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The application of the macroscopic Maxwell equations to the resonant interaction of electro-
magnetic radiation and dielectric crystals consisting of molecules coupled via retarded di-
pole fields is investigated. The macroscopic fields are defined by space averaging over vol-
ume elements of linear dimensions 6 satisfying a «6 «A. , where a is the intermolecular
separation and A, the wavelength in tlacuo. The essential point of our method is the direct
derivation from the microscopic equations of a constitutive relation for a finite dielectric,
taking proper account of the radiation reaction terms and avoiding the use of an expansion
in powers of the molecular polarizability. The results lead to a simple interpretation of the
expressions for the internal fields derived by Vlieger along similar lines, and verify the
validity of the standard equations of dispersion theory to all points inside the medium a dis-
tance 6 away from the surface. The transmission and scattering of radiation at or near a
molecular resonance by media of over-all extent small and large compared to the wavelength
are discussed for sphere and slab geometries, and the effective natural linewidths are cal-
culated. The limits of validity of the constitutive relation are discussed, and the existence
of frequency regions where the macroscopic description breaks down due to the appearance
of large spatial variations in the dipole moments is pointed out. As an example of such
"antiresonant" behavior and of the role played by the higher-order radiation-damping terms,
the scattering of light from two interacting molecules is treated in detail. In the absence of
sufficiently strong dissipative damping, the occurrence of antiresonance is predicted to be a
general phenomenon giving rise to large oscillations in the scattering cross section even. in
the presence of spatial dispersion in a narrow region around the frequency where the ex-
pression for the macroscopic index of refraction diverges,

I. INTRODUCTION

The derivation of the Maxwell equations for the
propagation of electromagnetic radiation in a
macroscopic medium from the microscopic, or
Lorentz, equations is a problem of long standing
which over the years has been discussed in various
stages of sophistication. For an account of the
history of the subject and the present state of the
art, we refer to the well-known books by Rosen-
feld' and by de Groot. ' The purpose of our paper
is to analyze the special problems arising when
the frequency of the incident radiation is equal,
or close, to a resonance frequency of the mole-
cules constituting the medium. %e are interested
in particular in the resonant electromagnetic prop-
erties of a dielectric crystal at low temperatures,
which are governed by the radiative reaction
forces. Under such conditions, the resonant scat-
tering of radiation by large groups of molecules
gives rise to "superradiant" effects and to a natu-
ral linewidth many orders of magnitude larger
than for incoherent excitation, as first pointed out
by Dicke. '

For systems containing N molecules with an
over-all size small compared frith the wavelength
of the incident radiation, the N molecules behave

as one big molecule with a "giant*' dipole moment
and a radiative-damping constant equal to N times
that for a single molecule —although, as we shall
see, the incident field can also excite modes of
a quite different kind in spite of the fact that it is
almost uniform over the system. The original
motivation for the present work was to obtain an
expression for the natural linewidth of a molecular
resonance in a crystal as a function of the shape
and the over-all size of the crystal, in particular
for systems which are large compared with the
wavelength, the case of practical interest for
frequencies in the infrared and visible region.
This problem was discussed previously for a
linear chain of molecules' for which a complete
solution can be obtained in terms of the normal
modes of the system. For a chain small compared
with the wavelength, the natural linewidth is pro-
portional to the number of molecules in the chain
(or, for a given spacing, to the length of the
chain), whereas for a long chain the width tends
to a constant value roughly equal to the number of
molecules on a wavelength times the width for
incoherent excitation. The problem of obtaining
similar results for three-dimensional systems is
more difficult because a treatment in terms of
the normal modes of the system is not practical.
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The study of this problem naturally led us to the
investigation of the validity of the macroscopic
equations in a dielectric for frequencies at or near
a resonance frequency of the constituent mole-
cules, and for points inside the medium a distance
of the order of the wavelength or less from the
boundary of the system. Zaidi' has recently dis-
cussed the natural linemidth, on the basis of the
macroscopic equations, for a gaseous system
of spherical external shape large compared with
the wavelength. His mork mill be discussed further
in Sec. VII.

Lorentz introduced the idea of obtaining the
macroscopic fields by averaging the microscopic
fields over "physically infinitesimal" volume
elements. Three lengths enter into the problem:
the average separation between the molecules,
or the lattice spacing, a, the linear dimension
of the volume elements over which averages are
taken, ~; and the wavelength in vacu0 corre-
sponding to the frequency of the incident radiation,

For the validity of a macroscopic description
it is necessary that these quantities satisfy the
inequalities

a c& g &&g,

A detailed exposition of the application of the
Lorentz method of averaging to the theory of dis-
persion, based on Hock's work, ' can be found in
Rosenfeld's book. ' In addition to the conditions
(1), this "rigorous theory of dispersion" also
involves the assumption that each volume element
of size h can be surrounded by a sphere mith a
radius of order A. which lies wholly within the
medium. This condition limits Hock's proof of
the validity of the macroscopic equations to points
inside the medium at least a distance of order A.

away from the boundary of the system. For fre-
quencies sufficiently far removed from resonances,
this restriction poses no problem at infrared and
visible frequencies, although it is clearly un-
desirable for microwave and radio frequencies.
However, at or near a resonance, the macro-
scopic fields ean vary appreciably over distances
of the order of magnitude A. at the boundary, and
the adequacy of a macroscopic description has
therefore not been established for such problems
by Hock's analysis. Vlieger' has recently given
an improved derivation of the macroscopic equa-
tions based only on the conditions (1}and avoiding
the expansion in powers of the polarizability em-
ployed by Hock, which is also questionable at or
near a resonance. Vlieger's derivation is based
on a transformation of certain lattice sums in-
volving the retarded dipolar fields according to
the method of Nyboer and de %ette. ' Unfortunate-
ly, this method is rather cumbersome for the

present problem, and the physical interpretation
of the resulting expressions (especially those in-
volving sums over the reciprocal lattice), is ob-
scure, but will be clarified in this paper. %e
present here an alternative derivation, employing
Russakoff's method' of introducing a smooth meight
function of range ~ to carry out the required aver-
aging, but avoiding entirely the transformation of
the lattice sums into strongly convergent ones.
This goal is accomplished by deriving directly
an expression for the constitutive relation between
the macroscopic field E(R) and the polarization
P(R), rather than first deriving an equation for
P(R} alone, which is the standard method. The
integral equation for T(R) is obtained by com-
bining our constitutive relation with the macro-
scopic Maxwell equations which follom immediately
on the basis of Russakoff's averaging procedure. '
The expressions we derive admit of a very simple
physical interpretation, and Vlieger's lattice
sums are shown to reduce exactly to our simple
expressions. Finally, it is apparent from our
derivation that the constitutive relation is correct
at all points within the dielectric except in a
surface layer of thickness s, where h satisfies
the inequalities (1), which is negligible on a
macroscopic scale.

A different method of deriving the macroscopic
equations mas pioneered by Mazur and Nyboer, "
who averaged the microscopic field at a given
point in space with the help of a statistical dis-
tribution function. For a gaseous or liquid system
the resulting average is a smooth function of posi-
tion and time, which can be identified with the
corresponding macroscopic quantity, and for such
systems this method is appropriate. However,
for a solid the statistical average of the micro-
scopic field at a given point is still a strongly
varying function of position within the unit cell,
and to obtain the macroscopic field an additional
space average over a unit cell must be performed.
Thus for the problems of interest here the statis-
tical method offers no advantages.

Fundamental to the concept of describing the
electromagnetic properties of a macroscopic body
by a macroscopic theory based on field averaging
is, of course, the assumption that the dipole mo-
ments induced by the extern' field vary little
over distances of the order of magnitude ~. In
the opposite case, the macroscopic polarization
P(R) cannot be expected to give an adequate de-
scription of the properties of the system, just as
the over-all magnetization M(R} does not adequate-
ly describe the properties of an antiferromagnetic
system. %e shall demonstrate the possibility
that in a, resonant dielectric, in the absence of suf-
ficient real damping, the dipole mo~nents attain a
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staggered, or antiferromagneticlike, arrange-
ment at certain frequencies. For want of a better
term, we call this behavior, where the dipole
moments vary greatly over a few lattice spacings,
antiresonant. On the basis of a microscopic ex-
ample, we predict that for pure radiative damping
there always exist frequencies where such anti-
resonant behavior occurs and where the macro-
scopic description of the response of the system
breaks down.

In Sec. II we discuss within the framework of
semiclassical radiation theory the form of the
molecular polarizability at frequencies where
radiative damping is important. In Sec. ID we
present our derivation of the constitutive relation
for a simple dielectric crystal. This is combined
in Sec. IV with the macroscopic Maxwell equations
to yield the dispersion integral equation and the
Lorentz-Lorenz relation. In Sec. V the limits of
validity of the macroscopic theory are discussed.
The resonant and anitresonant scattering from a
pair of interacting molecules is treated in Sec.
VI. The scattering from macroscopic resonant
dielectrics in the form of a sphere and a slab
is discussed in Sec. VH. Finally, in Sec. VIII
some concluding remarks are made.

Il. RADIATION DAMPING AND THE MOLECULAR

POLARIZABILITY

For an isotropic harmonic oscillator of mass
m, charge q, and resonance frequency w„ the
equations of motion in the presence of a given
external field e(f} are'

~I ~ rr

m (r + ver —y r ) = qe(t),

where

y = (2q'/Smc')

(2)

is the radiation-damping constant. Equation (2)
can be interpreted in two ways. As written, the
term mar in Eq. (2) is regarded as the radiative
damping force, the nature of which, just as for
the elastic force -mes,'r, is not indicated explicit-
ly. However, this damping force is, of course,
always due to the electric field created by the
charge q itself, the self-field, and Eq. (2) can
therefore also be written in the equivalent form, "

~ ~

m(r +m,'r) = q[e(t} +e,], (4)

where
~ ~ ~

e„=(2q/Sc')r

is the radiative part of the self-field. The part
of the self-field in phase with the oscillator gives
rise to a self-energy which is assumed to be
eliminated by renormalization. Thus in Eq. (4)

a& y
(do —(d —iyu

(6)

When this same dipole moment is calculated from
Eq. (4), one obtains

u (~) = o,(~)(e, +e„),

where

a& y

0

The expressions (7) and (9) for the induced dipole
moment are identical, and the two polarizabilities
are connected by the equation

a(&u) '= u, ((u) '--,'i((u/c}'.

The validity of this relation is not restricted to
a harmonic oscillator but is generally valid.

We now consider a molecule in its ground state
~a) having excited states

~
6) with excitation en-

ergies ~„=F., -E, and interacting with the elec-
tromagnetic field through the electric dipole inter-
action. In the presence of an external field e(t),
given by Eq. (6) and switched on adiabatically in
the past, the state of the molecule at the time t,
~t), can be obtained by standard perturbation
theory from the Schrodinger equation

ih —„~t)=[H,—p (e+e„)]~t),

where 0, is the Hamiltonian of the free molecule
and e+e„ is the total field at the position of the
molecule and is equal to the sum of the external
field and the field produced by the molecule itself. "
In the approximation of semiclassical radiation
theory, we replace the self-field by the field cre-
ated by the expectation value p(t} = (t jg ~ t) of the-
dipole moment in the state ~t) This field con.tains
a part in phase with p(t) which we assume to be
eliminated by renormalization, and a radiative
part which has the value

e„= (2/Sc')p(t)

one regards the oscillator as undamped but acted
upon by the total field equal to the sum of the ex-
ternal field and the sen-field.

Corresponding to the two ways of writing the
equation of motion, one can introduce two polariz-
abilities, n and e,. For a harmonically varying
external field of frequency w,

e(t) =Re[e,e ' '],
the steady-state amplitude of the dipole moment
obtained from Eq. (2) is given by

g(a}= n(~)e„
where
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(14)

at the position of the molecule. Performing the
perturbation calculation on Eq. (12), we obtain
for the Fourier amplitude of g(t),

g(&) = o, ((d)[e, +3ik'}(,((d)],

In general the value of y depends on the boundary
conditions at large distances from the molecule.
%e will always assume boundary conditions ap-
propriate for free space.

() eg, f(
8 h eh

(15)

u((u) =- f0
M~ 4PO —GO —ZQQP

(18)

where y is given by Eq. (3) with (q /m) = (e'/m, )fo,

y = (2e'/3m, c')f, . (1&)

%e note that for a multilevel system the polariz-
ability a(~) is not equal to a, sum of terms of the
form (18), but is given by Eqs. (11) and (15). For
such a system it is often a good approximation to
assume that near a resonance the quantity a, ((d) is
equal to

o(,(ur) = o„+—
0

where a„ is the contribution from the high-fre-
quency resonances, which may be assumed, to be
constant. The corresponding polarizability a((e} is
given by Eqs. (11}and (20) and is not equal to a
constant term plus a resonance term of the form
(18). Finally, we remark that it is, of course,
possible to introduce in a phenomenological way the
effect of dissipative processes, such as phonon
damping, by including a term -i(dI" in the reso-
nance denominators of c(0(u).

The expression (19}for y is appropriate for a
single molecule located in empty space, which ean
freely radiate. It is also correct for a system of
molecules in empty space, provided one calculates
the dipole moment induced in a given molecule by

multiplying the polarizability n by the local field
at the molecule, which is equal to the external
field plus the field due to aQ the other molecules.

and f„is the oscillator strength of the resonance
defined by

(e'/m, }f., = (2~„/g)1(k I ~ ln& I', (16}

e and m, being the charge a,nd mass of an electron.
We have assumed for simplicity that o(,((d) is iso-
tropic. The result (14) can also be written in the
form

p(~) = o(~)e. ,

where u(~) is related to a, (&u) by Eq. (11).
For a two-level system there is only one reso-

nance at ~, =(d„. From Eqs. (11) and (15) we get
for such a system

i, ( )= ( )( ( K)+){P' ( ))R{,) w, ( ),

where the prime indicates j~ j, and

F(R( —Rq) ~ p, q
= V( xV( x (p)e('e (g/fthm, )),

is the total electric field at R, due to the dipole

p, and R, . We have set 8„=~%„.), R„=%,-%„
and k = ((d/c). Following Russakoff' and Vlieger, '
we define the macroscopic polarization 0(%}by

(23)

P (R) = f a(){'- R) p g, {){){'—R ) d%'

= Q a(R, -R}p, , (24)

where n.(R' -R) is a suitable w eight function satis-
fying the normalization condition

6(R' —R) dR' = 1 (25)

and having a width A satisfying the inequalities
(1). Our derivation is independent of the exact
shape of the function a(R' —R) and it is not neces-
sary to assume a specific analytic form for this
function. From Eqs. (22, ) and (24), we obtain for

III. DERIVATION OF THE CONSTITUTI VR

RELATION

%e consider a finite, three-dimensional crystal
of arbitrary shape, consisting of N identical mole-
cules fixed at the sites R, (f = 1, . . . , N) of a si.mple
Bravais lattice. The volume of a unit cell is
denoted by g and the number of molecules per
unit volume by p, so that pal=1. %e also define
a length a of the order of magnitude of the lattice
spacing, by the relation v =g'. The molecules are
characterized by an isotropic polarizability o((~},
as discussed in Sec. II, and interact with each
other only via the retarded dipole-dipole inter-
action. The effect of interactions of shorter range
will be briefly discussed later.

In the presence of an external field of definite
frequency &,

Eo(R, t) = Re[EO(R)e '~'] (2&)

the amplitudes p, , ((d) of the dipole moments induced
in the molecules in the stationary state corre-
sponding to the presence of the field (21) satisfy
the "molecular" equations'
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interior points R at least a distance ~ inside the
surface,

o 'P(R) =pER(R)

+ Q n(R, —R) Q' F(R, —R, ) Id, ,

(26)

where we have used the condition k~ «1 in the
first terme

The essential point of our method is not to evalu-
ate the right-hand side of Eq. (26) directly, but to
consider first the corresponding expression for
the macroscopic E fieM in terms of the appropriate
molecular quantities. Let e(R) be the microscopic
(Lorentz) field at the point R due to all the mole-
cules. The field e(R) is defined both outside and

inside the molecular charge distributions. The
limit to point molecules will be taken at the ap-
propriate stages of the derivation. In terms of the
field e(R), the macroscopic (Maxwell) field is
given by

R(R)=R, (R) Je(R'-R)e(R')dR'.

One may also average the incident field and regard
the first term in Eq. (27) as an approximation
which is then exactly equal to the first term in
Eq. (26). However, we prefer to regard the in-
cident field as a macroscopic field and to define
the Maxwell field E as in Eq. (2'I). Since n «n,
we may write Eq. (27) in the form

E(R) = E,(R) + U g ~(R, —R)e,„(R,),

where e,„(R,) is the unweighted average of e(%)
over a ce11 of volume g surrounding the point R, .
The cells are chosen in such a way that in an in-
finite crystal they would fill out all of space. For
convenience we choose W'igner-Seitz cells cen-
tered at the points R„and we write

e,„(R,)= f e(R, +r, )dr, ,
0

where r, is a position vector relative to R, as
origin, and the integral extends over the ith cell.
Let e, (r, ) be the field in cell i due to the charge
distribution of the molecule i in that cell, the
"self-field". Then we can write

re,„(R,)=J,(r, )dr,
0

+ Q' F(R, +r,. - R, ) ~ )(,, dr, , (30)
0

where in the second term we have taken the limit

to point dipoles. Our main problem is the evalua-
tion of the terms in the right-hand side of Eq; (30),
which can be done in a straightforward way using
only the conditions (I).

The evaluation of the self-field term in Eq. (30)
is facilitated by introducing the Hertz vector of
the field produced by the molecule. For a general
charge-current distribution, we introduce the
polarization potential p(r) by writing

R

p(r) = -& - p(r), I (r) =p(r) . (Sl)

and the electric component of the field is given
by

e(r) = V x g xII(r) —4mp(r) . (33)

For the total dipole moment p, of the charge dis-
tribution p(r), we obtain by partial integration

rp r)dr= p r)dr,

The Hertz vector outside the charge distribution
of a source having only an electric dipole moment
is given by the point-dipole approximation

rl(r) =(e""l~)p. (35)

To calculate the integral of the self-field over
the %'igner-Seitz cell, we inscribe a sphere in
cell i with R,. as center and touching the nearest
faces of the cell. When the limit to point mole-
cules is taken, the radius of this sphere may be
taken arbitrarily small, the only condition being
that the molecule lies wholly inside the sphere,
so that Eq. (34) can be used. For finite molecules
it is least restrictive and hence preferable to
choose as large a sphere as possible and this we
will do. The volume of this sphere is denoted by

%'e split the integral over the cell appearing
in the first term in Eq. (30) into an integral over
the sphere and an integral over the remainder of
the cell,

r
V V $ V

e, (r) dr= e, (r) dr+ e,.(r) dr,
0 0 VS

(36)

where we have replaced r,. by r for notational con-
venience. Using Eq. (33) for e, (r), and assuming
that the central molecule lies wholly within the
sphere, we obtain

J e, (r) dr = dSx{vxII) -4((g, .
0 V

The Hertz vector produced by this charge-current
distribution is

~~air -r'I
II(r) =,- -,

~

p(r') dr',
~r -r'
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where dS is an outwardly directly surface element
on the sphere. Using the point-dipole expression
(35) for the Hertz vector on the surface of the
sphere, we get

V

e, (r) dr =x3ve'""&(1 —ikr, }g,—4vp, ,

The tensor s depends on the shape of the Wigner-
Seitz cell of the crystal but need not be evaluated,
since it will be cancelled by a similar contribution
coming from another source [cf. Eq. (62}]. Col-
lecting the above results, we obtain the following
expression for the integral of the self-field over
the Wigner-Seitz cell:

where r, is the radius of the sphere. Since kr,
& ka «1, it is normally sufficient to retain only
the first nonvanishing terms in the real and imagi-
nary parts in Eq. (38) in an expansion in powers
of kr„giving

V

e, (r) dr = --,'wg, +-', ik'u, g, .

Under exceptional circumstances the approxima-
tion (39) is not adequate and one must then go back
to the full expression (38), as will be discussed
in Sec. VI.

The second term in Eq. (36} in the limit of a
point dipole is equal to

I
V

e, (r, ) dr, = -~svp, +-,'ik'ug, -ques p, ,
0

The imaginary term in Eq. (4V) represents the
retarded component of the average field in the cell
and gives a, significant contribution to the macro-
scopic field, as will be shown presently. In gen-
eral, it is therefore not sufficient to consider
only the contribution of the "near" or "static"
field from the oscillating dipole in its own cell
to the macroscopic field.

We now turn to the evaluation of the second
term in Eq. (30). The quantity

d(r, }= Q' F(R +r. -R.) ~ p

(40)

To first nonvanishing order in an expansion in
powers of kr of the real and imagninary parts, we
have

is the field in cell i due to the dipoles g, lying
outside this cell. We introduce a sphere S with

R, as-center and a radius of the order of magni-
tude a satisfying Eq. (1}, and we split the sum
over j in Eq. (48) into two parts, corresponding
to the dipoles inside and those outside of S:

F(r) ~ p = T(r) ~ p+fik'p, +. . . , (41)

where

T(r) ~ p = p x g xr 'p, (43) For the dipoles outside of S, we have

is the unretarded dipole field. This field can be
expressed in terms of the dipole potential p~, l r, /ft, l

& a/n «1,

T(r) g = -vy„= -V(r 'p ~ r) .

Using Eqs. (41) and (43} in (40}, we obtain

(43) and one may therefore assume that the field due
to these dipoles is uniform over cell i, so that

I
i»

~ ~ ~ ~~
~

~ 3
s ~

s
~ ~

V

e,.(r) dr =-', ik'(u —u, ) — y, ds+ y, ds.
VS V V

p&S

F(R( +r —R.) p. = Q F(R —R ) ~ p

(49)

(44}

The surface integrals depend only on the shape of
the surfaces and not on their size. For the sphere
we have

in the limit ka «1. We note that the retardation
of the field due to these dipoles is fully taken into
account in this limit. For the dipoles inside S
we have

k

liter

+r, —Ry I+ kn «1
Qg dS=3mp, y

"s

and for the cell we define a tensor s such that

Q~ dS = 31Tp. +~PS jJ. .

(45)
for all values of r, within cell i. For the fields
due to these dipoles we may therefore use the
approximation (41}for F(R, +r, —R&}. For con-
venience we first split-off a term FC,R, -R,.), and
we obtain
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p F(R +r, - R ) q~ = g ' F(R, -R ) [[,+ p [T(R, + r, —R, ) —T(R, —R, )] [,
j&f f&8 f&8

' F(R[ —Ry) g) + Q vs X Vs x
f&S r+R, (50)

By expanding the quantity
~
r+R, ~ ~

' in powers
of r, we see that the last term in Eq. (50) falls
off at large values of R, f as g,~'. %e may there-
fore replace the sum over the dipoles inside S
by an unrestricted sum, giving

F R~+rf -Rf
j&$

= Q' F(R -R.) ~ p + Q'[T(R, +r,. -R, )

Since G(R, —R&) is short ranged, the function
a(R, —R) is essentially constant in the sum over
i and may hence be replaced by b, (R& —R). It can
then be combined with g, to give P(%), so that

Q A(R, —R) Q'G(R, —R))

= Q yah(R~ —R) Q ' G(R, —R ) = S ~ P(R),

+ Q ' [F(R, —R, ) +G(R, —Rq)] ~ pq, (52)

where the quantity G(R, -R, ) is defined as

G(R, -R, ]= -' f [T[R, +i, -R,]

—T(R, -R)}]dr, , (53)

which is clearly a function of R„.= R, —Rf falling
off at large values of B,j as g, ~4.

We now substitute the result (52) into the Eq.
(28) for the macroscopic field, giving

E(R) = E,(R) +(--',v+-', lk'v --,'[[s )%(%)

+v Q z(~, -R) Q'[F(R, -R, )

+G(R, -Rq)] ~ p.q.

—T(R,. —R,.)] ~ p

(51)

It should be noted that the imaginary terms coming
from using Eq. (41) in Eq. (50) have not been ne-
glected but cancel out. Substituting the results
(4I), (49), and (51) into Eq. (30), we obtain the
following expression for the average of the micro-
scopic field over cell i:

2 ~ 3 4
eg„(R[) = —gawp)[, [ + p1k p[ —g7I[[[s ' [[,

where S is defined as

S = P G(R, - R, ) = P G(R, - R, )

I v

=v '
J' g'[T(R,. +r,. -R,.) —T(R,. -R, )]dr, ,

0

(57)

and is independent of Rf for points within the
medium at least a distance s from the surface.
The step involved in Eq. (56) is an essential one
in making possible a description in terms of the
macroscopic polarization %(R) and will be dis-
cussed further in Sec. V. Note that this step can-
not be carried out in the third term in Eq. (54)
containing the long-range function F(R, —R,). This
term will now be eliminated by using Eq. (26) for
P(R). Performing this elimination we obtain the
desired constitutive relation between the macro-
scopic fields X(R}and P(R},

pE(R) =(o-' 'ii+'--', vp--', s. v+S )P(R)
4= (a, --,vp --,wps ~ +S ~ }P(R), (58)

where we have used the relation (11) between u
Qo.

Before discussing the relation (58), we first
derive an alternative expression for the quantity
S, which according to Eqs. (53) and (57) is given by

In the last term„we interchange the order of the
two summations,

Q a(R, —R} Q' G(R, —R~) ~ p. ~

= Q p, )
~ Q'a(R, . —R)G(R, —Rq). (55)

' Q' I [T]R, ~, —R, ) —Y(R, —R)]d, . ,
0

(59)

The sum over j of the difference of the two T
terms in Eq. (59}converges unconditionally and
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- U
' iim p ' T(R, -R, ) .

j&s
(6o)

To facilitate the evaluation of the first term in
Eq. (60), we introduce a "dummy" dipole mo-
ment p, and observe that the quantity T(R, +r,- R,. ) ~ y, is the field due to a dipole g at R, at
the point r,. in cell j. This field is equal to that
created by a dipole p, at R, at the point r, = r, in
the cell at R, , where %, -0, = —(5,. —R, ), i.e. ,
the pair of cells j ', i is obtained from the pair
i,j by a Lattice translation over the distance
-(R, -R, ). We therefore have that

V

T(R, +r, -R, ) dr,
0

TtR, +F, —R, )d i.
0

= p J v(R, +, -R, ) ur,
0

T R-R, ) dR,
V

(61)

where the Last integral extends over the sphere
S, excluding the ceB i at the center. This integral
can be evaluated in the same way as eras done
in Eq. (46), and the result is

where s is the same quantity as in Eq. (46). Using
the results (61) and (62) in Eq. (60}, we get

S = 3mps +K, (63)

where

K = lim P ' T(R, —R,. ) .
j&S

Using the result (63) in Eq. (58), we obtain the
final form of the constitutive relation,

pE(R) = [o ' + ',ik' --,wp —K ~ ]P—(R)

= [n, ' -p p -K ]lf (%) . (65)

may be carried out in an infinite crystal, but the
sums of the hvo separate terms do not. To make
the values of these separate sums definite, we
surround the point 8, by a sphere S of volume
V„restrict the sums over j to the points lying
inside j, j &S, and take the limit V,-~. In this
may we obtain

S = v ' lim Q ' T(R, +r, —R, }dr,&s~ j&$ 0

To interpret this relation we rewrite it in terms
of the average dipole moment of the molecules
at the point R defined by P(R) = pp, ,„(R), giving

g« = u[E+SwP+K p» —',ik—p «]. (66}

For a static field (0 =0), the last term vanishes
and the first three terms in the brackets can be
interpreted as the average Local field at a mole-
cule,

E~, = E+~mP+K. p.,„. (6

The first two terms give the field in a spherical
cavity around the central molecule, and according
to Eq. (64) the last term gives the field due to
dipoles g,„(R) placed on the lattice sites inside
the spherical cavity. This term vanishes for
lattices with cubic symmetry but does not vanish
for Lovrer symmetry. Because of the rapid conver-
gence of the lattice sum in Eq. (64), the limit to
infinite radius of the spherical cavity can be satis-
fied even for a physically infinitesimal spherical
cavity. Thus, Eq. (6V) is seen to agree exactly
arith the standard result for the local field ob-
tained by more heuristic arguments. For k0,
we see from Eq. (60} that the expression for the
local field is the same as for the static case ex-
cept for the additional term --', iA'p. ,„, the effect of
which is clearly to remove from the macroscopic
field R the average contribution of the field ra-
diated by the central molecule. This contribution
must be removed because the polarizability n
already contains the effect of the radiative self-
damping of the molecule. One can write Eq. (66)
in the alternative form

g,„=a, [X +gr P+ K ~ p,„],
where o.,(&u) is the polarizability of the molecule
in the absence of the self-damping. Although the
quantity o, (&u) becomes infinite at a resonance fre-
quency, the dipole moment obtained from Eq. (68)
remains finite by virtue of the contribution of the
self-field to the macroscopic field X. The fact
that the dipole moments remain finite is more
directly evident from Eq. (66}, a(&u) being finite
at all frequencies.

%'e close this section by making a few remarks
about the region of validity of the constitutive rela-
tion (65) derived here and discussed further in
Sec. V. First of all, Eq. (65) is valid at all in-
terior points at least a distance h away from the
surface. Since ~ is infinitesimal on a macro-
scopic scale, Eq. (65) is a valid macroscopic rela-
tion throughout the dielectric, even if the fields
vary appreciably in a surface layer of thickness
of order A, , or if the over-all size of the system
is of the order of, or smaller than, A. but, of
course, large compared to A. Secondly, our
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derivation of Eq. (65) is not based on an expansion
in powers of o.(+), and hence is expected to hold
for all frequencies and for arbitrary values of
n(~). However, this is not actually true, and
for the model of the resonant dielectric considered
here, the constitutive relation (65) is valid at all
frequencies only in the presence of a sufficiently
strong real damping, as will be shown in more
detail in Sec. V.

D =E+4mP =e ~ P . (VO)

The tensor e is diagonal, e,&=a,5,&, in the same
frame in which the internal field tensor K, de-
fined by Eq. (64), is diagonal, K„=K,5,~. Using
this frame, and reverting to the time Fourier
transforms of the fields, we obtain from Eqs. (65)
and (70},

c, —I 47t

+2 3
=—p(o. '-K ) '. (71)

For a crystal with cubic symmetry, we have

K, =0, and the relation for z,. =e then reduces to

4m

6 +2
=—PQ

From Eq. (69) it can be shown by standard meth-
ods that the fields E(R) and P(R} set up in the
medium by the external field (21) are related by
the equation

E(R) = Eo(R) —
+3vP (R) +E~(R), (V2)

where

E (R) = „F(R—R') P(R')dR',
c {%)

the integration being over the entire medium ex-
cluding an infinitesimal sphere around the point R.
Neither the Maxwell equations (69) nor the inte-
gral equation (72) contains a,ny information about
the constitutive relation characterizing the prop-
erties of the medium. We can obtain the integral
equation for P(R) alone by eliminating E(R) be-
tween Eqs. (65) and (V2), giving

IV. MACROSCOPIC INTEGRAL EQUATIONS
AND THE LORENTZ - LOREM RELATION

The macroscopic fields P(R) and E(R) defined by
Eqs. (24) and (27), respectively, can be easily
shown' to satisfy the Maxwell equations, which for
the dielectric systems considered here take the
following form:

E=-4m' P v B=O
(69)

.cgxH =E+4mP, coax E = B

where H =B. We define as usual

n-1 4m

n+i=3 ~ '
Let us first compare Eq. (74) with the standard

result as given by Hosenfeld, "which in our nota-
tion reads

(n, ' —+ik' —D ~ )P (R) = p[E, (R) +E„(R)],

where

D pti)= J" gt. )i(R-H') p(R')dR',
r {R)

(76)

where r = ~R —R'(, and g(r) is the pair correlation
function. For a crystal, the real and imaginary parts
of D reduce to K and -~3ik', respectively, and Eq.
(76) then reduces to Eq. (V4). For a perfect gas,
on the other hand, one has g(y) =0, and hence D =0.
The remaining imaginary term on the left-hand
side of Eq. (76) gives rise to an imaginary part
in the dielectric constant e and hence to the ap-
pearance of extinction in the solutions of the mac-
roscopic equations (69) and (76) even in the ab-
sence of any real damping (I'=0, n, real). This
extinction is due to the energy dissipated by the
radiative reaction forces, which is found back in
the real system in the diffusely scattered light.
However, in the macroscopic theory as given by
Eqs. (69) and (76), this scattered radiation is ab-
sent and only the scattered field due to diffraction
is obtained. In general, the macroscopic theory
therefore does not satisfy the law of energy conserva-
tion. In spite of this defect, the extinction of the radia-
tion due to the diffuse scattering is given correctly
by the macroscopic equations. The diffusely scat-
tered field has a random phase due to the thermal
motion of the molecules, and its average value at
any given point in space and time therefore van-
ishes and does not make any contribution to the
macroscopic field defined as E = (e), where the
brackets indicate a time or ensemble averaging
appropriate for a fluid system. " For the diffuse
component e~ of the microscopic field, we have

(e,) =0, but (e, e,)o0. We remark that it is not

(n-'+&fa'-K )P(R) =(~ -K )P(R)

=p[E,(R)+E,(R)j.

This is the basic integral equation of dispersion
theory, from which the extinction theorem and the
Lorentz-Lorenz relation may be derived in the
usual way. ' This is a specific example of the more
general result that the extinction theorem is con-
tained in the Maxwell equations and the constitutive
relations, as has rec ently been shown by Sein and
others. " We-can therefore identify the index of re-
fraction with n =e' ', and for cubic symmetry we
thus get
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correct to maintain that diffuse scattering is an
exclusively microscopic phenoxnenon, since the
intensity of the scattered light is certainly a mac-
roscopic observable, just as, for example, the
contribution of the thermal motion of the molecules
to the total internal energy in thermodynamics.
For a more detailed account of the phenomenologi-
cal description of diffuse light scattering in the

macroscopic theory we refer to the literature. '"
We now compare our result (74) with the corre-

sponding equation derived by Vlieger, ' which in
our notation reads

The quantity 0 is given by

(79)

6= lim g" T, (r~}=-K,
X&S

(81)

as is shown in the Appendix. The only difference
between Eqs. (74) and (78) is thus the radiation
damping term -&ik in the first member in Eq.
(74), which has been neglected by VLieger, but
which can be obtained in his formalism by retain-
ing the appropriate higher-order terms. "

V. LIMITS OF VALIDITY OF THE
MACROSCOPK EQUATIONS

Assuming for simplicity a molecular polariza-
bility of the resonance form of Eq. (8), with a
dissipative damping term I' added,

pC ya((o) =
&0 —m -iv y-i(dl"' (82)

we obtain from Eqs. (11) and (76) the following ex-
pression for the Lorentz-Lorenz relation for a
crystal with cubic symmetry,

—1 2'Fpc y
n'+2 u)o' —~' -s

The corresponding susceptibility y is given by

(ss}

where
4m (d', —cu' -i~E' '

N~ =%0 -2WpC y
2 (85)

is the "susceptibility" resonance frequency result-

where K~ =2vk~ is a reciprocal lattice vector, and

T, (r) =r 'T, (r) = —T(r) =r '(U Sr-r/~'}, (80)

T(r) giving the unretarded dipole field according
to Eq. (42). From the presence of T, and the re-
ciprocal lattice sum in Eq. (79), it might appear
that retardation effects are included in 0 and that,
therefore, Eq. (78) is more rigorous than the stan-
dard result (74}. This is not so, however, and the
quantity G is in fact exactly equal to our quantity
—K, the unretarded dipole sum,

ing from the internal field effect. The generaliza-
tion to noncubic symmetry is straightforward and
will not be discussed explicitly.

From Eq. (84) for the susceptibility it is seen
that n is very large for ~ at and near (d, . Since in
the macroscopic theory the variation of the average
dipole moments with position is characterized hy
a wavelength equal to X/n, where X/2v =c/~, the
macroscopic equations predict that for frequencies
sufficiently close to ~, the average dipole moments
vary rapidly over distances of the order of a few
lattice spacings. For I'=0, Eq. (84) even predicts
that n becomes infinite at ~ = co„which is clearly
unphysical. This breakdown of the macroscopic
equations at and near ~, is not due to any inconsis-
tency in the microscopic model but occurs because
the derivation of the constitutive relation (65) is
based on the assumption that the dipole moments
vary little over distances of the order of the lattice
spacing. In our opinion it is highly likely that, for
I =0, there are always frequencies for which the
dipole moments in the actual system assume a
staggered, or antiferromagnetic like, arrange-
ment with a period of the order of the lattice spac-
ing. A macroscopic description of such "antireso-
nant" behavior does not seem possible, and at such
frequencies one is forced to consider the medium
as a many-body system and to describe it on a
microscopic level. A rigorous proof of these as-
sertions cannot be given at present because no
exact solutions of the microscopic equations for a
finite three-dimensional resonant dielectric are
available. However, the exact results for a pair
of interacting molecules to be presented in Sec.
VI, as well as the breakdown of the macroscopic
theory signalled by the prediction of infinitely
large values of n, strong1y suggest the actual
occurrence of antiresonant behavior in three-di-
mensional systems for I' =0.

That the derivation of the constitutive relation
(65} is based on the assumption that the dipole mo-
ments vary little over distances of the order of a
lattice spacing becomes apparent when one retains
the higher-order terms in the reduction of Eq. (55)
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to Eq. (56). Using tbe expansion

in Eq. (55), we obtain instead of Eq. (56),

(86}

S(R, —R) Q' G(R, -R,) ~ ii,

=S' P{R)—S' 'VTiP{R)+, (87)

a(R, —R) =n(Ri —R) —(R, —Ri} v){d,(Ri —R)+ ~ ~ ~,

usual macroscopic equations for all frequencies.
If the last member of Eq. (89) is not small com-
pared to one, the macroscopic equations may be
used only in frequency regions where k~na« l.
Because of the smallness of ka, quite large values
of ~n ~

are possible inthe allowed frequency regions,
and it is therefore gratifying that our derivation
of the macroscopic equations is not based on an
expansion in powers of the polarizability.

Finally, we briefly comment on the usual method
of treating spatial-dispersion problems from the
standpoint of a purely mac roscopic bulk theory
By means of a spatial Fourier decomposition, one
first derives a, relation of the form

S = P ' {R,-R, )G(R, —R, ) . (88)
P(R) = X{R—R')E(R')dR'

If the change in P(R) over a distance of the order
of magnitude of the range of G is comparable to
P(R), the higher-order terms in Eq. (8V), which

represent corrections to the Lorentz local field,
must be taken into account. These terms corre-
spond, of coux'se, to spatial dispersion, "and their
inclusion leads to a nonlocal constitutive relation.
%e shall not pursue this problem further in this
paper except to note that the formal treatment of
the higher-order terms in Eq. (87) is difficult since
tensors of the form R G, p ~ I, where 0 is defined
by Eq. (53), have an infinite range, and the correc-
tion terms in the constitutive relation therefore
depend on the external shape of the medium. In
addition to these spatial-dispersion terxns, which
are of the usual type, "and which represent con-
tributions fx'om the part of the dipole fields in
phase with the radiating dipoles, one must also
consider the contributions from the out-of-phase
part coming froxn the higher-order terms in the
expansion (41) of the retarded dipole field. That
retention of these higher-order terms is essential
in spite of the fact that Ag « I for all relevant val-
ues of g, is shown by the example of two interact-
ing rnolecules to be discussed in Sec. IV, and is
due to a cancellation of the lowest-oxder terms.

Qn the basis of the nature of the terms neglected
in the derivation of the constitutive relation (65),
we conclude that the Lorentz-Lorenz relation (83)
gives an adequate description at all frequencies,
provided I' is large enough so that k~s~a«1. A

somewhat lengthy but straightforward analysis of
Eq. (83) yields the relations

Since ka « I, we see that k (n (a « I impbes that tbe
dissipative damping +I"must be considerably larger
than the radiative damping per molecule &3y,

to allow the unrestricted use of Eq. (83}and the

for an infinite medium. The assumption is then
made" that for a finite medium one may write

where the integral extends over the volume of the
medium and the kernel y(R —R') is the same as in
Eq. {90). First we note that in the standard treat-
ments" of spatial dispersion a kernel is obtained
which, for I' =0, has an infinite range at a fre-
quency which would correspond to the frequency
~, defined by Eq. (85) if there were no spatial dis-
persion. The transition from Eq. (90) to Eq. (91),
therefore, does not seem to be justified except in
the presence of sufficiently strong dissipative
damping. Second, we remark that the usual ex-
pressions for the kernel y (R —R') for I' =0 also
lead to infinite values of n, the only difference
with Eq. (84) being that in the presence of strong
spatial dispersion the singular frequency may be
appreciably different from ~,. It may be noted,
however, that the microscopic analysis" of the
effect of the spatial dispersion due to dipole-dipole
interaction for a medium in the form of a sla,b
shows that in this case this effect is very weak,
so that the breakdown of the macroscopic theory
occurs practically at and near co, .

In conclusion, we remark that the usual spatial-
dispersion analysis px'ovides an improved descrip-
tion of the electromagnetic response of an infinite
crystal in which, in contrast to pure dipole-dipole
coupling, the spatial dispersion is large. However,
for I =0, regardless of the strength of the spatial
dispersion, the treatment of the properties of a
finite crystal by such an analysis is not well found-
ed. Furthermore, the breakdown of the theory
signalled by the divergence of n still occurs in the
presence of spatial dispersion. Several treatments
of spatial-dispersion problems have been published
which go beyond the above-mentioned theory and
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discuss, for half-space and slab geometries, the
variation of the dipole moments near the surface
using a microscopic analysis. " The work of Ma-
han and Obermair is most relevant in the present
context, as it is based on the equivalent of our
molecular equations (22) extended to include other
than pure dipole coupling. Using their analysis,
it can be shown that for many types of coupling the
dipole moments vary greatly over distances on the
order of the lattice spacing, provided I' is suffi-
ciently small. Since this "antiresonance" phenom-
enon appears in the inicroscopic theory, it is
clearly not just an artifact of the approximate mac-
roscopic theory. We will return to these questions
in detail in a subsequent publication on the analysis
of specific microscopic models. However, after
the example presented in Sec. UI we briefly discuss
the role played by radiation damping in these anti-
resonant oscillations.

where

C, =I '(-1+O(P)],

I-3[+4
3 2 y5 +O (y7)]

Introducing the normal modes

where

=o [ipE, +i(~3k' —C, )g ],

and

o', = —,
' c'y/(&u', —uP),

we obtain from Eqs. (S2), (94), and (95),

p, = o,[2E,+i(+k'+C, )g, ],

(96)

(97)

(98)

(99)

(100)

VI. RESONANT AND ANTIRESONANT

SCATTERING FROM A PAIR OF INTERACTING

MOLECU LES

We consider the scattering of a plane electro-
magnetic wave of wavelength A. from a pair of
molecules with identical polarizabilities a(~),
given by Eq. (8), and separated by a distance l«X
in the direction of propagation of the wave. The
incident field has the amplitude E,e' ' and the mol-
ecules are located at the positions Rz = (0, 0, —,jI),
where j =+I refers to the two molecules. The
dipole moments p& induced by the two mole-
cules in the stationary state corresponding to the
frequency {d are given by

u, = a(~)E, = a.(~)(E;+~ik'u, ), (92)

where o.,(~) is given by Eq. (11)and E, is the total
electric field at R&, excluding the radiative part of
the field from p&, which is displayed explicitly in
the last member of Eq. (92). The field produced
by p,. outside its charge distribution is given by

e iklR -R~l

e, (R) =VxVX — ~ p, =F(R —R~)' p, (93)
J

and the local fields E,. are equal to

E =E e»»&@+e (R ) (94)

where Q =kl is the phase difference in the incident
field at the two molecules. Since by assumption
we have Q «1, it is appropriate to use expansions
in powers of (II). We look for solutions of the cou-
pled Eqs. (92) and (94) with p, parallel to E„which
may be chosen as the x directior. . Expanding the
exponential in Eq. (93), we get

e, {R,.) = (C, +i C, )p„ (95)

(102)

where (II} =kl, so that in fact we have

(103)

since P «1.
We may calculate the field scattered by the sys-

tem from the current distribution

J{R)= itd[p, 6(R —-R, ) + p. ,6 {R—R, )] . (104)

Using the Lorentz gauge, we obtain for the fields
outside the charge distribution,

and where we have kept only the first-order terms
in the sum and difference of the incident field at
the two molecules. In Eq. (98) the expression for
the resonant and antiresonant modes (p,, and ]Lf,

respectively) have been written in a form similar
to that of an isolated molecule. Away from the
resonance frequencies ~„we have p, «g„as
expected. From Eqs. (96) and (98) we see that the
damping of the resonant mode is very nearly twice
that of an isolated molecule, and is clearly due to
the fact that the molecules are oscillating in phase
and acting as one "giant" dipole. For p. , on the
other hand, the radiative self-field is almost com-
pletely cancelled by the radiative field from the
other molecule and a finite damping is obtained
only if the higher-order terms in Eq. (96) for C,
are retained. Thus in this case the standard ap-
proximation (41) for F(r) g is not adequate in

spite of the fact that ky «1. Because of this small
resulting damping the molecules can be expected
to respond with a large amplitude of the p, mode
when subjected to a field of frequency ~ . From
Eqs. (98) and (99) we obtain

u, (~) =-.*c'~ (101)

ipEO
I (~)=2c r
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R=gxA, E=(i/k)VxVxA,

where

8 $ A IR- R '
l

A(R) =
Jf

ij(R )
~y g

~

dR (106)

of the antiresonant mode is much larger than thai
of the resonant mode, one can therefore expect
that the scattered intensity at the two frequencies
~, is of comparable magnitude. To calculate these
intensities, we note that in first order in the cou-
pling the resonance frequencies are given by

Expanding the kernel in Eq. (106) and using Eq.
(104), we get

A(R) = ik-(e"" /R)[p, , +-,'ikl p, (R z)]

(108)

and 2 is a unit vector in the g direction. Thus the
resona. nt mode of the two molecules radiates via
the electric dipole moment of the total charge-cur-
rent distribution, and the antiresonant mode via a
combination of the magnetic dipole and electric
quadrupole moments. In spite of the inequality
(103) which shows that the amplitude of excitation

&u', =~', (1+q),

q = 3c'y/2l'&uo = ao(0)/P .

The static polarizahility a, (0) is of the order of
magnitude of the molecular volume and in a,ll cases
of interest we therefore have q«1. The separa-
tion between the bvo resonance frequencies is hence
equal to (d+ —cu =qvo, which for kl«I is much
greater than the widths of the lines, so that in cal-
culating the scattered intensity from Eq. (107) we
may neglect the cross terms between the two
modes. For the scattered intensity as a function
of the frequency + of the incident field we obtain
the expression

0(~2~2)2+(2@~8)22(~2~2)2+($2y+3/5)2

In addition to the scattering due to the "giant"
dipole, represented by the first term in the square
brackets, there is a very much narrower line in
the cross section due to scattering from the anti-
resonant mode. The integrated intensity of this
line is very small, but the peak intensity is of the
same order of magnitude as that of the resonant
line. This phenomenon is not apparent in a dis-
cussion of the emission, rather than the scatter-
ing, by these two modes. In emission the predom-
inant feature of the antiresonant mode is the small
radiative damping leading to a long lifetime and a
negligible oscillator strength. It is because of the
small damping, however, that the antiresonant
mode can attain a large amplitude in a scattering
process at the frequency ~, even though the mode
is driven only by the small difference in the inci-
dent field at the positions of the two molecules [cf.
Eq. (102)]. A small amount of dissipative damp-
ing will, of course, "wash out" the antiresonant
peak at e in the cross section, while leaving the
main resonant line at ~, virtually unchanged. In
conclusion, we stress once more that for I" =0
there are two lines of roughly equal height in the
scattering cross section for a pair of molecules.
This result remains valid in the presence of an
additional, possibly strong coupling between the
molecules, which in a many-body system would
give rise to spatial dispersion, the only effect

being a shift of the resonance frequencies ~, from
the values (100).

For a scattering system consisting of more than
two molecules, we expect the same type of phe-
nomenon, viz. , a broad line in the scattering cross
section due to the resonant, or superradiant scat-
tering by the molecules, plus a number of narrow
peaks corresponding to a response of the system
in the form of staggered arrangements of the di-
pole moments with effective wavelengths extending
down to the intermolecular separation. Because
of a near cancellation of the radiative damping
terms, these antiresonant modes can be expected
to attain large amplitudes and thus to give signifi-
cant contributions to the scattering pattern.

We suggest, then, that n approaching infinity
according to Eq. (&3) for I' =0 is due to the onset
of these antiresonant oscillations. Although of
course not accurate in describing the scattering in
this region, the Lorentz-Lorenz relation indicates
the breakdown of the macroscopic nature of the
scattering as microscopic oscillations become
important. We believe that strong spatial disper-
sion may displace the antiresonances in frequency,
but that they will nevertheless occur. Whether the
antiresonances are separated in frequency from the
main resonance line also depends on the external
shape of the system, as illustrated by the examples
discussed in Sec. VII. The amplitude of the os-
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cillations depends, of course, on l and for suffi-
ciently large I" the antiresonant scattering is in-
significant, and thus a macroscopic description is
adequate at all frequencies.

= Eo+ 3N'SVP —~+mP,

where we have used Eq. (41) and the fact that
klR —R'l«1. Thus we find that E is uniform, in
agreement with our assumption, that P is uniform.
From Eq. (111)and P =gE, we get

c pyEo
v' —cu' —z Nye~ —zruI'

0
(112)

where N= p V is the total number of molecu1. es in

the sphere. The total dipole moment of the sphere
is equal to

(113)

from which it is apparent that the N molecules
are scattering collectively and acting as a giant
dipole. For I'=0, the linewidth is N times that
for a single molecule. The strong damping occurs
because each molecule sees not only its own radi-
ative field but also the equally strong fields from
all the other molecules, which are contained in

the field E, as is evident from Eq. (111). We note
that the result (113) indicates that the sphere res-
onates at & = ~„ the resonance frequency of an
isolated molecule, rather than at =~„ the fre-

VII. SCATTERING BY MACROSCOPIC RESONANT

0IELECTRKS

Using the macroscopic equations and in particu-
lar the Lorentz-Lorenz relation (83), we investi-
gate in this section the scattering by a resonant
dielectric medium for the simple geometries of a
sphere and an infinite slab. The results are then
restricted to frequencies for which kIsIa «1.
From Eq. (84) we see that, for 1 =0, the suscep-
tibility is real and hence that P is in phase with

E. Nevertheless, a medium of finite extent will,
of course, scatter incident radiation not diffusely
but coherently, because P is not in phase with the
external field E, .

%e consider first a smal1, sphere of volume V

and radius 8 such that kR«1. For frequencies
where IN I —= 1, the polarization can be expected to
vary little over the volume of the sphere. For
such frequencies we neglect the variation of E,(R)
and P(R) over the sphere and then obtain from Eq.
('l3}

|r
E=E + VxVx» -, ~'+-,'z43yP &gP

IR -R'I

quency at which the susceptibility g becomes in-
finite. This comes about because the Coulomb
field from the sphere counteracts the local field
shift (85) of the resonance frequency. Since at
&u = &u„ I

n
I
=-1 and x are finite even for I' = 0, we

expect that our neglect of the small variation of

Eo and P over the medium is justified at all fre-
quencies for which P, as given by Eq. (112), is
appreciably different from zero. The result (112)
can in fact be derived more rigorously from the
Mie theory, although more care must be taken in

keeping 1.eading terms than is exercised in the
usual. analysis. ' '"

For frequencies in the neighborhood of the fre-
quency to, at which n =~ according to Eq. (83), the
reasoning leading to Eq. (112}is of course invalid,
at least for I'=0. Instead of being roughly con-
stant, the polarization varies greatly as the medi-
um responds to the small varying component of
the incident field. The macroscopic theory does
not describe the scattering correctly at these fre-
quencies, but indicates the onset of the antireso-
nant response by predicting that n becomes indef-
initely large. From Eqs. (85) and (112) it can be
shown, however, that the main resonance line at
uo for increasingly larger spheres does not cover
the u =&, region until A =—~. Thus for small
spheres (kA «1) the resonant and antiresonant
scattering occur in separate frequency regions,
as in the example of two molecules, and the main
resonance is described correctly by the macro-
scopic theory.

For a large sphere 4A&+1, we refer to the work
of Zaidi. ' He has treated the resonant scattering
from a gas of spherical external shape on the
basis of the macroscopic equations assuming a
Lorentz-Lorenz relation which differs from Eq.
(83) by the inclusion of a term -iy&u' in the de-
nominator corresponding to the diffuse scattering
by such a system. His result tha.t for a large
sphere the over-all radiative linewidth increases
only proportionally to the radius of the sphere,
rather than to the volume as is true for a small
sphere, will also hold for the scattering from a
crystalline sphere with the I.orentz-I. orenz rela-
tion (83). For I'=0 the scattering profile calcu-
lated by Zaidi's method but using Eq. (83) is valid
at all frequencies except in a small region in the
neighborhood of the frequency ~, , where kI nI a
is not small compared to one. Since for a large
sphere the width of the main resonance line is
large compared with the frequency difference
~, —~, , the antiresonance occurs within the ex-
tent of the main line and the exact shape of this
line therefore cannot be obtained entirely on the
basis of the macroscopic theory. Nonetheless,
the over-all width 4„of the line should be given
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correctly by the macroscopic theory and in our
notation it is therefore equal to'

n, =—(3/2w}(pA. 'R)y~', . (114)

Finally, we remark that purely macroscopic scat-
tering phenomena such as the "anomalous diffrac-
tion" discussed by Van de Hulst" also modify the
line shape so that in contrast to a small sphere
one cannot expect an exact Lorentzian line shape
for a large sphere.

As a final example we consider an infinite slab
extending over the region defined by - &x, p &+~
-&L&z &2L. For normal incidence, P and E are
then functions only of z. Integrating over x' and
y', we now obtain from Eq. (73),

E=E +2mikIP. (116)

Putting P =yE, where y is given by Eq. (84), we

get

where

@~c ppEO
QP —(d - SiV pA —2 &I (117)

is the effective number of rnolecules radiating col-
lectively. This result can be understood by re-
membering that the radiative field from a dipole
is equal to &ik'p. only for distances small com-
pared to A. . At large distances, the field oscillates
and the net contribution to the radiative field at
a central molecu1e due to the molecules further
than a wavelength away from the central molecule
tends to vanish.

From Eq. (117}we see that the peak in the re-
sponse comes at co =~„whereas for a sphere the
main resonance comes at ~ =v, and for a suffi-
ciently small sphere is well separated from the
antiresonant frequency region. For a slab there
is no long-range Coulomb field to counteract the
frequency shift due to the local field, and the reso-
nance and antiresonance therefore occur in the
same frequency region. The argument based on
the assumption of a uniform P and E leading to
Eq. I'117) is hence suspect. In the macroscopic
theory it is, of course, possible to solve the slab
problem rigorously, the result being"

{115)

For a thin slab kL«1, we first try the argument
used for a small sphere and assume that P, E and
the incident field are uniform over the slab, giv-
ing

P (8 ) = (1/4'�)(n' —1)E,e

+ 1) e lkll(t- $1,) ~ ( ] )
-fling(g- $g)

X
2n cosknL —f, (n' +1)sinknL

(119)

where n is to be determined from Eq. (83). The
solution (119) is equivalent to satisfying simultan-
eously Eq. (115) and the relation P =ltE. The re-
sult (119) is a. good deal more complicated than
(117), but in fact reduces to it in the limit knL «1.
If the dissipative damping 1 is sufficiently large
so that knL «1 [a considerably stronger condition
than that for the validity of Eq. (83)], then all the
antiresonance modes are effectively damped out
and the reflection and transmission by the slab are
given correctly by the simple expression {117).
Otherwise, the full expression (119) must be used
to describe correctly the oscillations occurring in
P(z) as ~ approaches &u, . However, Eq. (119) is
of course valid only as long as dna«1, and for
I =0 or small cannot be used for ~ near ~, .

For a slab large compared with the wavelength
AL» 1, the overlap of the resonance and antireso-
nance persists, and we must use Eq. (119) as long
as Eq. (83) is applicable. The reflected field fol-
lowing from Eq. (119) is given by E,'e "', where

i e "~(s' —1)sinkn L
2n cosknL -f(n'+1}sinknL

Although not valid in the neighborhood of ~„we
may conclude from Eq. (120) that the back scatter-
ing will be large when n is large and real, and
when n' is negative and thus s imaginary. Eq. (84)
then implies that for l =0 we can expect large back
scattering for frequencies between approximately
~' = co,' a,nd ~' = (d,'+ 6m pc'y, although the scattering
pattern is complicated and shows many oscilla-
tions. Nevertheless, this result indicates a line-
width of the back-scattered light roughly equal to
3wpc'y/~, and hence to an effective number of col-
lectively radiating molecules equal to

This number and hence the width are independent
of the thickness 1. of the slab, in contrast to the
linewidth for a large sphere which increases pro-
portionally to the radius p of the sphere. The dif-
ference is due to the true, three-dimensional scat-
tering by the sphere, including effects such as dif-
fraction, which are not present for a slab.

VIII. CONCLUDING REMARKS

We have shown in this paper how the macroscopic
Maxwell equations may be used to describe the
resonant scattering, over large frequency ranges,
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of dielectrics composed of molecules interacting
via the retarded dipole fields. The crucual point
in this analysis is the proper handling of the radi-
ative fields, as occurring in both the molecular
polarizability and the Maxwell field E(R), in the
derivation of the constitutive relation. Since the
constitutive relation was derived for a finite di-
electric, resonant scattering from dielectrics of
various shapes and sizes, both small and large
compared to A., may be investigated macroscopi-
cally. We have considered the simple geometries
of the sphere and the infinite slab; the results in-
dicate that both the resonance frequency and the
effective natural linewidth depend strongly on the
shape of the dielectric, as expected in view of the
long-range nature of the retarded dipole-dipole
interaction.

In the absence of dissipative damping (I' =0),
there appear to be frequencies for which a macro-
scopic theory is not possible, in that the dipole
moments take on an "antiresonant" behavior, vary-
ing greatly over the order of a lattice spacing.
The scattering cross section in such regions is ex-
pected to be quite complicated, and the resonant
scattering may or may not be separated from this
frequency region depending on the external shape
of the dielectric. In the presence of strong cou-
pling between the molecules due to interactions
other than retarded dipole-dipole coupling, which
is present in many systems of physical interest
but was not discussed here explicitly, the resul-
tant spatial dispersion may be expected to shift
the frequency of the antiresonant behavior. Thus,

in physical systems of interest, accurate descrip-
tions of the spatial aud the dissipative damping ap-
pear essential in determining in what frequency
ranges a macroscopic theory of resonant scatter-
ing is possible.

P r$, )=v Pf(r, ), (Al }

where v is the volume of the unit cell in ordinary
space, f (r) is an arbitrary continuous function sat-
isfying the necessary integrability conditions, and

+$) ffCI=""&
js the Fourier transform of f (r). Using (A1) we
obtain

(A2)

22 22-~a ag e-~a a~ 1 g e w,2ya-

~ e-ffr~/a2 2
(A3)

and we may therefore write Eq. (78) in the form

APPENDIX

We show in this Appendix that the expression
(78) for the tensor G obtained by Viieger is exactly
equal to the simple static dipole sum (64). The
sum over the reciprocal lattice vectors fi~ in Eq.
(73) can be transformed into a sum over the lattice
vectors rz in ordinary space by means of the for-
mula

4&G=g'T, (r~)erfc(x~)+ —g'T, (r~)e "& ——, g r~v~ ——U e '& —P' h~h~ ——U e ""&, (A4)

where x~ = (m'~'r ~/a). Consider the reciprocal-
lattice sum

Denoting the modified function again by F(E), we
have from (A1) and (A5)

S= P'(h„ii, ——,U}e- "~= g'F(h, ), (A5) F &= F ~=v fr~,

where

F(K) = (hh ——,'U)e "". (A6)

where

fI )=J pe) ""'dK
This function is singular at K = 0, since its value at
5 =Odepends onthe direction of approach topi =0. To
obtain a function which satisfies the Fourier inte-
gra. l theorem at all points, we replace T$) at each
point h by the average value of F(K) over an infin-
itesimal sphere surrounding the point K. This
amounts to leaving the value of F$) unchanged at
all points K g0 and to put F(0) =0. The averaging
procedure shows that the modified function satis-
fies the Fourier integral theorem at all points.

(A8)

Using the definitions (79), we obtain from (A8)

4mf (r) = T, (r) erf (x) ——T, (r) e "
47t

+ —,($'t —vU)e '
a

Expanding the right-hand side of (A9} in powers of



x, one easily verifies that f(0) =0, and hence that

8=v P'f(r„).

Using (A10) and (AQ) in (A4), we get

(Al0) That the sum in (All) must be interpreted as a
"spherical" sum, as indicated in Eq. (64), is clear
from the fact that all the convergence factors in
(A4) have spherical symmetry.
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