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Independent-particle-model potentials for ions and, neutral atoms with Z &18
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The atomic independent-particle model of Green, Sellin, and Zachor (GSZ) is used to obtain potentials
for electrons in ions of light elements (Z &18). The two parameters of such potentials are obtained by
the ab initio procedure of Bass, Green, and %ood (BGW}. Here the expectation of the exact Hamiltonian
with respect to a Slater determinant of one-electron wave functions corresponding to GSZ potentials is
minimized. Total energies determined by this modified Hartree-Pock procedure are found to be in
excellent agreement with Hartree-Fock values (usually within a hundred parts per million). Potential
parameters obtained in this way are found to be strongly dependent on both the atomic number and
the number of electrons in the ion. Several other simple analytic potentials are treated in a similar way
and it is found that the two-parameter GSZ and Gaspar potentials yield energies substantially lower
than one-parameter potentials of the forms used earlier by Bohr and Tietz.

I. INTRODUCTION

Theoretical investigations of atomic systems
are usually based on some version of the Hartree-
Fock self-consistent field model in which each
electron is assumed to move in a potential pro-
duced by the others. True Hartree-Fock calcula-
tions are complicated by the fact that the potential
is nonlocal. Even local approximations to the ex-
change term in the potential. , such as the Hartree-
Fock-Slater (HFS) approximation, ' stiil require
an iterative procedure to obtain the potential
which must be generated numerically and then
must be tabulated point by point as a function of
the electron's position from the nucleus. Addition-
ally, the HFS potential. falls off too rapidly and to
correct for this it is customary, following Latter, '
to impose a Coulomb tail to approximate the hy-
drogenlike behavior of the potential at large dis-
tances. This device introduces a discontinuity in
the derivative of the HFS potential.

Calculations using an analytic independent-par-
ticle-model (IPM) potential offer a computational-
ly convenient and accurate method for computing
atomic wave functions. Particularly convenient is
the ability to characterize such IPM potentials by
a few parameters whose variation with such quan-
tities as atomic number and ionieity can be illus-
trated in graphical form or represented by fits
with appropriate functional forms.

Such parameters may be adjusted to experimen-
tal data or to the results of more complex computa-
tions to provide a realistic single-particle descrip-
tion of a complex many-body system. A single
IPM potential can often give an accurate descrip-
tion of single-electron wave functions for unoccu-
pied as well as occupied orbitals. The orthogo-
nality and closure properties of such an IPM are
particularly useful in calculating the properties of

excited electronic states and states in the con-
tinuum in addition to those of the occupied orbitals
of the ground state. Moreover, in applied work,
for which we are computing the relevant atomic
data, phenomenological adjustment of the poten-
tial parameters allows for small effects, such as
attractive core polarization, which are extremely
difficult to treat in a more rigorous way.

The analytic independent-particle model of
Green, Set)in, and Zachor' (GSZ) has proven par-
ticularly successful in computing atomic proper-
ties. The GSZ potential for neutral atoms has the
form

where r is the radial distance from the nucleus,
Z is the nucl. ear charge, and 0 and d are adjust-
able parameters. Single-particle wave functions
resulting from calculations with the GSZ potential
have been used effectively to compute one-electron
energies for occupied orbits, ' electron-elastic-
seattering cross sections, ' ' and electron excita-
tion and ionization cross sections7 ' . Resul. ts
obtained using GSZ-IPM wave functions for com-
puting inner-shell ionization processes" and opti-
cal oscillator strengths" compare favorably with
those obtained using HFS wave functions. Varia-
tions of this same model have been used to com-
pute the energy levels of diatomic molecules, "
to compute the cross sections for elastic scatter-
ing of el.eetrons by molecules, "and to provide the
foundation for determining atom-atom and ion-
atom scattering potentials. "

Recently, Hahn and %atson" used wave functions
obtained by solving the Schrodinger equation for
the GSZ potential to calculate transition probabili-
ties to bound and continuum states of atoms and
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highly charged ions. In their work the same d pa-
rameter was used for ions as for the respective
neutral. atoms a.nd H wa, s assumed to vary as

If = {Z—q)0'd,

where g is the degree of ionicity plus one, which
is a generalization of an equation for neutral atoms
proposed by GSZ. The investigation reported here
was stimulated in part by the desire to establish
whether these simple rules for the d and 0 param-
eters of ionized atoms are the best that can be
found. In a broader measure„however, the pur-
pose of this work is to extend the QSZ independent-
particle model to positive and negative ions by ob-
taining potential parameters suitable for their de-
scription.

In extending the model to ions it would be prefer-
able to use an ab initio method of determining the
potential. para. meters rather than use a phenomeno-
logical adjustment to experimental data or the re-
sults of a previous more rigorous calculation.
The modified Ha, rtree-Fock approach of Bass,
Green, and Wood'7 is an example of such a method.
Here the expectation of the total Hamiltonian of an
atom or ion, whose one-electron wave functions
are eigenfunctions of the IPM potentia, l, is mini-
mized with respect to the potential parameters.
As one indicator of the aceuraey of such an ap-
proach, total energies obtained using this crite-
rion usually differ from Hartree-Fock val.ues by
less than one hundred parts per million. %'ith
this condition on the total. energy the single-elec-
tron eigenvalues are not in as precise agreement
with Hartree-Foek values as they would be if a
phenomenological fit were performed. However,
the accuracy is still about the same as that ob-
tained with the HFS-Xn method. The present
work extends the study of Bass, Green, and %food
to encompass ionized atoms.

H. THEORY

P; 2Z 2H=
2m r,. I r,. -x,. j

The expectation value of this Hamiltonian, i.e. ,
the total energy, averaged over all Slater deter-
minants which can be constructed from a given
configuration, is'

1«= 2„2 —„Q(22„(—2„,,„,122„,
, „,Inl n'l'

where 8'„, is the number of el.ectrons in the nl

shell,

d'- 2Z l(l+1)I„,=, P„,(r) —,——+, P„,(r) dr,
d p J' 'Y

nl;n'l' 1 1f pl = pl a,nd l =l,
5„,.„, =0 otherwise.

M„, ,„,=Eo, .„, —(4/y1) ' Q c (l0; l0)E„2.„, ,
k=1

[(2l + 1)(2l'+ 1)]'i'
n1;n'f ' nl;n't '

(10)

with

x g c«(f0; l'0}G„,.„, n w n' or l = &'

k=0

+nl n'l' +nl g)+n'l'
0 0

yk
x „P„,(r,)P„,.(r, ) dr, dr„

G„, ,„, =2 f ) P„,(2,)P„, 12,)
0 0

yk
x «+2 P„,(r,)P„,2(r, ) dr, dr, ,

and Q(r) is given by Eg. (2). The total Hamiltonian
is taken as

One-electron wave functions of the atom are as-
sumed to have the form

U„, ,(r, s) =r 'P„,(r)Y (8, y)f';(s),
r, =smaller of (r„r,),
r, = larger of (r„r,) . (12)

where n is the principal, quantum number, 1 the
orbital angular momentum, m the magnetic quan-
tum number, and 1",(s) the spin eigenfunction.
These functions are constrained to satisfy the
eigenvalue equation

The c (fm; f'm') are coefficients resulting from the
angular integrations and are tabulated in Appendix
20 of Ref. 18.

With the assumption that the P«(r) satisfy the
radial differential equation

where V(r) is the GSZ potential modified for ions,
using the form

V(r) = -(2/r) [(Z —q)Q{r) + q],

+ V(r) + P„,(r) = E„P„,(r), (12)
d' l(l + 1)

derived from Ecl. (5), the variational problem of
Z with respect to the P„,(r) becomes a variational
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problem with respect to the parameters d and H
of the potential V(r). Thus we obtain a first-prin-
ciples estimate of these parameters for a potential
of the form given by Eqs. (2) and (6).

III. CALCULATIONAL METHODS

gs gs (2S+ 1)(2f + l)EL, s
Q~ Q~ (2S+L)(2f. +1) (14)

where E«are total energies of states with the
same electronic configuration as the ground state
but with different values of total orbitai angular
momentum I- and total spin S.

For all elements with Z ~ 10 plus silicon (Z = 14)
and argon (Z=18), the total energies of the neutral
atoms, of all positive ions (short of the hydrogenic
ions), and, where possible, of the negative ions
were computed and minimized with respect to
K(=H/d) and d. Our purpose was to take advantage
of the observation of GSZ and BQVf which indicated
that K for neutral atoms is a smoothly varying
function of Z, whereas the parameter 8 shows the
same strong dependence on the atomic shell struc-
ture as d.

The minimization procedure used was a varia-
tion of the "brute-force" method of Roothaan and
Bagus. " No procedures were incorporated for
accelerating or refining the approach to an energy
minimum. Holding one parameter fixed, the sec-
ond mas varied at specified intervals until the
total energy [E of Eg. (8)] passed through a mini-
mum and began to increase. The value of F. at
five points was fitted with a fourth-degree poly-
nomial and the coefficients of the polynomial were
then used to compute the value of the parameter
at which the E was a minimum. The program in-
cremented the second parameter by a specified
amount, and the first parameter was once more
varied in the vicinity of the previous one-param-
eter minimum by the method indicated above.
When the program sensed that the two-dimensional
parameter space included the energy minimum, a
quadratic fit mas performed to the energy surface
and the parameters of the energy minimum mere
computed from this fit.

The minimum total energies obtained via these
procedures were compared to the Hartree-Fock
results of Clementi' or Mann, "with the exception
of the Hartree-Fock energy of the negative hydro-
gen ion, which mas obtained from the calculation
of Dutta et al. 22

The independent-particle model. in the form ap-
plied here cannot distinguish among the various
terms of a multiplet. Thus, in comparing the IPM
to Hartree-Fock results, the latter are taken as
weighted energies of the form

IV. OTHER ANALYTIC POTENTIALS

Having developed the machinery for this modi-
fied Hartree-Fock technique we take the occasion
of this study to examine a number of other simple
analytic potentials. Our purpose is to obtain a
physical indication of the sensitivity of the results
to the form of the potential, which here depends
upon the choice of screening function. In particu-
lar we will study a simple one-parameter (P,) ex-
ponential screening function

Q(r) =e ~~",

which corresponds to the Bohr, Debye, or Yukawa
potential. %e have also examined the screening
function of Tietz, 3

(16)

as well as the two-parameter (P, and P, ) screen-
ing function of Qaspar, '4

e-P yr

Q(r) =

The parameters in these screening functions have
been adjusted to the Thomas-Fermi screening
function. However, in applications Qaspar actual-
ly solved the Schrodinger equation with the corre-
sponding potential form. With the resulting wave
functions he computed quite successfully the x-ray
spectra of several intermediate and heavy atoms.

V. RESULTS AND DISCUSSION

A. GSZ potential parameters

The parameters 4 and E of the QSZ potential
which produce the minimum total energy for a
particular ion are listed in Table I together with
the deviations of these energies from Hartree-
Fock results. Negative ions absent from the table
consist of a single electron outside of filled orbi-
tals. It was not found possible to bind this elec-
tron with any reasonable choice of potential param-
eters, i.e., mithin a rather large space around
those which minimized the energy of the neutral
and taking due account of trends in the parameter
with atomic number and the number of electrons.

The quantity 5, which is always positive, is de-
fined by

EPM HF (18)

and is given in parts per mil1ion. ELM RQd EHF

are, respectively, the total energies obtained from
independent-particle-model and Hartree-Fock cal-
culations. Deviation from Hartree-Fock results
of the total energies of positive ions computed
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TABLE I. GSZ potential parameters producing mimimum total energy and deviations of these total energies from
Hartree- Fock results.

Electronic
configuration

Ion
or

atom (a.u. ) (a.u. )

6

(ppm)

Electronic
configuration

Ion
or

atom (a.u. )

K
(a.u. ) (ppm)

1s2 H

He
Li+
Be2'
B3+
C4'
N5+

06+
F7+

Ne '
Si 2'
A16+

1.107
0.381
0.231
0.176
0.140
0.100
0.096
0.080
0.066
0.061
0.057
0.042

0.744
1.77
2.80
3.93
5.05
5.70
7,15
8.10
8.80

10.0
15.9
20.1

405
0.5
1.1
3.0
1.5
0 4
0.2
0.1
0.1
0.0
0.6
0.7

1s22s 22p 2

1s22s 22p 3

Ne4+
S.8+

A"'

C
N
p+
F2+

Ne +

R
Ai 1+

0.326
0.200
0.145

1.55
0.848
0.596
0.456
0.376
0.216
0.161

3.92
5.67
7.50

1.84
2.27
2.69
3.10
3.52
5.15
6.90

38
18
11

130
94
69
55
42
19
12

1s22s Li
Be'
B2+
C'+

N
05+
F6+

Ne7'
Sii i+

Ai 5+

0.462
0.309
0.233
0.1g0
0.152

1.75
2.42
3.09
3.77
4.41

0.135
0.116
0.100
0.071

5.11
5.75
6.36
g.00

0.060 12.0

240
135

84
58
42
32
25
20
11

6

1s 2s 2p

1s22s'2p '

0
F+
Ne2'
Si6+
A10+

0
F
Ne+
S"

1.17
0.735
0.542
0.432
0.245
0 ~ 170

1.13
0.663
0.485
0.252
0.170

2.00
2.41
2.82
3.22
4.85
6.40

2.28
2.59
2.94
4.44
5.92

86
65
50
40
20
11

130
50
39
20
12

1s22s2

1s22s22p

1s22s 22p 2

Li
Be
B'
C2+

N'+
04+
F5+

Ne +

qii 0+

Ai4+

B
c+
N2+

03+
F4+

Ne5'

Si '
A13+

B
C
N+

p2+

pj +

2.31
0.769
0.490
0.360
0.296
0.245
0.207
0.183
0.127
0.090

0.970
0.613
0.456
0.367
0.307
0.262
0.170
0.114

1.96
0.939
0.630
0.476
0.387

1.34
1.88
2.41
2.96
3.52
4.07
4.59
5.16
7.30
9.55

2.00
2.48
2.96
3.45
3.94
4.42
6.40
8.11

1.65
2.13
2.57
3.02
3.46

266
113

68
47
34
26
20
16

8
5

153
98
67
48
36
28
15

9

169
133

92
66
49

1s22s22p 6

K(2)L {8)3s

K(2)L (8)3s2

K (2)L (8)3s23p

K(2)L (8)3s 3p

K (2)L (8)3s23p3

K (2)L (8)3s23p 4

K(2)L (8)3s 3p 5

K (2)L (8)3s23p 6

F
Ne
Si"
A8+

Na
Si3+
A7+

Mg'
Si2
A'

Al
Si+
A"

Si
A4'

Si
P
A3+

A2+

A+

0.800
0.558
0.270
0.180

0.584
0.336
0.220

0.670
0.435
0.274

0.860
0.628
0.350

0.988
0.428

1.78
1.055
0.541

0.670

0.835

1.045

2.36
2.71
4.17
5.62

2.85
3.88
5.28

3.01
3.65
4.98

3.17
3.46
4.72

3.26
4.42

3.07
3.33
4 ~ 18

3.92

3.71

3.50

52
42
20
12

68
38
22

55
37
23

79
52
27

71
30

80
57
33

32

' From Ref. 17.
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using the GSZ potential is generally equal to or
less than that for the neutral atom. There is a
slight increase in this deviation for the negative
ions compared to that for the un-ionized atom.
For fixed Z the accuracy generally increases as
the number of electrons is decreased, but this
trend is somewhat modulated by shell effects.

There is some tendency toward ambiguity in the
choice of the parameters with increasing positive
ionization. As electrons are removed the screen-
ing of the nuclear potential becomes smaller and
the minima of the total energy surface in the two-
parameter space become correspondingly broader.

The values of 4 and A which minimize the total
energy are plotted in Figs. 1 and 2 as functions of
atomic number for different numbers (n) of elec-
trons. Both 4 and E exhibit considerable variation
with both atomic number and the number of elec-
trons. Because of the strong dependence of d on
the atomic shell structure, no simple function can
adequately represent its dependence on Z and +.

However, for a fixed number of electrons ~ varies
with Z approximately in accord with

(19)

where d„ is the scaling parameter for the neutral
species Z„and P and m are adjustable parameters

The E parameter is more regular and may be
expressed approximately by the formula

(20)

where 6 is a small parameter. While because of
time and computer costs our work has been limit-
ed to the light elements, one might reasonably use
Eq. (19) in conjunction with the results for d„and
A„ found by Bass eI al. to extend the present work.
Table Q gives the values of P, m, and ~ which give
the best fits to Eels. (19) and (20) over the limited
range of Z and n investigated here. For large Z
and a small n, the 4 parameter deviates consider-
ably from the smooth curve. Nevertheless, the
actual accuracy of the total energy would be little
affected (a few ppm at most) by using the param-
eters of the smooth curves because of the insensi-
tivity mentioned previously.

QS

os)

0.4t-

20-

10—

01&
0.08

0.06-
oos I-

oppC.

0.03 /
I

1 i I i 1, !&1 I I li
2 3 4 5 67'8910 !5 20

6.0
5.0

~ 4,0

3.0

FIG. 1. Graphs of d parameters of the GSZ potential
which produce Ininimum total energy for an ion or neu-
tral atom as a function of Z, Except for Z =14, the
values of d for neutral atoms with Z &10 are taken from
Ref. 14. Smooth curves are best fits of Eq. (19) to the
calculated points. The number next to each curve is the
total number {rs) of electrons in the ion or neutral atom.
Contours of constant q are sketched in for values from
0 to 7.

0.8„—

1 2 3 4 5 6 7 8910 15 20

At0fTllC NU1TlbB 5

FIG. 2. Graphs of the K parameter of the GSZ poten-
tial which produces minimum total energy for an ion or
neutral atom as a function of Z. The number at the bot-
tom of each curve is the total number (n) of electrons
in the ion or neutral atom.



P. P. SZYDI IK AND A. E. S. QREEN

TABLE II. Parameters p, ~, and 6, which produce
best fits to the d-vs-Z and K-vs-Z curves using Eqs. (19)
and {20).

s or+a
Parameter

2

3

7

8

9
10
11
12
13
14
15

1.48
1.93
1.38
1.77
1.81
2.06
2.48
2.06
2.90
3,38
2.42
1.48
1.5a

1.92

0.944
0.972
0.857
0.984
0.913
0.910
0.901
0.798
0.848
0,870
0.717
0.609
0.644
0,710

0,105
0.078
0.093
0.121
0.163
0.189
0.227
0,198
0.252
0,257
0.243
0.221
0.211
0.238

Estimated in part from trends at other Z „.

B. Total energy minima from other analytic

potentials

The parameters of various potentials which pro-
duce minimum total energy for neon in different
states of ionization are il.lustrated in Table III
together with the deviations of these energies from
Hartree-Fock results. The advantages of a two-
parameter potential over a one-parameter poten-
tial in this context are obvious. The Qaspar form
of the screening function gives results comparable
to the GSZ form for carbon and xenon (also shown
in Table III) as well as for the ions of neon. While
difficulty might be expected mith the Qaspar poten-
tial if I', became negative, this did not occur in
the calculations performed here. For neon the
optimum value of I', decreased abruptly from

positive values -I to zero (reducing the potential
to a simple exponential form) when the 2s and ls
were the only occupied orbitals.

C. Other energy-related quantities computed

from GSZ independent -particle model

%Phile the accuracy mith which the total energy
ean be computed is not to be denied, this is ob-
viousl. y only one indicator of the over-all accuracy
of the computations presented here. A more com-
plete analysis would require extensive computa-
tions with the wave functions resul. ting from the
study such as mere performed with the phenome-
nologically parametrized model described in the
Introduction. The primary intent of the present
investigation was to provide some justification
for the ab initio prescription used to select the
QSZ potential parameters. Nevertheless, it may
be illuminating to look briefly at the accuracy
with which energy-related quantities other than
the total energy are computed. The ions of argon
will be used for specific numerical examples.

One indication of the individual accuracy with
which the kinetic energy and interaction energy
are computed is given by the degree to which the
virial theorem for atoms (total energy = —kinetic
energy) is satisfied. In minimizing the total en-
ergy, true Hartree-Fock computations should
automaticall. y fulfill the requirements of the virial
theorem' and in actual practice this is verified to
within a fem parts per million. ' In the present
calculation the virial theorem is satisfied to with-
in a few parts per thousand, vrithaccuracyincreas-
ing with the degree of positive ionization. This is
comparable to that obtained in HFS and HFS-Xa"
computations. For the specific case of Ar' the
virial theorem was fulfilled to within 0.3% for the

TABLE III. Parameters of various IPM potentials which produce minimum total energy and deviation of these energies
from Hartree- Fock values.

Atom
One-parameter potentials

Exponential Tietz
Two-parameter potential. s

Gaspar
or
ion P& {a.u. ) (ppm) (ppm) d (a.u. ) E (a.u. )

6

(ppm) P
&

(a.u. ) P2 (a.u. ) (ppm)

Ne
Ne+
Ne2+

Ne~+

Ne4'
Ne5+

Nee
Ne7+

Nes+

C
Xe

2.39
2.64
2.91
3.22
3.64
4.21
5.22
7.01

11,5

368
207
137

95
64
36
16
31

2

1.46
1,61
1.77
1.95
2.18
2.49
2.95
3.82
6.50

292
437
209
186
167
146
126
111
11

0.558
0.485
0.432
0, 376
0.326
0.262
0.183
0.100
0.061
0.939
0.955

2.71
2.94
3.22
3.52
3.92
4.42
5.16
6.36

10,0
2.13
5.10

41
39
40
42
38
28
16
20

0
133
30

1.23
1.41
1.66
2.06
2.57
3.10
5.22
7.01

11.5
0.673
0.520

1.45
1.52
1.52
1.38
1.23
1.28
0
0
0
1.43
4.62

38
33
35
41
39
28
16
31

2

122
43
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TABLE IV. Single-electron eigenvalues of Ar+ computed from various atomic models.

Quantum
numbers

Singl. e-electron energies (Hy}
GSZ independent-

particle model Hartree- Fock
Hartree- Fock-

Sl.ater

1S
2s
3$
2P
3P
34

—228.9
-23.1
—3.08

-18,4
-2.04
-0.68

-238.3
—25.7
—3.42

-20.2
—2.09

233 ~ 7
-24.0
-3.06

-19.3
-1.97

-229.4
—22.6
-2.58

-17.8
1o03

-0.23

independent-particle model, to within 2.2 jo for the
HFS model, and to within 0. 'l% for the HFS-Xo.
method when o. was set to 3. Table IV shows that
in computing single-electron eigenvalues (includ-
ing that of the unoccupied 3d orbital) the IPM is
competitive with HFS calculations. Both Tab).e
V, which compares the Ar' experimental ioniza-
tion potential with various computations, and
Table VI, comparing ihe experimental and calcu-
lated energy of the "first" excited state of Ar',
also confirm the reliability of the IPM. For the
latter comparison it was assumed that the experi-
mental excited state was 2D„Z =

& resulting from
a transition 3P-3d without spin flip from the
'P, J =& ground state of Ar . It is interesting to
note that the energy difference of the 3P and 3d
orbitals (1.36 Ry), computed from the parameters
which minimize the ground-state energy, gives a
fairly accurate estimate of the energy of the same
excited state.

Ganas and Green have given particular atten-
tion to a comparison of HFS and two IPM screening
functions for atomic nitrogen in the neighborhood
of the atom's surface. " They show that the HFS
potential is particularly limited with respect to
its ability to deal with low-lying excited states.
This is true despite the use of the Latter' tech-
nique of replacing the HFS potential by 2/r at-
radii where the absolute magnitude of the HFS po-
tential becomes smaller than the Coulombic poten-
tial. Essentially this Latter device not only intro-

duces a discontinuity in the first derivative of the
electron-atom potential, but it still leaves the
HFS potential too small in absolute magnitude.
Thus in the important region of potential which
acts upon the active electron in its ground state
and low-lying excited states, the HFS-HS screen-
ing function is considerably weaker than the ana-
lytic IPM screening functions with parameters
obtained by two procedures. The analytic IPM
function, obtained by adjustment to experimental
separation energies, is strongest in this region
and yields very precise excitation energies.
The analytic potential obtained by the modified
Hartree-Fock method used here is not quite as
strong, but nevertheless considerably stronger
than the HFS potential. It would appear that the
adjustment-to-separation-energies procedure
empirically incorporates a small attractive elec-
tron-core polarization potential, which is not
included in the present procedure. Core polariza-
tion is not included in the HFS approximation,
which also has additional deficiencies in this
region despite the use of the Latter device. Be-
cause the ground-state HFS potential is not accu-
rate for calculating single-electron wave functions
for the unoccupied orbitals, ihe excited-state
potentials are sometimes generated separately
from that of the ground state. Unfortunately, this
has the disadvantage of the concomitant nonorthog-
onality of the ground-state and excited-state
wave functions.

TABI,E V. Comparison of the experimental ionization potential of Ar and that computed
from various atomic models.

Atomic model Ionization potential. (eV)

Experiment
0SZ independent-partic1. e model
Hartree- Fock
HFS-Xo

27.62
27.41
27.42
27.14

'C. E. Moore, Atomic Energy I evels, Natl. Bur. Std. (U.S.) Circ. No. 467 (U.S. GPO, Wash-
ington, D. C. , 1949), Vol. I.
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D. Efficiency and convenience of computational

methods

In attempting to assess the inherent speed and
efficiency of IPM calculations compared to those
of other models, it is necessary to try to separate
the attributes of the model from those of the com-
puter programs and numerical techniques em-
ployed. The computer programs used for the IPM
calculations were attached to the Hermann-Skill-
man program and utilized the brute-force mini-
mization scheme described in Sec. III, requiring
at least 25 computations of the total energy. Such
quantities as the charge density and the SCF po-
tential, though not germane to the IPM calculation,
were still computed. An additional measure of
uncertainty is introduced by the fact that the speed
of completion of all those computations is a func-
tion of the accuracy of initial guesses. For the
IPM the starting parameters of the potential are
estimated. For Hartree- Fock-type computations
it is the initial charge density.

Calculations for Ar' utilizing the three models,
IPM, HFS, and HFS-Xn, are now compared.
Using a convergence criterion of 10 ' on the single-
electron eigenvalues and varying the GSZ potential
parameters by increments -1%, the IPM could
determine the energy minimum to better than 1
ppm. This sensitivity was further verified by re-
peating the calculation in the vicinity of this mini-
mum using finer steps (- few tenths of one per
cent) in the GSZ potential parameters. The HFS
calculation had not yet converged on the charge
density in twice the time required to complete
the IPM calculation. The HFS calculation used
part of the same computational machinery as the
IPM calculations and the same number of points
in computing the wave function, started with an
analytic fit to the Thomas-Fermi charge distribu-
tion, made use of the Hartree-Switendick" scheme
to accelerate convergence of the charge distribu-
tion, and required convergence criteria of 10 ' on
the charge distribution and 10 ' on the energy
eigenvalue, the same as built into the HFS-Xn
computation described below,

The separate HFS-Xo. computer program proved

to be two to three times more efficient than the
IPM computation. The HFS-Xn calculation began
with a rational approximation to the Thomas-
Fermi charge density, used the Pratt" improve-
ment scheme to accelerate convergence, required
the same convergence criteria as the HFS compu-
tation, and was able to utilize a smaller number
of optimally spaced mesh points in computing the
wave function, with no apparent loss of accuracy.
The number of mesh points used here was 251,
whereas the IPM calculation failed if less than 441
were used.

The intrinsic efficiency of the IPM calculations
has been overshadowed by improvident algorithms
and numerical techniques. To remedy this, future
IPM calculations of the type described here will
use more efficient mimmization procedures (such
as the variable-metric-minimization method of
Davidon2' or the simplex method of Nelder and
Mead" ), extraneous computations will be avoided,
and a smaller mesh (such as that used in the HFS-
Xa code) incorporated into our calculations.

Vl. CONCLUSIONS

Minimization of the total energy of a positive
or negative ion provides an gb initio method for
selecting the parameters of the GSZ independent-
particle-model potential. The accuracy compared
to Hartree-Fock values of total energies of ions
computed via this procedure is of the same order
as that obtained previously for neutral atoms.
W'bile a thorough survey of the computations of
quantities other than the total energy has not been
performed, it appears that potentials derived
from such minimization procedures can calculate
single-electron energies, ionization potentials„
and excited-state energies with an accuracy at
least equal to that of HFS computations.

Parameters which accomplish minimization of
the total energy are rapidly varying functions of
both the atomic number and the degree of ioniza-
tion (or the number of electrons). These optimum
parameters can, with reasonable accuracy, be
characterized by simple equations [Eqs. (19) and
(20)] in terms of a few parameters which have

TABLE VI. Comparison of the experimental energy of the "first"' excited state of Ar' with
that computed from two atomic models.

Atomic model Excited-state energy {Ry}

Experiment
GSZ independent-particle model
HFS-Xe

1.377
1.389
1.340

'C. E. Moore, Ref. (a) in Table p, for further description of the experimental level chosen
for comparison.
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FIG. 3. Comparison of the screening function Qc'r) for
neutral Ne, Ne3, and Nee+ using the parameters of the
present work and those of Ref. 16.

limited variation but which fluctuate with atomic
shell structure. Some of these fluctuations may
be due to ambiguities in the determination of the
potential parameters. Such ambiguities might be
resolved if an additional constraint on the selection
of the potential parameters, such as choosing
those which best satisfy the virial theorem, were
also imposed.

Perhaps one of the main advantages of the ana-
lytic IPM model vis-a-vis numerical HFS or HFS-
Xn potentials is in the convenience of communi-
cation of results once the self-consistent param-
eters have been determined. For example,
Hermann and Skillman list their final self-con-
sistent screening functions for any element at
60-80 scaled radial coordinates for each neutral
series. Using an analytic IPM we simply give two
numbers per species to provide the user with at
least as good an IPM screening function. If, as in
this paper, we venture into the second dimension
of ionicity, then the disadvantages of the HFS

procedure become even more obvious, particular ly
when the analytic IPM is used in conjunction with
rules such as Eqs. (19) and (2Q). For example„
for the 1s' configuration, five numbers —the pa-
rameters d„, K„, P, m, and a as given in Tables
I and II—suffice to determine good screening
functions which in the HFS-HS methodology would
require the transmittal of over 1000 numbers.

It should be noted that Eqs. (19) and (2Q) differ
quite markedly from the rules used by Hahn and
Watson (HW) in their survey of transition prob-
abilities and multiple ionizations by high-energy
electron impact. In effect, they use the rules
d =d„and K =n". Figure 3 illustrates the dif-
ferences in some of the screening functions im-
plied by the differences in the two sets of rules.
The figure suggests that the HW potentials fall
off too slowly with distance and hence that their
electrons would be too tightly bound. Accordingly,
it would be interesting to refine their pioneering
survey by examining the quantitative implications
of our more physically based rules.

During the course of this study we have estab-
lished that two-parameter potentials such as the
GSZ and that of Gaspar yield total energies which
are significantly more accurate relative to Har-
tree- Fock calculations than the one-parameter
potentials of Bohr and Tietz.

Future work employing this minimization pre-
scription will use mor e efficient computer tech-
niques in order to take full advantage of the innate
efficiency of calculations with the independent-
particle model. In view of the past success of the
GSZ IPM in characterizing the heavier neutral
atoms, coupled with its current success with many
light ions, there seems little question of the ap-
plicability of the model and our minimization
procedures to heavier ions as well.
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