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By comparing the random-phase-approximation-with&xchange (RPAE) method of Amusia et al. for
the calculation of photoionixation cross sections from closed-shell atoms with the reaction-matrix
method, we obtain a simplified version of the RPAE by which we calculate the dipole-transition
amplitude much as in the reaction-matrix method, yet with ground-state correlation effects included

simultaneously. Calculation of photoionixation cross sections for the 3p ad transition of Ar and
4d af transition of Xe by this method yields a substantial improvement on the calculation by the
reaction-matrix method and good agreement with RPAE and with experiment.

I. INTRODUCTION

The photoionization spectra of the noble gases in
the far ultraviolet have been studied in the last ten
years experimentally and theoretically and have
served as critical tests of theoretical procedures.
For He and Ne, single-electron photoionization is
reproduced fairly well by the independent-particle
approximation. ' For Ar, Kr, and Xe, on the other
hand, qualitative discrepancies appeared between
experiment and the result of independent particle
approximations. Moreover, these discrepancies
were only reduced but not eliminated by calcula-
tions that improved only the continuum final-state
wave functions. ' A good qualitative and quantita-
tive fit of these spectra was first achieved by
Amusia et al 'through . RPAE calculations (random-
phase approximation with exchange) which intro-
duce a simultaneous improvement on the wave func-
tions of the ground state and the continuum states.
Similar resul, ts have been obtained by %'endin. '

This paper presents a simplified version of the
RPAE method (SRPAE), which allows one to cal-
culate the photoionization cross section in a way
similar to the more familiar configuratioo-inter-
action procedures, specifically to the reaction-
matrix method of Ref. 1, yet including an improve-
ment of the ground-state wave function. In Sec. II,
after a brief review of the reaction-matrix method
and the RPAE method, we discuss the similarities
and differences of the two approaches. It is then
shown how to develop a SRPAE method by making
approximations on the RPAE equations. The meth-
od utilizes an approximate prpperty of interaction-
matrix e1ements, which has been previously ap-
plied by Wendin. ' The formulas thus obtained have
a structure similar to those of the reaction-matrix
method, but with extra terms resulting from im-
proving the ground-state wave function simulta-
neously. In Sec. III, we use SRPAE method to re-
calculate the photoionization cross section for the

II. SIMPLIFIED VERSION

OF RPAE METHOD

The reaction-matrix method~' represents the
final-state wave function of the photoelectron-plus-
ion system as

++P ck " " B(E)) ())

In this equation, u« is a Slater-determinant basis
function of the many-electron system in an inde-
pendent electron approximation, with e the total
energy of the system, i the channel index repre-
sented by an appropriate set of discrete quantum
numbers; P indicates principal-part integration
over the continuum states and summation over the
discrete states. The coefficients I3in Eq. (1) are
determined by boundary conditions. " The matrix
elements K„&e(E)are obtained by solving

)'(„,„(z)=('„,„Qf d' V, ,„.
x [ P/( Ee')jK„,, (E), (2)

3P- ed transition of Ar and the 4d- ef transition
of Xe. In fact, this calculation is done using the
same residual interaction-matrix elements as
were used by Starace' in his calculation by the
reaction-matrix method. The substantial improve-
ment of the cross sections calculated by this meth-
od, demonstrated by the curves in Figs. 1 and 2,
manifests the importance of ground-state correla-
tion effect. The result is also compared with the
RPAE calculations of Amusia ef al. ' and with ex-
periment.
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is the residual. interaction that was disregarded in
generating the basis-set wave functions with model
potential Vrrs(&}; the summation in (4}extends over
all the electrons in the atom with nuclear charge Z.

If we assume that the core electrons remain un-
relaxed during the photoionization process, the
single-parti. cle wave functions of the core elec-
trons remain the same for the initial- and final-
state wave functign of the system. Under this ap-
proximation, Eq. (1) constitutes essentially an im-
provement of the photoelectron wave function. If
we use an "unimproved" ground-state wave func-
tion, i e , a .Sl.ater determinant (I)e of single-par-
ticle wave functions in the ground-state configura-
tion, then the dipole amplitude 8")(E)for transi-
tion to the channel i is given by

where d, s=((I)o~g, z, ~
u, s), with j summed over

all the electrons.
In this method, one usually generates the basis

function by solving a Schrbdinger equation with
the model potential V„s(r) tabulated by Herman
and Skillman. 7 These basis functions are then
used to evaluate the residual interaction-matrix
elements V„,z in Eq. (3) and the dipole ampli-
tudes d, z. After Eq. (2) is solved one can find the
dipole amplitude D'"(E) by doing the principal-
part integration in Eq. (5}.

The formulation of the RPA can be found in a
number of references' and is not discussed here.
In order to illustrate the close similarity between
the equations of RPA and of the reaction-matrix
method, we start from the formulas of Ref. 3
and use the name RPAE instead of BPA.' Ma-
trix elements analogous (but not identical) to the
K-matrix elements of Eq. (2) are called
(n, l„rrsl,([ I'I((d))~ nsl „n~l ) by Amusia et (r/. The
matrix elements satisfy the system of equations

which coincides with Eq. (18}of Ref 3, except fo. r
correction of several misprints. ln Eq. (6),
(n, l „n,1 , )) U, (( n,. i„s,l,) represents certain terms
of the matrix element of the Hamil. tonian between
states in which two el.ectrons have quantum num-
bers: (n,f„n, l, ) and (n,l„n, l,), respectively;
these terms include primarily the effects of 2'

pole interaction between these electrons. Also,
5 is an infinitesimal real positive number, the
summation is carried over all the intermediate
single-particle states that are present (n, «Jl) or
absent (n, & F} in the ground-state configuration of
an atom with closed-shell structure. The summa-
tion is understood to extend over all. hole states
and all discrete particl, e states and to include in-
tegration over all continuum particle states. The
Fermi step function n„,is defined as

=I, n~~E; g„=o,g &p, ( I)
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I'IG. 1. Photoionization cross sections of Ar.
(- ~-5-.- ~ ): SRPAE results of the present calculation;
(—~ —}:E-matrix results of Starace {Ref. 2};
(—~ ~ —~ —}' RPAE results of AxMsla 8t Ql {Ref- 3}
( }:experimental results of Samson {Ref. 14}.
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and the matrix elements (n, l „n,l, ll U, II s, l „n,I,)
are defined as in Eq. (19) of Ref. 3.

The radial part of the dipole transition ampli-
tude in the RPAE formulation is given by

(",&, II &II «*». ~ ( I
l j t&

1 /,
0 0 (2l, + 1}(2l,+ I} "'(s,l, ll dlln, f,)(n,f„n,l, ll r, (~) II n, f„n,l,)
1 I, (2l, +1)(2l,+I} &o-E„,+E„,+f5(l —2„)
0 0

which is identical to Eq. (21) of Ref. 3, except for
correction of several misprints. The radial di-
pole integral is defined as

&.,», &~I .&.&=-f ~.„,& &.&'....&"&",
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FIG. 2. Photoionization cross sections of Xe.
(- -6- -) SBPAE results of the present calculation
(—~ ——): E-matrix results of Starace (Ref. 2) ~

( ,': experimental results of Haensel (Ref. 15).

with P„...(r) the radial wave function of the elec-
tron.

In the RPAE method, a Hartree-Fock basis was
used to evaluate the dipole integral and the inter-
action-matrix elements (n, l „n,l, II U, II n, l „n,I,).
After Eq. (6) is solved for the r, (u&) matrix ele-
ments, one finds the radial dipole amplitude by
doing the integration in Eq. (8). In the numerical
calculations, a proper choice of the Hartree-Fock
basis functions is required. This is explained by
Amusia et a/. in Ref. 3 and is not discussed here.
It is to be noted here that Eq. (6) holds for arbi-
trary choice of the initial potential, irrespective
of the fact that a Hartree-Pock basis affords a
better first approximation. Thus Eq. (6} can still
be used when one starts from a central field ap-
proximation, like the Hermann-Skillman's tabu-
lated potential, with appropriate modification in
the definition of the matrix elements of U, . As
we have said, the reaction-matrix method pro-
vides a way to calculate the dipole transition am-
plitude D "(E) in Eq. (5), in which the final-state

wave function is improved, whereas RPAE pro-
vides a method to calculate the dipole amplitude
in Eq. (8) in which the final-state and the ground-
state wave function are improved simultaneously.
Roughly speaking, the difference in the equation
of the two formulations should be due to the im-
provement of the ground-state wave function. In-
deed Eqs. (6) and (8) are seen to include terms
which have no analog in Eqs. (2) and (5).

In order to clarify the notations we specialize
the general formulas (2), (5), (6), and (8) to the
single-channel 3P- Ed transition of Ar. For this
dipole transition, we set 1=1 in Eq. (6). The fac-
tor (21+ 1) in the denominator of Eq. (6) can be
eliminated by defining r&(&u) = r, (&u)/(2l+ 1) and U,
= U, /(2l+ 1). Specializing the hole state in Eq. (3)
to 3P hole and the particle states to ed states, in-
cluding nd with n & 3, Eq. (8} takes the form

(«II dll 3p)

d, («II ~II 3p) (3p«ll r, (~) II «3p)
cap 6 + Esp 25

d (3plldll «)(««Ilr, (~)ll3p3p)
C0+ 6 —E»+ l6 (9)

(edEdII 1,(&u) II 3p3p) =G, x.
If we express the photon energy co in terms of the
energy of the photoelectron E, we can rewrite
Eq. (9) as

d I, , „dG,,
~

~

8 —e —i5 E+e+ 2I~p
' (10)

where I» replaces E». The small imaginary num-
ber i5 drops out in the denominator of the last

where E is the energy of the photoelectron, E»
is the energy of a SP electron. The integral is
understood to include a summation over all the
discrete nd states.

Since we use a standing-wave representation for
the wave function in the continuum, we have
(«II ~ll 3p) =(3pll &II ed) =d, . To simplify the nota-
tion, we write

(3p«ll r, (~)ll ~d3p) = r, ,



term of Eq. (10) because this denominator never
approaches zero.

The integral equations satisfied by I', E and G, E
are obtained by rewriting Eq. (6) as

r, ,=(spzdII V, ll.dsp)+ (3P&'dll V, II «st}r, ', , d, , (stsPII V, II «e'd}G, ',
E —e' —i& E+ e'+ 2Eq

(,dEd V 3 3 ), d, , («~'dllV, llsusP)r'. s d, , («sfllU, llsPe'd)G, .s

The matrix element

(s,f„n,f, ll v, lls, f„n,f,)

is defined in Eq. (16) of Ref. 3.
In the reaction-matrix method, the dipole tran-

sition amplitude is written

dE+P dK E E —e de 1-imKE @, 14

where 1/(1 —iwKs s) is the normalization factor 8
of Eqs. (1) and (5). The K-matrix elements satisfy

K~A=V, E+P V, , K,. g E —e'

where

v, ,= (sp'~d 9 'I v«l 3P'zd'a')

with V„,given by Eq. (4).
Comparing Eqs. (10) and (14), we see they are

very similar, except for the last term of Eq. (10),
which does not appear in (14}. Similarly Eq. (11}
differs from Eq. (15) primarily through the occur-
rence of its last term. This term involves the in-
teraction-matrix element (spspll V, ll &de'd) corre-
sponding to virtual excitation of two ground-state
particles from sp to (ed, e'd), whereas the other
terms depend on interactions that replace one ex-
citation by another one. The inclusion of virtual
excitations of pairs of 3p electrons in the RPAE
equations means that these equations take ground-
state correlations into account while the reaction-
matrix method of Ref. 2 does not. The matrix
G, ~ has the main role of representing the effect
of these ground-state correlations. Indeed, if we
set 6,. s =0 in Eqs. (10}and (11}, then Eq. (10) re-
duces to Eq. (14}and Eq. (11) reduces to Eq. (15),
with I', E and K, ~ related by

1', = [K, /(1 —iwK )I .

This equivalence is proved by using the identity

lim(x —ia) '=Px '+iv6(x), as n-0' .

r, , = (spzdll V, II ~dsp}

de' E —e' —i6) ' —E+ e'+ 2I,~)
'

x(sue'dllV, II «3P)r, , s. (30)

To estimate the inaccuracy of Eq. (18), we note
that the first term of Eq. (13}is proportional to
the 9' integral of Fano and Cooper" which is a
generalization of Slater's G' integral to off-diago-
nal matrix elements. The coefficient in front of
the 9' integral is the largest among all the terms
in Eq. (13}. The term with 9' represents the ex-
change interaction between the excited electron
and all the elect~ons that remain in the ground-
state shell 3P'. As the numerical calculation of
Starace' shows, the 9' integral contributes more

In the comparison of the two methods, we have dis-
regarded comparatively minor differences between
the matrix elements V, , of the reaction-matrix
method and the corresponding elements of V, .

This comparison of RPAE and reaction matrix
equations has suggested to us a procedure for in-
corporating the main effects of ground-state cor-
relations in the reaction-matrix method. This
procedure rests on the fact that the matrix ele-
ment (3PSPII V, II ed''d) for virtual excitation of a
pair of ground-state electrons differs from the
matrix element (sje'd II U, ll eds&) for replacement
of a single excitation by an amount that is small
in the situations where pair excitations are im-
portant. The difference lies entirely in the P, ~

terms of Eq. (13), whereas the first term is domi-
nant and identical for the two processes. If we set

(sp'dll U, ll «sp) =-(sf sf II v, ll ~a d) (is)
in Eqs. (11) and (13), these equations become sym-
metric in I', E and G, E, and are solved by setting

~e. E Ge, E ~

where I', E satisfies



8IM P LIF I ED V E RSION QF THE RANDOM-PHASE. . . 185

than 85% of the magnitude of all the residual inter-
action-matrix elements of Ar and more than 80%
for those of Xe.

On the basis of the similarity between Eqs. (20)
and (15), we propose that for a single channel
problem, the ground-state correlation effect be
included in an ad hoc way by solving

K, ~= V, ~+P V, ,iK, i g E-e') dq'

(21)

instead of Eq. (15). The dipole transition ampli-
tude is then obtained by calculating

dg+ P cf~Rq g E —6

x(1-ivKs s) ' (22)

III. RESULTS AND CONCLUSIONS

The numerical procedure to calculate the photo-
ionization cross section by the SRPAE method is
basically the same as that used in the reaction-
matrix method, except for replacing Eqs. (14) and

instead of Eq. (14). We call our proposed method
SRPAE because Eqs. (21) and (22) are obtained by
approximating the RPAE equations. The calcula-
tion is to be done entirely by the procedure of the
reaction-matrix method. The advantage of this
approach is that one can obtain a much better nu-
merical result, as will be shown in Sec. III, with-
out spending as much computation time as in the
RPAE method. The importance of the ground-
state correlation effect can be evaluated by corn-
paring the results calculated by SRPAE and by the
reaction- matrix method.

The main Eqs. (21) and (22) of SRPAE rest on
the approximate Eq. (18), whose range of validity
is discussed in the paragraph following Eq. (20}.
Equations (21}and (22) are similar to Wendin's
Eqs. (3.7)-(3.9) of Ref. 4, except for a minor dif-
ference in the definition V, ,. By analyzing the po-
1.arization propagator diagrammatically, Wendin

argues that the interaction-matrix elements for the
final state and the ground state are exactly the
same, " that is, that Eq. (18) holds rigorously. We
have assumed Eq. (18) to hold only when the 9' in-
tegral dominates. In any actual calculations, the
magnitude of the residual interaction-matrix ele-
ments for the final state and for the ground state
depends on the choice of basis set. Whether or
not Eq. (18) holds probably depend on the basis
set also.

(15), respectively, by Eqs. (22) and (21). One
starts by generating the single-particle wave func-
tion from the SchrMinger equation using Herman-
Skillman potential. These wave functions are used
to evaluate the dipole-matrix elements d, and the
residual interaction-matrix elements V, , Then
one solves the integral Eq. (21). The dipole ampli-
tude is obtained by doing the integrations in
Eq. (22).

The methods for evaluating the residual interac-
tion-matrix elements V~,. and for solving the in-
tegral Eq. (21), which involves the principal-part
integration, have been discussed by Altick and
Moore" and by Starace. ' In this paper, we intend-
ed to use the matrix elements V, , and dipole am-
plitudes d, calculated by Starace' for the 3p- Ed
transition of Ar and 4d- Ef transition of Xe. In

fact, it was found feasible and most expedient to
introduce a further numerical approximation" for
V. . . namely, by factorizing it in the form

I e„'= g(e)g(e') .

No general arguments supporting the validity of
this assumption seem to have been advanced,
but the numerical values of V~,. calculated by
Starace, are approximated by Eq. (23) to within
5%. It should be noted that the approximation (23)
appears to be valid under the same circumstances
as (18), that is, when the 9' integral of Ref. 10 is
dominant. In fact the quasifactorability of 9' and
its physical origin were discussed on p. 486 of this
reference.

The main effect of the factorization (23), also
noted in Ref. 13, is that it permits an analytical
solution of the reaction-matrix equation. Substi-
tuting (23) into Eq. (21) we find

E-z E+ E+ 2I~~

for the K matrix elements. The corresponding
K-matrix element in the factorable approximation
has the same form, except for the absence of the
last term in the denominator of Eq. (24).

The photoionization cross section calculated by
the SRPAE method using Eqs. (24) and (22} are
shown on Fig. 1 for the 3P-Ed transition of Ar,
and on Fig. 2 for the 4d- Ef transition of Xe.
The results of the calculations by Starace' using
the reaction-matrix method are also given. By
comparing with the experimental results of Sarn-
son" for Ar and of Haensel et al."for Xe, we
find that the cross sections calculated by the
SRPAE method are much better than those ob-
tained by Starace without any ground-state corre-
lation. The improvement is substantial, especial-
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ly on the higher-energy side. Note that the re-
sults shown on the figures for both calculations
include the transition SP- Ed of Ar and 4d- Zf of
Xe only, whereas the experiments measure the
total cross sections. The agreement with experi. -
ment of the calculation by SRPAE method in Ar is
not as good as for Xe. This is probably due to the
limitations of RPAE itself, which assumes in es-
sence a high density of electrons in the shell to be
ionized; this density is higher for the 4d" shell.
of Xe than for the 3P' shell of Ar.

A comparison of the SRPAE results with the full
RPAE calculation by Amusia et a/. is possible.
%e plot in Fig. 1 the result of the RPAE calcula-
tion for Ar, but not on Fig. 2 for Xe, because in
the latter case the RPAE results of Amusia et al.
agree with our SRPAE results to within 5-10%
over the energy range considered. For Ar, the
results of the two calculations deviate from ex-
periment by approximately the same amount, but
lie on opposite sides of the experimental curve.
This probably results from differences in the in-
teraction-matrix elements used in the Wo calcu-
lations.

%e conclude that the SRPAE method provides a
simple and effective way to calculate the photo-
ionization cross section with simultaneous im-
provement of the ground-state and final-state wave
functions. Even though this method probably can-
not give better results than the complete RPAE
calculation, the simplicity of its numerical pro-
cedure should be emphasized; the SRPAE appears
to provide a simple way to calculate the dipole
transition amplitudes rather accurately when the
independent-particle approximation fails. The
SRPAE should be applicable as long as the 9' in-
tegral dominates the matrix elements of the resid-
ual interaction. Qeneralization of this method to
two or more channels is possible, ' but one has to
check the validity of the approximation first.
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