebraic properties of the Pauli
matrices. ~,» is the standard Kronecker tensor.

For spin--,' particles, a quadratic combination of
spin operators reduces to a linea. r combination of
the Pauli matrices as shown by Eq. (4a). In the
case of spin-1 particles, however, the expectation
values (S,, ) give new information. Thus in addi-
tion to the polarization vector P, , knowledge of
the components P„.of the polarization tensor,
defined by P, &

——&S, , j, are needed for a complete
description of a beam of spin-1 particles.

In order to expand p in terms of the S,. and S„,
we make the ansatz:

P, is a component of the polarization vector, de-
fined as (cr,.). Thus p is characterized by the
expectation values of the basis set.

The density matrix characterizing an ensemble

p =QE+ 6)h» + c)~~»~ .

Although the S,~
are symmetric, we sum over all

i,j . The overcompleteness of the basis matrices
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may be taken into account by requiring g,. C, , = 0.
This constraint enables us to proceed as though
we were dealing with an orthogonal set. Using
the normalization condition (3) and Eq. (7), we
calculate the expectation values and relate the
coefficients a, bi „and c„.to P, and P„.. %'e get

1
'

3 1
p = —E+ —QP(s(+ —QP)s(,

5 ij
(8)

which we denote in the following as ~+ Il, ~0),
~-I). In the states ~+1) and ~-I) the polarization
vector points along the positive or negative direc-
tion of the quantization axis (z axis). In the state
~0) one can think of the spin vector as perpendic-
ular to the quantization axis but precessing around
it. This requires, that we consider quantities
more complicated than the polarization vector.

In the simple case where the beam is an inco-
herent superposition of the three pure states ~m)

(m = +I, o), three numbers are sufficient to de-
scribe the ensemble, for example N„N, „N
which are the numbers of particles in the three
states. An equivalent description is obtained by
giving the values of the intensity E and of the com-
ponents of the polarization vector and tensor:

Because from (8) it follows that Q, P„=0 an. d

remembering the normalization condition, the
spin state of a spin-1 particle in general is charac-
terized by eight real parameters, three compo-
nents of the polarization vector, and the five in-
dependent components of the symmetric polariza. —

tion tensor.
As an illustration we discuss the special case

where the beam is in one of the pure spin states

(I) (0o, I I, I o I

composite spin space of electrons and atoms. Any

operator in this space can be written in the form
Q„xQ, where Q„(e) acts on the atomic (electronic)
spinor and x denotes the direct product. (This
type of product is often called a tensor or Kronec-
ker product. )

The density matrix may be written as a linear
combination of the 6~6 identity matrix 1 and 35
Hermitian traceless matrices. %'e choose the
following set:

Q,.j =S.j&E, Qi Pj, G;jPk

(i, j, k=x, y, z)

As in the case of spin-1 particles, this set is
overcomplete a.nd from (8) it i'ollows that

of., i
-0

~ (Io)

In terms of these opera. tors the density matrix
of the ingoing beam is given by the expression:

p. = —1+Z„P")P + —~ P'"'o. + —~Pin 6 i i 2 i i 3 ij ij
i ij

+ ~pi &i j3j+ ~R ~

k Ai jgk
5 j i jk

which may be derived in a similar way to Eq. (8}.
P,'." and P,'. ' are the i components of the electronic
and atomic polarization vector

P&" = trp P. P("' = trp
in 5 ' 5 in

(12a)

and Q, j and Ri jk are correlation terms

qi j = trPinei Pj, Zijk = trP. ei j Pk

From (10) follows:

(12c)

Pi j is a component of the atomic polarization tensor

(P =IVm/I is the probability of finding a particle
in the state

,
'm)),

I
Pxx = Pyy = —~Pzz 5

Pij=0 for it j.

QP„.=o, gft, ,, =o.

%'e note that the correlation tensors are zero if at
least one of the particle beams (electrons or at-
oms) is unpolarized. If both are completely po-
larized, these terms are given by

q =P' 'P' ' R =P .P"'.ij i i & ijk ij

These relations may be proved with methods simi-
lar to those in Ref. 1.

In describing systems of electrons and spin-1
atoms, the joint state of the two particles is rep-
resented by a 6&6 density matrix, acting in the

Ill. EXPANSION OF THE Af MATRIX

After having characterized the initial beam, we
start now with the second part of our program,
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that is, an analysis of the scattering process be-
tween electrons and spin-1 atoms. We consider
elastic scattering. If the ingoing electrons are in
one of the pure states lm"') (m"' =+2}and the
atoms in one of the pure states lm'"') (m'"' = s1,0),
there will be ten amplitudes for each energy and
scattering angle, because there are ten possible
processes:

I+I) I+ l&- I+I& I+ l&,

I0&i+2&-yl 1)l

II-»I+ l&I-1&I+2&
gl0&l I)

(14)

and five further reactions with
I
-2& instead of

I+-,'&. These processes are the analogs to the six
"basic reactions" listed in I.

In order to catalog the reactions (14), we define
an operator M in spin space so that its matrix
elements (m'"'m""IM lm'"'m"') are the ampli-
tudes for a transition from an initial state
lm'"') lm"'& to the final state lm'""&lm"") for a
given energy and scattering angle and that

o(m&"'m&e&-m&" &'m&"'} =l(m("&'m&e&'IMlm&" &m&e» I2

(15a)

is the differential cross section for this elastic
transition. (We suppress here the dependence of
M on energy and angle. )

If the wave function of the incident beam is given
by e(k'(t)Im'"'m"'&, the asymptotic wave function
after scattering is

Ie-("'+ (1//r)e""M] elm&"» lm&e)& (15b)

where (I) is the wave function of the atom except
the spin part. Mlm'"'&lm"') can be regarded as
the spin state of the particles after the reaction.
Thus the operator M transforms the initial spinor
into the final one.

Any scattering process for any given ingoing
beam in any arbitrary polarization state may be
analyzed in terms of the M-matrix elements of the
simple reactions (14). This has been discussed
in I and Ref. 6 for the case of the one-electron
atom.

Using Clebsch-Gordan techniques, we expand
the element (m'""m""IMlm'"'m"') in terms of
the amplitudes f" " and I" "where f' I' denotes
the scattering amplitude in the channel with total
spin S, : f ' I' = (S, , S„IM IS, , S„) (independent of
S„). We get

f (3/2)

I (f (3/2) +2f (I/2)) (2 )I/2(f (3/2) f (I/2))

0 (2 )I/2(f (3/2) f (I/2) } I (2f (3/2) + f (I/2))

I (2f (3/2) ~ f (I/2)) (2)1/2(f (3/2) f (I/2)
) 0

(2)1/2(f (3/2) f (I/2)) I (f (3/2) + 2f (I/2)) 0

f (3/2&

(15c)

Instead of using the amplitudes f '2)', we may
express the elements of M in terms of the direct
(f) and exchange (g} amplitudes, defined by the
expressions:

(+-,', -1IM I+-,', -I& = f,
(-l, + IIM I+ 2-1o& = -~2g

(16)

Physically f and g refer to scattering events in
which the ingoing electron can definitely be stated
to have, or not to have, suffered an exchange
collision with one of the atomic electrons.

In elastic scattering processes between spin--,'

and spin-1 particles involving explicit spin-de-
pendent interactions, the expression for the M
matrix is more complicated. However, by ob-

serving electrons scattered in forward direction,
we have the same structure (15) for M. (That
follows from the fact that there is no orbital-
angular-momentum component in the direction of
motion, which may be chosen as the e axis. )

One may go further in the analysis (without going
into the details of the dynamics) by expressing
M in terms of the set (9}. Because all explicit
spin-dependent forces are neglected M must have
the dimple form:

M = f" "7f + f" "3}3/2 + X/2

g~ are the projection operators upon spin func-
tions with total spin S, :
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1
tj 1/2 3 j i

Reformulating the terms we get

1 (2f (3/2) f (1 /2)) ]

+ & (f&3/2) f (1/2&) P u1

=(f -g)I - gg o;P;

(17a.)

p, =Mp. M~. (18)

the initial bea.m, and Eq. (17), which extracts
from the scattering process the properties inde-
pendent of the dynamics. From both we obtain
expressions for the quantities characterizing the
final beam of spin--,' and spin-l particles.

Because M transforms incident spinors into
final spinors, the density matrix p, of the out-
going beam is given by the relation:

Instead of using the projection operators, Eqs.
(17) ma)f be derived from invariance principles.
The operator M is required to be invariant under
rotation. Thus M must be a combination of all
scalars which can be built from the set (9). Apart
from the identity matrix, there is only one scalar
combination &2 p=+,. &2, p, . Thus the most general
form of M in terms of the set (9) is

(f(H) = trp, , (f(H)P,', =trp, .„,o, , ,

(f(H)P(&"" = trp. „,&2, ,

o(H) Q', , = trp..p; (f, ,

o(H)P,""= trp. „,LL, ,

(I9)

We define polarization vectors and tensors for the
final particles as

M = g I + I)g &3.'. P . .

The coefficients a and b follow from

trM&2, p, =bg tr(S( S,) tr(&f, &f,) =46.

Using Eq. (15) and the explicit forms of 5, and g, ,
we get

1. (2f (3/2) ~ f () /2) )

( (f (3/2& f&1/2&)

which gives us Eq. (17).

The main results of the previous discussion are
both Eq. (11), which specifies the spin state of

Note that p,„, is not normalized; thus, the differen-
tial cross section &3(H) occurs in (19).

In order to relate the quantities (19) to the quan-
tities (12), we put the Eqs. (11), (17), and (18)
into (19). Using the relation

tr[(/11)&B, ) (A2&&B2)] =(tr/L) /12) (trB, B2),

we reduce the problem to the calculation of traces
of Pauli- and spin-1 matrices. These traces may
then be calculated with the help of Eqs. (4a) and (7).

We note that all the calculations are carried
through without using the explicit forms of the
matrices. All that is needed are the algebraic
properties (4a) and ('I). This illustrates the use-
fulness of the expansions (11) and (17).

In terms of f and g we get the following results
for the quantities (19), where e,.„is the Kronecker
tensor:

o(H) = If -el'+2lgi'+(ill'- f~*-f'g)Z &- (20a)

o(H)P,'"' =-(li -gI' --ll/, I')P,'"+ (8(.- I' is* —f *g)P—,'"'+ 3(fg* —i *g)Q Q..~&..+ il g I'Qft. .. ,

o(H)P,'""= 3(8lgl' —fg* —f */)PI" +(If -gi'+ lg!')P("'+ lf (i *g fa')Q 0 „~-(.. l(fe'+ i*@)gft;.. . -

(&)1'l;=(If-el' —Igl')1';; ~ !((11'* f1' f'1f& -1„EQ..~ l(—Q;; 2;;))—
"23(f g f/' )Z(ft(2 &,2'+It;2 e, 2 ) (20d)

u(H) 0I, =-'&;,(Igl' —f I*—f 'g)+ l 3(f*g fg')gP,"'~;„—l —I(f 'a —fg*)ZP'"",.+ l (4Ia I' —f */f fg*)P;, —

+(ilf - ail' 2(ig*+f*g)+l(gl(')Q-(, + '(fg*+f*g)gQ-.. (, --'3(f*g —fS'*)gft;.(&,2(, (20e)
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&(t))EI =-'lgl'(-2& Ptk'+~&, P"'+I P',k))+'(fg"+f*g)(2& P'"' -2&, P'"' —2~ P,'"')

+k'(fg —f g)'2 (Pit'Jkl+Pjt fk1)+1k(fg* —f*g}E(kQim~ykm+'Aym'ikm+&~JZQim ink)

+ (If -g I'- klgI') &()k —
k lgl'&() Q &ki, + k(2lg I' fg-* f'-g)(&)k, +&,k()+3 ( lg I-'+ fg*+5 *g)

(20f}

Equations (20) are our main results. They are
the analogs of the expressions given by Burke
and Schey' for one-electron atoms.

V. DISCUSSION AND API'LICATIONS

The main feature of Eqs. (20) is that the dynam-
ical elements and the quantities which characterize
the spin state of the ingoing beam are separated.
Thus we easily obtain those properties of the scat-
tering process under consideration which are in-
dependent of the special dynamics. %Ye note the
following.

(a) For a.n unpolarized ingoing beam, the polar-
ization vectors and tensors of the outgoing parti-
cles vanish, and we get the well-known result that
the polarization of the final beam is zero for un-
polarized initial beams.

(b) In scattering processes between unpolarized
electrons and polarized atoms, only the vector
part of the polarization can be transferred; there
will be no electron polarization if the atom has
only tensor polarization. The direction of the
atomic polarization vector remains unaltered, but
the beam is depolarized. The polarization vector
of the final electron is parallel to that of the target.

(e) If polarized electrons are scattered from
unpolarized atoms the outgoing atoms can have no

tensor polarization. The polarization vectors of
both final particles are parallel to that of the inci-
dent electron.

A similar discussion for the case of spin--,'

particles in terms of Stokes parameters has been
given in Ref. 7.

Furthermore, from Eqs. (20) we can read off
the information about the M-matrix elements,
which can be extracted from experiments with
polarized beams. Specifying the polarization state
of the ingoing particles, and measuring polariza-
tion vectors and tensors of the outgoing ones, for
each energy and scattering angle, the scattering
amplitudes can be calculated from these experi-

f

mental values with the help of Eq. (20), and com-
pared with theoretical predictions. In addition
the expressions (20) show how the results of spe-
cial experiments can be combined in order to
separate the contributions of direct and exchange
scattering.

In order to determine f, g, and the relative
phase between them, three independent measure-
ments are required. As an example we mention
the following set of experiments.

(a) Measurement of the unpolarized cross sec-
tion: Because unpolarized particles are charac-
terized by vanishing values of all the polarization
vectors and tensors and correlation terms, we
get from Eq. (20a)

o„„=If-gl'+2lgl' (21a)

(b) Scattering of unpolarized electrons from
polarized atoms and spin analysis of the outgoing
atom gives the depolarization ratio

d(e) =P!"'/Pi"' =1 —~g~'/v(e), (21b)

which follows from the expression (20c) with P,""
0& 'Q

~g 0& R~gy Oo

(c) Scattering of completely polarized electrons
and atoms: The differential cross section for the
process ~+k) ~+I)- ~+k) ~+I) follows from (20a)

a(8}=, f —2gl'. (21e)

Although this experiment requires completely
polarized particles no spin analysis of the final
beam is necessary.

VI. INELASTIC SCATTERING

So far we discussed only elastic scattering
events. However the formalism is more general ~

Thus in the case of an atomic triplet-triplet transi-
tion from I'=n, ~,m, , to I"=n,'l,'m,', , w only have
to replace the elastic amplitudes in Eqs. (20) by
the expression

f",~' = „„„„,2 i "k-'k'[4v(2I, + I)] '" (I,m, , I,O~I,M, )(I,'~&~,', I,m,'~I,M, )
1

x{6 ~ s)~ (
'2

(22)
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The functions y, are standard spherical harmonics,
(I,m» I,O~I I,} is a Clehsch-Gordan coefficient,
and k„' and k„denote the wave numbers

Because all spin-dependent forces in the scat-
tering matrix have been neglected, we get the
same pola. rization pattern in both elastic and in-
elastic processes.

In singlet-triplet and triplet-singlet transitions,
there is only one possible spin channel with total
spin 8, =-,'. Thus measurements of the differential
cross section at all energies and angles is suffi-
cient in order to determine the amplitude fP. r"
(which is proportional to the exchange amplitude}.
Ne get the expressions:

~r'r = &&'»}If 'r'r 'I'

for singlet-triplet and

&r'r = 3 (&'&~}If r' r~'I

for triplet-singlet transitions.
In singlet-singlet transitions f ~r'~ra' is a coherent

superposition of the direct and exchange ampli-
tude. The polarization state of the electron cannot
change in collisions on spin-0 particles, as far
as spin-dependent interactions are neglected. Thus
in this case it is not possible to separate direct and
exchange contributions by using polarized electrons.

VII. SUMMARY

Vfe have given a description for polarization
phenomena, arising from the exchange interaction,
for collisions between electrons and two-electron
atoms. In particular, scattering on spin-1 atoms
has been discussed. For this case we derived
general equations in which polarization vectors
and tensors after scattering are related to their
counterparts before scattering. In these equations
the dynamical elements are separated from the
quantities characterizing the polarization state of
the incident beam. This feature allows us to ex-
tract information about the scattering amplitudes
from polarization measurements. Furthermore,
some of the expressions obtained may be useful
for a discussion of reactions involving explicit
spin-dependent forces.
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