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Recent calculations of the ground-state energy of a system of four hydrogen atoms are re-
viewed from the point of view of discerning the short-range interaction potential between two
hydrogen molecules. Consistency amongst the results of these calculations suggests that the
potential for intermolecular separations in the region 1-2.5 A can now be specified to about
10% with considerable confidence. Analytic fits to spherical averages of these results are
presented. For calculations of properties of high-density solid molecular hydrogen, the
bare pair potential may thus be regarded as well determined. The role of multicenter terms
can then be examined; as for example, recent reported work seems to indicate that pairwise

additivity is not altogether valid in practice.

I. INTRODUCTION

The purpose of this paper is to review recent
calculations of the short-range, repulsive part
of the interaction potential between two hydrogen
molecules. Uncertainty in this portion of the po-
tential has led to widely differing determinations
of the equation of state for molecular hydrogen at
very high pressures, and contributed to variations
by more than an order of magnitude amongst pre-
dictions of the molecular to atomic phase-transi-
tion pressure.!”!° We demonstrate in this review
that recent calculations!' ™2 of the short-range
part of the potential are in sufficient agreement
with each other as to suggest that this part of the
potential may now be fairly well established. Un-
fortunately, there are still significant discrepan-
cies with the limited experimental information
available.?®*™3! Most of the calculations that we
discuss have appeared in the chemical physics
literature, and many have been motivated by other
concerns such as the four-center exchange me-
chanism between two impinging hydrogen mole-
cules. Since this review is intended for a more
general audience, we have included a brief de-
scription of the so-called ab initio techniques that
have been used. It is not the purpose of this paper
to give a complete review of the H, calculations,
and we refer the reader to the paper by Rubinstein
and Shavitt'® for a more thorough list and discus-
sion of the earlier efforts.

The organization of the paper is as follows. In
Sec.II we describe the ab initio techniques, and
in Sec. III the numerical results for the H,-H, in-
teraction energy that have been obtained with these
methods. Possible analytic forms for the short-
range part of the potential are discussed in Sec.
IV. In Sec. V we comment on the applicability of
these various results to calculations of the ground-
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state energy of molecular solid hydrogen. Finally,
our summary is presented in Sec. VI.

II. MATHEMATICAL TECHNIQUES

We describe in this section the ab initio tech-
niques by which the ground-state energy of a
system of four hydrogen atoms has been deter-
mined.!!'™?® It is customary to begin by making
the Born-Oppenheimer approximation and neglect-
ing any zero-point motion of the four nuclei. The
nuclear position vectors ﬁA, and thus the geom-
etry of the system, are accordingly parameters
in the problem. The desired energy is then the
ground-state eigenvalue of the Hamiltonian

1 1_ ., 1 1
H=Z R, +Z<—-§-Vf —ZA: ,",—":>+Z F
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(1)

where the indices A and ¢ run over the four nuclei
and four electrons respectively, R,,=|R, -R,|,
Yia=| ;i —ﬁAI , and atomic units®2 have been used.
The methods by which this energy has been approx-
imately determined have in general been varia-
tional, ® and thus have given upper bounds. These
methods may be categorized according to the gen-
erality of the trial wave function used.

Heitler - London (HL)

The simplest calculation would appear to be a
generalization of the well-known Heitler-London
approach for the hydrogen molecule. In the case
of four hydrogen atoms, one has

b, = 5] (abed) —(abed) —(abed) + (abed)], (2)
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(abed)= 7w 2 (-1 PIx( | F,=Ro DX F,Bs (I iR Dx (1o~ R D08 a@B(@)] 3
P

X(T)E(gii/.”)l/ze-{r. (4)

As usual, the two spin functions are indicated by
aand B. In Eq. (2), the bars placed over certain
letters indicate the arrangement of the spin func-
tions as shown in Eq. (3). The permutation oper-
ator P runs over all 24 permutations of four ob-

jects, and permutes both spatial and spin variables.

Since it is presumed that the ground state will be
an eigenfunction of the total spin with eigenvalue
zero, it is necessary to combine four Slater de-
terminants as is done in Eq. (2). This is a cova-
lent (as contrasted to ionic) wave function, in that
each of the four atomic orbitals (one centered on
each nucleus) is singly occupied. If one substi-
tues Eq. (3) into Eq. (2), the spin functions may be
grouped in the form of a singlet state for the elec-
trons on nuclei @ and b, multiplied by a singlet
state for those on ¢ and d. One considers this wave
function to describe a state in which covalent bonds
exist between atoms a@ and b, and between atoms
c and d. It is possible to construct two more cova-
lent wave functions, corresponding to bonds be-
tween other pairs of atoms, although only two of
the three wave functions are linearly independent.
The given geometric arrangement of the nuclei
dictates which of the three (if any) is the best
choice.

The Heitler-London wave function has no varia-
tional parameters (unless the effective nuclear
charge ¢ is varied), and so one must only evaluate

(YuL|H|puL)

Ew Puc | ) ®)
The interaction energy between molecules may
then be found by subtracting the energy of two
isolated molecules—also calculated in the Heitler-
London approximation. This is not a trivial ex-
ercise, for two reasons. The first is that for a
general geometry, Eq. (5) involves some 64 dis-
tinct electron-nucleus attraction and electron-
electron repulsion integrals.** Cancellation
amongst these various terms results in the inter-
action energy being one or more orders of magni-
tude smaller than the size of some individual
terms. Second, simple analytic expressions for
the 39 three- and four-center integrals do not
exist, and only in the last ten years have thesein-
tegrals been accurately evaluated by rather elab-
orate computer programs.®® In the early work,
de Boer®® neglected three- and four-center inte-
grals altogether, while Evett and Margenau®” and
Mason and Hirschfelder3® attempted to approxi-
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mate them. Because of the extensive cancellation
mentioned, such approximation schemes are not
reliable. While giving reasonable dependence of
the interaction energy on intermolecular separa-
tion, the calculations of de Boer and of Mason and
Hirschfelder, for example, overestimate the
orientation dependence by more than a factor of 2.
We return to this point later.

Full configuration interaction

The two linearly independent covalent wave func-
tions are referred to as configurations. Given our
set of four atomic orbitals, one centered about
each nucleus, it is also possible to construct 12
singly ionized configurations of the form

Ysion — (1/V2)[abec)-(aber)] (6)
and six doubly ionized configurations of the form
¥ dion. = (aacc). )

Each is a linearly independent wave function, satis-
fying the Pauli principle, and a spin-zero eigen-
function of the total spin. They correspond to the
20 possible ways of placing four indistinguishable
electrons on four protons (using only 1s states)
consistent with zero total spin.

A variational calculation of the ground-state en-
ergy in which the trial wave function is composed
of a sum of these configurations, each multiplied
by a variational parameter, is referred to as a
“configuration-interaction” (CI) calculation. In a
full configuration-interaction calculation, all con-
figurations consistent with the geometric symme-
try of the ground state are employed. To be more
precise, the configurations referred to here are
actually linear combinations of the original con-
figurations which transform according to the ap-
propriate irreducible representation of the point
group of the four-atom system. Thus, for the
linear geometry (see Fig. 1), only 12 (out of 20)
configurations are needed.

A full CI calculation may be improved by en-
larging the basis. So far, we have considered
what is known as a 1s-Slater-type basis, meaning
that we used four atomic orbitals obtained by
centering a 1s-Slater-type orbital [Eq. (4)] about
each of the four nuclei. This is known as a “min-
imal” basis set in that only the 1s orbital is oc-
cupied in the ground state of an isolated hydrogen
atom. Williams, ! Magnasco and Musso, ** and
Wilson and Goddard'® have used this basis set in
their full CI calculations on the H, system.
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Rubinstein and Shavitt, !* and Silver and Stevens?®
have used a 1s, 1s’-Slater-type basis set. The use
of two 1s orbitals (having different exponents) in
this “double-zeta” basis appears to be simply a
convenient device whereby minor improvements
can be made over the minimal basis wave function,
most importantly in the region between the atoms.
Bender and Schaefer? have gone a step further by
adding p orbitals, using a 1s,1s’, 2p,, 2p,, 2p, -
Gaussian-type basis in their calculations. This 1s
orbital is a “contracted” sum of three Gaussians,
while the 1s’ orbital is a single Gaussian. Amaz-
ingly enough, full CI calculations with Gaussian
orbitals have proved quite successful. Among the
advantages of their use is the easy evaluation of
multicenter integrals, while a disadvantage is that
generally a large enough basis must be used so as
to at least crudely be capable of representing a
Slater function. A discussion of the philosophy be-
hind these various choices of basis sets is given
in the book by Schaefer.?* One fact should be
borne in mind: the number of configurations in-
volved increases dramatically with the size of
basis chosen. A full CI calculation for the linear
geometry, for example, involves 12, 176, and
2172 configurations, respectively, for the 1s;
1s,1s’; and 15,13’ 2p,, 2p,, 2p, basis sets.

“Self - consistent field”

The “self-consistent-field” (SCF) calculation, as
referred to in the papers of interest to us in this
review, is a particular version of the Hartree-
Fock approach. One seeks to minimize the energy
using a wave function of the form

bscr =757 3 (<17 P& ,(1)8, (202 (3)
P

x§(4)a(1)8 (2)a(3)B (4)] .
(8)

However, in contrast to the most general Hartree-
Fock approach, the molecular orbitals ¢, and @,
are restricted in this method to be linear combi-
nations of whatever basis functions are being used.
In the case of the minimal basis set, then

® (1) =C ox(IT=Ra )+ Cpy x (I T=Rs |)
+Cx (IT=R. )+ Cyx (ITRa ), 9)

and the coefficients C would be the quantities to be
determined. Actually, for such a small basis,
geometric symmetry alone will often be sufficient
to determine these coefficients. Bender and
Schaefer? and Tapia and Bessis!?™?! have used
1s,1s’,2p, 2p,, 2p, and 1s,1s’,1s"’,2p,, 2p,, 2P, -
Gaussian bases in their SCF calculations.
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Both the SCF and the Heitler-London (HL) wave
functions are contained as special cases within
the corresponding full CI wave function. They offer
shorter computing time at the cost of less-accu-
rate results. In general, the SCF wave function
exhibits too little spatial correlation amongst the
four electrons; the HL wave function, too much.
The SCF wave function is best suited to geometries
in which all four atoms are closely spaced; the
HL wave function, when the atoms are far apart.
In any case, for a given basis, the full CI calcu-
lation always yields lower upper-bounds on the
ground-state energy than either the HL or SCF
methods.

Other methods

The same full CI wave function may be arrived
at from either the valence-bond point of view, in
which ionic configurations are added to the cova-
lent configurations, or from the molecular-orbital
point of view, in which excited configurations are
added to the SCF configuration. There are a num-
ber of limited CI calculations (i.e., not full) based
on one or the other of these viewpoints. These
methods include the “group function” approach of
Magnasco, Musso, and McWeeny, * and the “GI”
method of Wilson and Goddard.'®''” The “SCF +
CI” method, which we shall take to mean the SCF
configuration plus all singly and doubly excited
configurations, has proved to be very successful
for at least the linear geometry.? Bender and
Schaefer, 22 Tapia and Bessis, 3* Kochanski ef al. *
and Ree and Bender?® have used this approach.

III. SURVEY OF NUMERICAL RESULTS

This section reviews numerical results obtained
for the ground-state energy of the H, system by
the ab initio techniques described previously. We
first make use of these results to give some in-
dication of when the concept of interacting H,
molecules is valid and where it breaks down. Then
we specialize to the problem of the angular (viz.,
Fig. 1) and intermolecular separation dependence
of the H,-H, interaction energy. At this stage
quantitative comparison of the various computa-
tional methods is made.

Interacting H, molecules

One may identify a particular pair of hydrogen
atoms as constituting an H, molecule if, when con-
sidered as a function of the distance between these
two atoms, the energy of the full H, system is near
a local minimum. A system of four infinitely sep-
arated hydrogen atoms has an energy of -2.00
hartrees.?? The energy may be lowered to -2.35
hartrees by grouping the atoms into two infinitely
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separated pairs, with the distance between atoms
composing a given pair being 1.40 bohrs. The H,
molecule binding energy, 0.17 hartree, accounts

for this energy reduction.?® The energy of the H,
system increases when the two pairs of hydrogen
atoms are pushed close together; i.e., there is a
repulsive short-range interaction between the two
H, molecules.

One would expect the concept of interacting H,
molecules to remain valid down to separations
for which the interaction energy approaches the
binding energy in magnitude. This appears to be
borne out by the calculations. In Fig. 2, we show
the Silver and Stevens? results for the rectangular
geometry. The abscissa specifies one side of the
rectangle(R,); the curves are labelled according
to the other (R,). It is evident that the lowest en-
ergies are obtained when one side is near 1.40
bohr (the equilibrium H, bond length), and the
other side is large. Decreasing this larger side
(the intermolecular distance) results in exponen-
tial-like increase as seen in the curve labelled
R, =1.4. The effect of intermolecular distance on
the local potential well associated with the H, bond
length can be seen in the dotted portion of the
curves, where R, is to be taken now as the inter-
molecular distance; and R,, the bond length. The
calculations of Conroy and Malli, 3 in particular
their Fig. 6, suggest that the obvious trend here
does indeed result in an eventual loss of the
barrier for R,> 1.4 bohrs as R, is further de-
creased below 1.8 bohrs. Somewhat before this
point, the vibrational zero-point energy of the two
molecules associated with the coordinate R, (about

! )
o r' o o o linear

perpendicular

rectangular

,I_ S o_/) crossed

R = intermolecular separation

r = intramolecular separation
(bond length)

FIG. 1. Geometries of the H; system. The linear,
perpendicular, and rectangular arrangements lie in the
plane of the paper as shown. In the crossed geometry,
the intramolecular axis of the right-hand molecule is
perpendicular to the plane of the paper.

0.02 hartree as estimated from the curvature at
R,=1.4 bohrs) will result in loss of the H, bonds.
Does the optimal bond length change as the two
molecules are pushed closer together? Analytic
fits to the potential wells shown in Fig. 2 yield
minima within a percent of 1.40 bohrs for the
range of intermolecular separations from 2.8 to
1.8 bohrs. On the other hand, Conroy and Malli,*
Wilson and Goddard, !” and Tapia et al.'>?* have
reported results for the same rectangular geom-
etry suggesting the optimal bond length shrinks
as the intermolecular distance is decreased.
From the first two of these papers, the shrinkage
may be estimated to be about 4% for intermolecu-
lar separations near 2.2 bohrs. For two H, mole-
cules approaching each other in a linear manner,
the results of Wilson and Goddard,'® as seen in
their Fig. 18, suggest a similar shrinking of the
optimal bond length. Extrapolation of their data
suggests about a 4% effect for intermolecular
separations near 3.1 bohrs. Recent work of Ree*!
implies the optimal bond length decreases for all
geometries shown in Fig. 1. He obtains some-
what larger effects. The important point to bear
in mind, as can be seen in Fig. 2, is that these
uncertainties in the bond length lead to errors in
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FIG. 2. Total energy of the H, system for the rectan-
gular geometry. The abscissa specifies one side of the
rectangle R, and the curves are labelled according to
the length of the other side R;. Both lengths are in bohrs.
The H, bond length and the Hy~H, intermolecular separa-
tion may be identified with R, and R,, respectively, for
the solid curves; and the reverse, for the dashed curves.
These results are from Silver and Stevens (Ref. 23).



1856 McMAHAN, BECK, AND KRUMHANSL 9

the interaction energy generally less than a few
percent. Accordingly, calculations of the H,-H,
interaction energy based on a fixed bond length of
1.40 bohrs should be valid to within this same
accuracy.

As a rough summary one might say that the idea
of the H, bond, and an associated length more or
less equal to 1.4 bohrs, are relevant down to sep-
arations where the distance between the nearest
atoms on two approaching molecules is about equal
to, or perhaps half again as large, as this bond
length. On further contraction, both the local po-
tential wells signifying the bonds, and the associ-
ated length are lost. The Bender and Schaefer??
results for the linear H, system, for example,
show that in this regime it is energetically favor-
able to equally space the four atoms rather than
trying to maintain the 1.4-bohr bond length (see
Fig. 3). For lower (linear) densities this equally
spaced geometry, while a bound state with respect
to four separated atoms, is clearly unstable with
respect to the formation of H, molecules.

Interaction energy

A partial judgement of the relative merit of the
computational techniques can be made by checking
their results for the ground-state energy of a
single H, molecule (see Table I). Since these cal-
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FIG. 3. Total energy of the H; system for the linear
geometries. The solid curve corresponds to the “molec-
ular” arrangement in which the atoms are grouped into
two pairs, as shown, with a “bond length” of 1.4 bohrs.
The dashed curve corresponds to the “atomic’” arrange-
ment in which the atoms are equally spaced, the inter-
atomic separation being R/2. The curves intersect for
R=2.8 bohrs. These results are from Bender and
Schaefer (Ref. 22).

culations are variational, the results are quite as
expected: Lower energies are obtained by using
larger basis sets, and by including all possible
configurations (full CI) which may be constructed
from the given basis set. This table is only in-
directly related to our problem, however, since
we are interested in relalive changes in the energy
of the H, system as the constituent H, molecules
are moved about. The interaction energy of two
H, molecules is calculated as the energy of the H,
system less the energy of two infinitely separated
molecules evaluated in the same approximation.
Thus, for example, the large-basis SCF calcula-
tions of the interaction energy are superior to the
minimal-basis full CI results, in spite of the fact
that the latter technique gives the lower H, mole-
cule ground-state energy.

The results of minimal-basis full CI calculations
by Magnasco and Musso, !* Williams, !! and Wilson
and Goddard'® are shown in Fig. 4 for the linear
and rectangular geometries. The density depen-
dence is roughly exponential, € "*®  with o rang-
ing between 1.80 and 1.85 bohrs™ for the linear
and 1.67-1.90 bohrs™! for the rectangular geometry
as the intermolecular distance R is increased from
3 to 5 bohrs. The Williams!! results place the en-
ergy of the crossed and of the perpendicular geom-
etries, respectively, about 15% below and 50%
above those of the rectangular geometry. In con-
tradiction to the statement made by Hoover et al. *°
it is clear that the interaction energy of the linear
geometry as calculated with the minimal basis set
is only about a factor of 2 larger than that of the
rectangular geometry. We have also included in
Fig. 4 the results of the Heitler-London calcula-
tion using correct multicenter integrals.** The
fairly close agreement with the full CI results
clearly points out the danger of using approximate
multicenter integrals as in the early Heitler-
London calculations by de Boer, *® and Mason and
Hirschfelder.® An angular dependence more than
twice as large as seen here was reported in those
papers.

The results of CI calculations using larger bases
(specified in Table I) are shown in Figs. 5 and 6°°
The results of Bender and Schaefer?? and of Silver
and Stevens?® shown here are from full CI calcula-
tions. Those of Tapia and Bessis? and of Kockan-
ski et al.** are from the SCF + CI technique,
which gives values for the interaction energy with-
in a few percent of full CI values for the linear
case.?? For intermolecular separations R around
3 bohrs, the curves in Fig. 5 have about the same
dependence on this parameter as in the minimal-
basis calculations, i.e., e"*F with a=1.81 and
1.62 bohrs ™! for the linear and rectangular cases,
respectively. The actual values of the interaction



TABLE I. Ground-state energy of the H, molecule as calculated in various approximations.

SCF +CIP Full CIP

SCFP

HLPY

Reference

a
7

Exponent

Type

Basis
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-1.14789

—1.12798

-1.13820°¢

Magnasco and Musso®

1.4166
Williams!!

1.193

Slater

1s

-1.147911¢

-1.12819

Wilson and Goddard'®

1.4

1.05

-1.151175

Silver and Stevens??

1.4

0.9,1.2

Slater

1s,1s’

-1.13510

-1.12550
-1.13120

Tapia and Bessis?®!

1.4166

Gaussian

1s,1s’,1s” ,2p, ,2p,.2p, ©

1s,1s",2p, ,2p,.2p,

-1.16570

—1.16519

Bender and Schaefer??

Ree and Bender?®
Kochanski & al %

1.4

Gaussian

-1.16860

—-1.168 02

1.4
14

Gaussian

1s,1s’,18”,2p, ,2p,,2p, . 2pL , 2P} . 2P} 8

—-1.17447

-1.13364

Kolos and Roothaan??
Kolos and Wolniewicz4?

100 terms
Stoicheff!3

James-Coolidge function

-1.17445

Experiment

€ Each function is a single Gaussian.

0.52917 A.

2 Bond length in bohrs, 1 bohr
b Energy in hartrees, 1 hartree

f The 1s function is a contracted sum of three Gaussians.
€ The 1s function is a contracted sum of four Gaussians.

27.211 eV.

¢ Evaluated for this choice of parameters by the authors.

dy,=1.4166.

energy, however, are smaller by 36% and 12%
respectively. This reduces the rectangular-to-
linear variation from about a factor of 2.2 to 1.6.
In Fig. 6 it is seen that the interaction energy of
the perpendicular geometry has also been reduced
relatively more strongly than that of the rectangu-
lar case, so that only about a 15% variation in en-
ergy is involved in changing the orientation from
the crossed to the rectangular, and then to the
perpendicular geometry.

For values of the intermolecular separation
greater than about 4 bohrs, Fig. 5 shows that the
interaction energy begins to fall off considerably
faster than an exponential. This behavior, which
was only barely suggested by the minimal-basis
calculations, reflects the importance of the at-
tractive van der Waals or dispersion forces in
this region. In fact, Tapia and Bessis,? Bender
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FIG. 4. Minimal-basis calculations of the H,-H, inter-
action energy for linear and rectangular geometries.
The full CI results of Magnasco and Musso (Ref. 13),
Williams (Ref. 11), and Wilson and Goddard (Ref. 16) are
shown. Results of the Heitler-London calculations (Ref.
44) are included for comparison. The two curves differ
by a factor of 2.2, 1.9, and 1.8 for intermolecular
separations of 3, 4, and 5 bohrs, respectively. The
uppermost two points of Wilson and Goddard were ob-
tained with a bond length of 1.4 bohrs. The lowest two
points of Magnasco and Musso are from their limited
CI calculations (Ref. 12). Some of Williams’ question-
able (Ref. 12) large separation results have been omitted.
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and Schaefer,?? and Kochanski et al.?* have all
observed some form of attractive van der Waals
minimum (depth~ 107 hartree) in the interaction
energy for intermolecular separations around
6.5-7.0 bohrs. Kochanski et al. note that calcula-
tions in this region are extremely sensitive to the
choice of basis, and that a 2p orbital with a small
exponent is essential. In contrast to the orienta-
tion dependence seen for smaller separations,
Kochanski et al. find the perpendicular geometry
to be most stable for intermolecular separations
greater than about 4.5 bohrs. There does not
appear to be any one type of force responsible for
this fact, as they note that the valence, quadrupole,
and the dispersion forces all contribute to this
stability.

Margenau and Kestner*®® have argued that an SCF
calculation of the interaction energy cannot include
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FIG. 5. Extended-basis calculations of the H,-H, inter-
action energy for linear and rectangular geometries. The
results of Bender and Schaefer (Ref. 22) and of Silver and
Stevens (Ref. 23) are full CI, while those of Kochanski
et al. (Ref. 24) were obtained by the SCF + CI technique.
The bases used are specified in Table I. The two curves
differ by a factor of 1.6, 1.6, and 1.9 for intermolecular
separations of 3, 4, and 5 bohrs. For these same sep-
arations, the linear results are lower by 36%, 27%, and
31%, respectively, in comparison to the corresponding
minimal-basis results (Fig. 4); while the rectangular re-
sults are lower by 12%, 12%, and 34%, respectively, in
comparison to the rectangular results in Fig. 4.

dispersion effects. This seems intuitively clear
in that electron-electron correlations (aside from
those originating from the antisymmetrization)
are not incorporated in the SCF wave function, and
such correlations would appear to be essential to
an induced dipole-induced dipole interaction. In
Fig. 7T we show the results of SCF calculations by
Bender and Schaefer?? and by Tapia and Bessis?
which are consistent with these expectations. For
intermolecular separations less than 3 bohrs,
these results are in fairly close agreement with
the CI calculations. For larger separations they
fall off too slowly, roughly exponentially, and do
not display an attractive van der Waals minimum.
For very large separations, greater than 12.5
bohrs, the SCF calculations of Bender, Schaefer,
and Kollman*’ are in quantitative agreement with
the predicted classical quadrupole-quadrupole
interaction.
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FIG. 6. Extended-basis calculations of the H,-H, inter-
action energy for various geometries. The results of
Bender and Schaefer (Ref. 22) and of Silver and Stevens
(Ref. 23) are full CI, while those of Tapia and Bessis
(Ref. 21) and of Kochanski ef al. (Ref. 24) were obtained
by the SCF + CI technique. The bases used are specified
in Table I. The results for the linear and rectangular
geometries (open symbols) are identical to those in Fig.
5. For intermolecular separations from 3 to 4 bohrs,
the results for the perpendicular and crossed geometries
(closed symbols) are, respectively, about 10% above
and 5% below those for the rectangular geometry.
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To summarize this section, we note that CI cal-
culations using an extended basis that includes a
diffuse 2p orbital appear to be necessary to ac-
curately determine the H,-H, interaction energy
for all separations. There is sufficient numerical
agreement for intermolecular separations between
2 and 5 bohrs to suggest that the curves in Figs.

5 and 6 are correct to within better than 10%.
Furthermore, these results are expected to in-
clude all contributions to the interaction energy.

IV. ANALYTIC EXPRESSIONS

The interaction energy of two hydrogen molecules
is generally subdivided into contributions from (i)
the short-range valence (overlap, or exchange)
forces, (ii) the long-range dispersion forces, and

(iii) the electrostatic quadrupole-quadrupole forces.

Analytic expressions for the latter two contribu-
tions are fairly well established.*** *-%° We con-
fine our attention to the short-range part of the
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FIG. 7. Extended-basis SCF calculations of the Hy-H,
interaction energy for various geometries. The SCF re-
sults of Bender and Schaefer (Ref. 22) and Tapia and
Bessis (Ref. 21) are shown. The choice of basis is
specified in Table I. For intermolecular separations
less than about 3.0 bohrs these results are generally
within a few percent agreement with the CI results
shown in Figs. 5 and 6. For intermolecular separations
around 5 bohrs, these SCF results are higher than the
CI results by about (35-90%), depending on geometry.

interaction energy.

Both de Boer3® and Abrikosov? chose forms for
the valence contribution which may be interpreted
as representing pairwise interactions between the
atoms making up the two H, molecules:

$ (v =€(Ry ) +€(Ryq) +€(Ryc)+€(Ryyg) . (10)

Atoms a and b constitute one molecule; ¢ and d,
the other. While de Boer chose an exponential

for the function €(R), Abrikosov used an appropri-
ate average of the singlet and triplet interactions
between two hydrogen atoms. In light of the re-
sults discussed in Sec. III, however, there are
serious objections to the general form given by
Eq. (10). If the intramolecular separation istaken
to be near 1.4 bohrs, any choice for the function
€(R) giving the right dependence on intermolecular
separation for some particular geometry results
in an orientation dependence of about a factor of

5. Yet all ab initio calculations have shown an
overall orientation dependence of a factor of 2 or
less. It is to be emphasized in particular, that
the de Boer potential can nof adequately represent
any of the results discussed in Sec. III, including
the minimal basis work. Neece ef al.® were able
to fit the Magnasco and Musso®? results with a

de Boer potential only because the Magnasco and
Musso work did not include any of the high-energy
geometries such as the perpendicular or linear
arrangements. These facts are illustrated in

Fig. 8, where the de Boer potential with the choice
of parameters used by Neece ¢! al.,is plotted for
the standard geometries, and compared to mini-
mal-basis full CI calculations for the rectangular
and linear cases.

Equation (10) can be made to yield an overall
dependence on orientation of about a factor of 2
if the intramolecular separation is artificially
chosen to be a third or so smaller than 1.4 bohrs.
However, in this case the perpendicular geometry
still falls midway between the linear and rectangu-
lar results, and the dependence of the interaction
energy on intermolecular separation can not be
made satisfactory for all geometries.

The close agreement of the Heitler-London cal-
culations with the minimal-basis full CI results
shown in Fig. 4, might suggest that de Boer’s
original goal of selecting out a few dominant terms
from the Heitler-London expression might still be
achieved. Unfortunately, there are simply too
many equally large, and partially cancelling terms
for this to be feasible. The angular dependence
immediately suffers from such selection processes.
For example, in their book Margenau and Kestner®*
make a slight approximation in the Heitler-London
expression based on neglecting the fourth power
of the ratio of the inter- to intramolecular overlap
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integrals. Evaluation of this expression using
correct multicenter integrals yields results about
20% higher for the rectangular geometry and about
100% higher for the linear geometry, in compari-
son with the full Heitler-London result.

The angular dependence of the interaction poten-
tial appears to be of rather high order, as is evi-
denced in Fig. 6. Low-order terms of the form

(cos?6, + cos?6,)f (R),

where 6, is the angle between the axis of the first
molecule and the line joining the centers of mass
of the two molecules, would place the perpendicu-
lar results halfway between those for the rectan-
gular and linear cases. This is clearly not the
case.

The problem of fitting the angular behavior may
be avoided in first approximation by performing
some form of average over the angular variables,
as is done by Hoover ef al.'® and by Ree and
Bender.?® Hoover ef al. arrive at the potential

2 2 -
& - 8.2¢e e-1.74:_z_ (13x~6 + 116x~8)e —400% 6,
0

a,
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FIG. 8. de Boer potential for various geometries.
The de Boer potential is plotted for the choice of param-
eters used by Neece et al. (Ref. 8), i.e., €(R)=3.2¢ 116398
[atomic units, see Eq. (10)]. While the curve for the
rectangular ‘case is in close agreement with the calcu-
lations of Magnasco and Musso (Ref. 13), the curve for
the linear case is too high by about a factor of 2 in com-
parison to the calculations of Wilson and Goddard (Ref.16).
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where x=R/a, and a,=1 bohr =0.52917 A. The
first term is the valence energy, which they obtain
by a spherical average over SCF calculations for
the four standard geometries. The second term
is the usual expression for the dispersion en -
ergy, *°’ * multiplied by a short-range cutoff fac-
tor as suggested by Trubitsyn.® From a similar
spherical average of their SCF + CI calculations
for the four geometries, Ree and Bender obtain

2
@ - (3.53662/(10) e—1.242x—0.06784x R (12)

for 2.5<k< 4.5 bohrs. As noted earlier, this ex-
pression should already include dispersion effects.
A spherical average of the results illustrated in
Fig. 6 may be fit by

® = (2.184e2/a0)e—o.843u -0.13811x2 , (13)

which agrees to within 10% of the Ree and Bender
expression throughout the range 3-4.5 bohrs. The
Evett and Margenau®’ averaging procedure yields
results only a few percent different from that of
Hoover etal.,'® which we have used in arriving at
Eq. (13).

The various potentials [ Eqs. (11)=(13)] are shown
in Fig. 9. On purely formal grounds, the extended-
basis CI results [ solid curves, Egs.(12) and (13)]
must be considered the most reliable determina-
tions of the spherically averaged interaction be-
tween two hydrogen molecules. They represent
agreement to within about 10% of most of the re-
cent ab initio CI calculations, and incorporate the
dispersion effects in a fundamental manner. In
contrast, the expression of Hoover et al. [dashed
line, Eq. (11)] relies on the presumption that the
standard long-range expression for the dispersion
energy may also be applied for short intermolecu-
lar separations. It is in fact this contribution
which is responsible for the significantly weaker
repulsion of Eq. (11) as compared to Eqgs. (12) and
(13). We also show in Fig. 9 the potential used by
Neece et al.,® which consists of a de Boer form
for the valence contribution plus the Margenau*®
result for the dispersion energy. Since their cal-
culation of the energy of the molecular solid was
based on the “a-nitrogen” structure, we have
plotted their potential (dotted curve) for the near-
neighbor molecular orientations of this structure.
This geometry is close in energy to the perpen-
dicular case, and so the de Boer potential has
significantly overestimated the repulsive energy.

In spite of the consistency evidenced amongst
the recent extended-basis CI calculations for the
H,-H, interaction potential, there is not good
agreement between theory and experiment. The
shaded region in Fig. 9 represents the determina-
tion by Hoover et al.!° of bounds on an effective
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pair potential which would be consistent with the
shock experiments of Dick® and van Thiel et al %
More recently, van Thiel et al 3! have reported
shock experiments on deuterium which are in ex-
cellent agreement with an analysis based on Eq.
(11) (dashed curve in Fig. 9). Experimental de-
terminations of the pair potential are evidently a
factor of 2 or so smaller than the ab initio theo-
retical calculations. The recent work of Ree and
Bender?® suggests that this discrepancy is due to
the breakdown of pairwise additivity for short-
range interactions amongst hydrogen molecules
in the bulk.
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FIG. 9. Spherically averaged H,~H, interaction poten-
tial. The solid curves labelled “CI calculations” and
“Ree and Bender” are from ab initio calculations, and
are plots of Egs. (13) and (12), respectively. The
shaded region labelled ‘“Experiment” corresponds to
the determination by Hoover et al. (Ref. 10) of bounds
on an effective pair potential consistent with shock ex-
periment (Ref. 29). More recent shock experiments
(Ref. 31) are consistent with analyses based on the
dashed curve, which is a plot of Eq. (11), the potential
determined by Hoover et al. The dotted curve is a plot
of the potential used by Neece et al. (Ref. 8) for the
molecular orientations characteristic of near neighbors
in the a-nitrogen structure. Calculations of the T=0
molecular-to-atomic phase transition pressure by Neece
et al. (using the dotted curve), Hoover et al. (using the
upper bound to the shaded region), and by van Thiel
et al. (Ref. 31) (using the dashed curve) yield 0.84, 1.7,
and 4.2 Mbar, respectively. In each case the atomic
calculations of Neece et al. were used.
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V. APPLICABILITY TO THE SOLID

The assumption of pairwise additivity means
that the behavior of a system of many molecules
is characterized by a many-body potential of the
form

V=E@” , (14)

i<

where @,; is the interaction potential for an
isolated system of two molecules. The calcula-
tions of Ree and Bender, ?° unfortunately, point

to rather large non-pairwise-additive contributions
to the interaction energy of a collection of H,
molecules for intermolecular separations less than
4.5 bohrs. A many-body potential of the form given
by Eq. (14) may still be adequate, but then one
must replace ®;; by some effective pair potential
¢4, Ree and Bender suggest on the basis of

their calculations for a system of three H, mole-
cules that triplet corrections to the “bare” pair
potential ®;; may be adequate to give a ®$7 in fair
agreement with the phenomenological potentials
for intermolecular separations down to about 3.5
bohrs.

With an eye towards calculation of the properties
of the solid, the unfortunate aspect of these results
is that a rigorous theoretical determination of the
short-range part of the pair potential appropriate
to a solid is still to be accomplished, and is now
considerably more complex. It does not appear
that one can avoid performing ab iritio calculations
for three and perhaps more molecules. For ex-
ample, one might have expected that imposition
of appropriate symmetry constraints on an H,
calculation might improve matters. As an illustra-
tion, CI calculations for the linear H, system
permit an imbalance in the weighting of ionic con-
figurations for the inner with respect to the outer
atoms. In a solid with inversion symmetry, these
must have equal weight. However, agreement of
the Heitler-London results with the minimal-basis
full CI results for this geometry suggests that at
least in this case the matter of symmetry is not
important.

A comment should be made on the applicability
of the spherically averaged potential to calcula-
tions for the solid. Because of the small mole-
cular moment of inertia and the weak angular
forces, it is well known that at atmospheric pres-
sure, the H, molecules in solid hydrogen are es-
sentially freely rotating.?! As the solid is com-
pressed, however, the size of the anisotropic
component of the interaction energy continues to
increase, until eventually the molecules undergo
rotational oscillations about some preferred ori-
entations. Since the low-lying eigenfunctions of
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a free rotator are sizeable throughout much of
the angular phase space, in contrast to the more
localized eigenfunctions of a rotational oscillator,
a spherical average over the angular variables of
the interaction potential is expected to be a good
approximation in this limit. A rough criterion
for rotational behavior would be to require that
the barrier to rotation U, be considerably smaller
than, say, the J=1-3 (orthohydrogen) level spac-
ing of the free rotator,

U,<10%2/2 I =0.003 hartree ,

where J and / are, respectively, the angular mo-
mentum and moment of inertia of an H, molecule.
The overall angular variation of the interaction
potential as seen in Fig. 6 is already of this order
for intermolecular separations of about 5 bohrs.
Detailed calculaticns by Raich and Etters® place
the transition from rotation to rotational oscilla-
tion at densities corresponding to a near-neighbor
separation of about 4.7 bohrs. These results are
based on the exaggerated angular dependence of
the de Boer potential, and so it is likely that ro-
tational behavior persists for near-neighbor sep-
arations smaller than this. The molecular phase
is likely to be stable for intermolecular separations
as small as 3.5 bohrs, !” and so the spherical aver-
age is probably not always an adequate approxima-
tion for ground-state energy calculations. Ebner
and Sung, °2 in particular, have stressed the im-
portance of retaining the anisotropic interaction

in such calculations. It is felt that the spherical
average is justified for the high temperatures in-
volved in the shock experiments,’

As mentioned in the Introduction, one source of
interest in the short-range part of the H,-H, in-
teraction potential is the desire to accurately de-
termine the molecular-to-atomic phase-transition
pressure. Qualitative aspects of this problem are
evident in even the simple linear versus equi-
distant H, systems, whose energies are plotted
in Fig. 3. In this figure, one can identify a zero-
pressure atomic phase (interatomic distance
R/2=1.7 bohrs) that is unstable with respect to
the corresponding zero-pressure molecular phase
(intermolecular separation R =6.5 bohrs; the van
der Waals minimum is not visible on this scale).
At sufficiently high pressure, the atomic phase
becomes the more stable. A common tangent con-
struction even yields a reasonable transition
pressure,

P=AE/3R?AR=3.3x10"%a.u~1 Mbar,
where E is the energy per molecule and R is the

intermolecular separation. Turning to serious
calculations, we note that Neece et al.,® Hoover

et al., ' and van Thiel et al 3! have all used the
same atomic phase calculations® in their deter-
mination of the transition pressure. A glance at
the corresponding choices for the H,-H, inter-
action potential thus offers an idea as to the sensi-
tivity of the transition pressure to this choice.
The molecular pair potentials used are (see Fig.9)
the dotted curve, the upper bound to the shaded
region, and the dashed curve, respectively. The
corresponding transition pressures are 0.84, 1.7,
and 4.2 Mbar respectively. Trubitsyn® obtained

a transition pressure of 4.6 Mbar using a molecu-
lar pair potential within 20% agreement of Eq. (11)
(the dashed curve, Fig. 9) over the range 3-8
bohrs. If the non-pairwise-additive effects are
indeed as large as suggested by Ree and Bender,
then there is moderate agreement between theory
and experiment, pointing to a transition pressure
in the neighborhood of 4 Mbar, or larger.

Vi. SUMMARY

Extended-basis CI calculations which include a
diffuse 2p orbital appear to be capable of deter-
mining the total interaction energy between two
hydrogen molecules for any separation. Consis-
tent results among a number of such ab initio
calculations suggests that the potential is known
to better than 10% for intermolecular separations
ranging from 2.5-5 bohrs. For slightly smaller
separations, the composite H, bonds are likely to
become unstable. The angular variation of the in-
teraction potential in the above range is about 15%,
except for geometries approaching the linear ar-
rangement, in which case the potential may in-
crease by about 60%. There are not yet sufficient
data to determine the analytic form of this de-
pendence, although it appears to be of relatively
high order. Analytic forms for a spherical aver-
age over the angular degrees of freedom are
readily obtained. As a function of intermolecular
separation, such potentials fall off somewhat
faster than an exponential.

With respect to a pair potential suitable for use
in highly compressed liquid or solid molecular
hydrogen, the situation is somewhat more complex.
It appears that three-body corrections must be
added to the bare pair potential for intermolecular
separations between 3.5 and 4.5 bohrs, and that
at shorter separations even higher many-body
corrections may be necessary. Such corrections
lead to much improved agreement between the
ab initio calculations and analyses of shock experi-
ments, with the implication that the T =0 molecu-
lar-to-atomic phase transition in solid hydrogen
occurs in the neighborhood of 4 Mbar.
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