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Effects of retardation on electromagnetic self-energy of atomic states
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The significance of retardation effects in photon emissions and absorptions is emphasized in
the calcul. ation of self-energy. Et is explicitly demonstrated that inclusion of such effects
leads to a finite answer for the shifts of atomic energy levels in a nonrelativistic theory with-
out cutoff. Ambiguities that exist in the mass renormalization in the nonrelativistic approach
are pointed out. Such ambiguities vanish from the relativistic theory. Explicit calculation is
carried out in the case of hydrogen by utilizing the Coulomb Green's function. The advantage
of the present approach in calculating self-energy shift in high-Z hydrogenic ions is suggested.

I. INTRODU(. TION

It is well known that Bethe's original calculation
of the Lamb shift, ' which introduces a photon ener-
gy cutoff at the electron mass, gives surprisingly
close agreement with the experimental value. With-
out the cutoff, Bethe's result would be logarith-
mically divergent. In addition to being nonrela-
tivistic, Bethe's calculation neglects retardation
i.n the photon emission and absorption, an approx-

2imation which has been argued to be accurate.
While a correct treatment of electromagnetic ra, -
diative correction must be based on a. relat, ivistic
formalism, it is interesting to note that finite val-
ue for the Lamb shift can be obtained from a non-
relativistic calculation without an ultraviolet pho-
ton cutoff, but including all multipole interactions. '
In such a calculation, there exist ambiguities in
the correct mass renormalization counterterm,
which can only be properly treated by considering
the nonrelativistic model as a suita. ble limit of a.

relativistic theory, where such ambiguities are
absent. However, the ambiguities do not affect the
convergence of the result.

In this paper, we carry out a. nonrelativistie cal-
culation including retardation, a,nd show how and

why it leads to a finite Lamb shift. Our technique
involves the relation. between energy shift and a.

part of the forward Compton scattering amplitude,
a relation known in particle physics. ' In the pres-

II. FORMULATION

In this section we derive the relation between
the self-energy shift and the on-shell brompton
amplitude. The unrenormalized energy shift is
well known to be given by'

4F. ""' = Re&M,

i' 1 Tpv(k ko)gp U

(2&&)' 2! „ lP —k', —ie I2.2)

ent case, the crossed forward scattering ampli-
tude can be calculated exactly, and the necessary
integral over photon momentum can easily be car-
ried out numerically. In Sec. II we present and
derive the relevant formula for energy shift and
the brompton amplitude. In Sec. III we discuss the
reason for the convergence of the Lamb shift, the
renormalization prescription, and the ambiguities
thereof. In Sec. IV we give some numerical re-
sults for hydrogen. These results a.re not espe-
eia.lly useful for hydrogen, where very accurate
results from a relativistic theory including re-
tardation are available. However, our technique
may be more useful for hydrogenic ions of high Z,
where retardation corrections may be substantial,
and there are not equally accurate calculations
available.
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and ~„fr,T„,is the forward Compton scattering
amplitude for the scattering of a virtual photon
with three-momentum k and energy ko, and polar-
ization vector ~„ from an atom in state n. Using

j„(t)=e'""j„(0}e'"", where H, is the atomic Ham-
iltonian

}o OC}

&t= t dt|}(-I)
~on

2'I'l Q (}L) —'l 6

Eq. (2.3) can be reduced to

(2.4)

Let us now exa,mine the poles in k, in the integrand
in Eq. (2.2). The poles coming from the photon

propagator are determined by the Feynman pre-
scription (Fig, 1). The poles in the first term in

(2.4) are all below the real axis and those in the
second term are all above. Hence in each case,
we close the ko contour accordingly, as in Figs.
2 and 3, and pick up only the contribution from the
photon pole. Therefore, only Compton amplitude
of on mass-shell photons enters. These two terms
give equal contribution, and correspond to the
crossed Born term in the on-shell forward Comp-
ton amplitude. The (p —v) term also gives a fac-
tor of 2. Hence, after doing the ko integration, w' e
obtain

-1
d'u g"" ~ d'xd'y e'"'~

(2v)' 2~k~ ~„
„("lj„(x)I ~) (~ 1 j.(y) I")

E„+1k I

(2.5)

which is exactly what one gets from second-order
perturbation theory, according to the interaction
j A.

However, in tee present work, we only evaluate
the scattering amplitude in (2.5) nonrelativistically
where a closed form exists and show how it leads
to a finite Lamb shift with mass renormalization.
Ambiguities that exist in the mass renormaliza-
tion counter term in nonrelativistic calculations

are discussed in Sec. III.
In the nonrelativistic limit, g„„j„j,in Eq. (2.5)

is replaced by Q„e; e, (e/m)'P, P, , which just
comes from the interaction -(e/m)p A taken to
second order. However, it is also well known that
in the nonrelativistic interaction Hamiltonian,
there is also the e2A'/2m term. This term gives
rise to the process in Fig. 4, whose matrix ele-
ment (n

~
(e A'/2m)

~
n) is independent of the wave

function of the particle. This graph is present in
both ca,ses of bound and free electrons. The net
result is that it does not contribute to the energy
shift after mass renormalization. Thus in sub-
sequent discussions, we shall ignore this term.
Also, to bring out the dependence on the state in
question, we shall write W„ in place of 4M in Eq.
(2.5), and we have

W„= Jtkdk gdQ&SR„(},k, ~), (2.6)

where ~ is the polarization mode, &u =
) k( is the

on-shell photon energy, and %„ is the crossed for-
ward-Compton-scattering amplitude in the given
state n. K„can be written

%„(&,k, (u) =(e'/I'}(nP ~ pe""Ge ~ pe "*
~
n},

(2.7)

where the dipole approximation is not used. In Eq.

FIG. 1. Equivalent pole distribution in the photon
propagator according to the Feynman contour.
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FIG. 2. kp contour for first integrand in Eq. {2.4).
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(2.7), 6 =(F. -H +is) ' is the Coulomb Green's function; it can be written, in the momentum representation
according to Schwinger, '

~ &iffy +
t-"(P., P, fl.}=- X' ". P

' (—[(1-P')/P]IX'(P -P.)'+(P', +X')(Pl+X'}(1 P-)'/4P] ']dP
2% 2 sinsT ~ dp

(2.6)

where

T =1./x,
X = -2mA„,

A, = QZPFL q

(2.9a)

(2.9b)

(2.9c)

(2.9d)

shift, we are allowed to replace tensor terms such
as e;e& and k&k~ in the scattering amplitude by
3 6 Z5&& and 3 k'5&& and for forward scattering
=1. Thus, the summation over polarization modes
reduces to a factor of 2 after the above modifica-
tions are made; W„ in Eq. (2.6) then becomes

Q„=E„+re+i& for the direct Born graph,
kdk%„k, (2.10)

(2.9e)

Q„=E„—m+ie for the crossed Born graph.

(2.9f)

Note that the Qk in (2.6) is the solid angle. The ic
is inserted to prevent divergence at resonances.
A similar calculation of the Lamb shift using sim-
ilar techniques but without the inclusion of retarda-
tion has been carried out by Lieber. '

Since the photon momentum vector is to be aver-
aged over angles in the calculation of the Lamb

where K„ is the scattering amplitude %„with the
above modifications. The problem thus reduces
in part to the calculation of %„. Calculations utiliz-
ing Coulomb Qreen's functions for Compton scat-
tering amplitudes have been carried out by Qavrila'
in the dipole approximation for the 1s hydrogenic
state, by Qavrila and Costescu, ' with retardation,
on the same state, and also by Klarsfeld' in the
dipole approximation for general s states in hydro-
genic atoms. Ne have used techniques similar to
those used by Qavrila and Costescu to obtain%„
and%@, . Ne find

X'n'a -4[(X' —P'}+k']' E(3;-1 r, 5--r;u) 1 F(l;-2-T, 4 —7;u}
(X+p)'+k' [(X+p)'+k']' ( 4- T)( 3- r(}2- T) 2 3-~ (2.11)

-X'o'a Irs E(1;-1-T,3 —T;u) 2 [p'+X'+k ] E(1;-l-r, 4 —r;u) 5 F(1;-2 —T, 4-T;u)
(X+p)'+k' I3 (2-r) 3 [(X+p)'+k'] (3 T) -6 (3-&)

16k P E(3; -1 —7, 5 —7;u) 1 E(1;-r, 4 —T;u) 1 E(l;-2 -r, 2 —r;u) [
3[(X+P)'+k'J' (4-T)(3 —r)(2 —r) 12 (3-r) 12 (1-r)

(2.12)
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FIG. 3. ko contour for second integrand in Eq. (2.4).

FIG. 4. Feynman diagram for process arising from
the e2A2/2m term in the nonrelativistic interaction
Hamiltonian. The dashed line represents the photon.
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where

a =Bohr radius,

u=[(X- p}'+u']/[(X+p)'+n'],

(2.13)

(2.14)

(2.15)

which

G-(F. —a p —Pm —V —k} '

and

e'"'"Ge '" "-(E-a ~ p —Pm —V-a ~ k —k) ',

III. CONVERGENCE AND RENORMAI. IZATION

It is both interesting and instructive to see why
the nonrelativistic Lamb shift including retarda-
tion is convergent. While this fact follows from
the asymptotic behavior of the integrands 3g„and
%», it can be seen more readily from Eq. (2.7).
We can write the Coulomb Green's function as an
operator

G = (F. -P'/2m —V - k) ' . (3.1)

By a well-known identity

e'" "Ge '" "'- [Z -V'- 0 —(p - k)'/2m] -'. (3.2)

The physical content of this is just that the inclu-
sion of retardation in the photon emission and ab-
sorption imposes momentum conservation be-
tween the photon and the electron, changing the
intermediate electron momentum to p —k. From
the identity, we can see that for large k, %„be-
haves as 2m/k', compared to the I/O behavior of
the nonretarded integral. This is sufficient to
make the unrenormalized energy shift of each
state, such as 2s, only logarithmically divergent.
Furthermore, for degenerate states such as 2s
and 2p, the coefficient of the logarithmic diver-
gence are equal, as shown below, so that the
Lamb shift is convergent without renorrnalization.
However, the energy shift of an individual bound
state such as ls, 2s, or 2p, which is logarith-
mically divergent, does require mass renormal-
ization to be finite. We consider how to carry out
that renormalization below.

It is worth noting that the extra convergence does
not appear to occur in a relativistic cal.culation in

and E(a; P, z;z) is the Gauss type of hypergeomet-
ric function. "

The energy variable is contained exclusively in
the factors 7 and X. The k' terms come strictly
from the higher multipoles. We therefore recover
the dipole form of the scattering amplitude by put-
ting k equal to zero. However, by retaining the
)t' term, we see that the integrand in (2.6) is now

less divergent, in fact, only logarithmically di-
vergent. More interesting is that the 2s and 2p
state have the same logarithmic divergence. We
shall see in the next section that by including re-
tardation, the leading divergence in the mass re-
normalization counter-term has identical logarith-
mic behavior.

which still goes as I/O for large k. The finiteness
of the relativistic Lamb shift occurs for other rea-
sons which we do not consider here.

In the relativistic theory of bound state energy
shift, mass renormalization is accomplished by
introducing a counter term 5mgg into the Hamil-
tonian, and evaluating this term, together with the
usual second order shift, between the bound states
in question. The effect of the mass counter term
is to cause the propagator of a dressed particle
near the mass shell to differ by only a multiplica-
tive constant from that of a bare free particle. "
This can be accomplished in the relativistic theory
because the electron propagator depends only on
the I.orentz invariant combination P, and there-
fore once the electron is on the mass shell (f(=m),
the propagator has no further dependence on the
momentum.

On the other hand, in the model we have been
using, in which the electron is treated nonrela-
tivistically and the photon relativistically, the
dressed propagator depends both on the energy F.
and three-momentum squared P' of the particle.
Therefore, even when the particle is put on the
mass shell (Z =p'/2m), the propagator retains a
complicated dependence on p. As a result, it is
impossible by a simple mass renormalization, to
make the propagator of a dressed particle agree
with that of a bare particl. e, for all momenta on
the mass shell.

It is possible, by a simple mass renormaliza-
tion as first carried out by Bethe, ' to make the
dressed and bare propagator agree at small p'.
When this is done in the model neglecting retarda-
tion, the dressed propagator still has a pole at
F. =p'/2m, for all value of p'. On the other hand
when retardation is included, the pole of the
dressed propagator occurs at F. =f (p') where f (p')
is a complicated function which reduces to p'/2m
only for small P'. In order to make the dressed
propagator have a simple pole at F. =P'/2m, when
retardation is included, it would be necessary to
add a counter-term with complicated dependence
on P'. This is equivalent to requiring that the self-
energy of a free particle should vanish identically,
and is not obviously justified. A more convincing
way to solve this problem would be to treat the
nonrelativistic model as a suitable limit of the
rel.ativistic theory where the normalization pre-
scription is unambiguous. This we have not yet
done. What we do here is to adopt the simple
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mass renormalization prescription of Bethe, with
the mass renormalization parameter 5m evaluated
so as to make the propagator, including the effect
of retard. ation, agree at small P'. lt is not diffi-
cult to see that the result of this is to give 5m by

4n " kdk
3w o k+0'/2m '

which is logarithmically rather than linearly di-
vergent. The counter term that must be added to
the Hamiltonian to give the proper mass renormal-
ization is

for 2s and 2P, where only the asymptotic contribu-
tion is written, i.e. , the divergent contributions
are equal. On the other hand, the quantities
(5m/m)P'/2m for these states are also equal by
the virial theorem

( p' /2m)„= -E„=-,'-Z'a'm

for each state, and 5m/m is a number. The re-
normalized energy shift of either state, given by

so that the correct energy shift is given by adding
this to W„given by Eq. (2.10). Now the asymptotic
behavior of the integral %„(k) in Eq. (2.6) can be
seen to be

Z A 'M,

6k

from the properties of the Gaussian hypergeomet-
ric functions. " Thus,

-a'mZ' dk
3m k

is now clearly finite because the asymptotic form
of the terms with % is equal but with opposite sign
to the 6m term.

Another consequence of these considerations is
that if we are interested only in the energy differ-
ence of the 2s and 2P states, it is unnecessary to
perform any mass renormalization, because this
will cancel between the two states anyway. This
is also true in the absence of retardation, but then
the energy difference is still logarithmically di-
vergent, while here it is finite.

If we instead adopt the prescription of adding a
momentum dependent contribution to the Hamil-
tonian in order to make ~E =0 for a free particle,
we still obtain a finite result for V„"", but this re-
sult, differs somewhat from the result with the sim-

7ABLE I. Numerical integration for W&,
'"—S'&&". '

Retarded calculation

Inte grand Lamb shift

Nonretarded calculation

Integrand Lamb shift

0, 1

0.5
1.0
5.0
1.0(1)
5.0(1)
1.0(2)

b 1.4(2)
2.0(2)
5.0(2)
1.0(3}
5.0(3)
1.0(4)

c 1„9(4)
5 ~ 0(4)
1.0(5)
2.0(5)

-0.923 02(-2)
0.972 61(-1)
0.303 52 (-1)
0.814 63{-2)
0.474 09(-2)
0, 122 93(-2)
0.660 66(-3)
0,484 92 (-3)
0.347 46(-3)
0.143 53(-3)
0.710 92(-4)
0.109 79(-4)
0.394 47(-5)
0.122 41(-5)
0.11915(-6)
0.13920(-7)
0.106 84(-8)

-0.582 86(0)
0.12149{1)
0,406 99{2)
0.130 92(3)
0.180 79(3)
0,324 70(3)
0.396 99(3)
0.433 82(3)
0.473 85(3)
0.579 95{3)
0.66106{3)
0.832 38(3)
0.886 24(3}
0, 91910(3)
0.940 50(3)
0.944 19(3)
0.944 93 (3)

0.9503 (3)

—0.923 02(—2)
0.972 63(—1)
0.303 54(-1)
0.814 87(—2)
0.474 40(—2)
0.123 39(-2)
0.665 68(-3)
0.49013(-3)
0.352 86 {-3)
0.14926(-3)
0.769 07(-4)
0.16051(-4)
0.81116{—5}
0.430 02 (—5)
0.164 63 (-5)
0.826 08(—6)
0.414 11(-6)

—0.582 86(0)
0.121 52 (1)
0.407 00(2)
0.13094 {3)
0.180 83(3)
0.325 00 (3)
0,397 68(3)
0.434 85(3)
0.475 39(3)
0.584 24 {3)
0.670 08(3)
0.877 19(3)
0.968 57{3)
0.105 39(4}
0.11836(4)
0.127 70(4)
0.137 07(4)

'k is given in units of G./a. Integrand is k (M»- M2&) in units such that ~/a =1. Lamb
shift is given in MHz. Numbers in parentheses indicate powers of 10 to be multiplied.

"%here ka - 1, i.e., where retardation starts to be significant.' Where Bethe introduces his cutoff. Note that we recover the 1053.9 MHz in our nonre-
tarded calculation.

Estimated by assuming integrand scales as 1/k~.



E F FE CT8 OF RETARDATION ON ELK CTROMAQNE TIC. . .

pie mass renormalization. The details are given
in the Appendix. Numerical results are given in
Sec. IV.

IV. NUMERICAL RESULTS

In this section we present numerical results for
S',"," and W,","-W,"p", where in the latter case, the
mass renormalization terms cancel because of
the virial theorem as shown in Sec. III. In order
to illustrate the effect of the inclusion of retarda-
tion, we give in Table I the value of the integrand
in 8',"," —H',"p" (apart from constant factors) as a
function of k, as well as the would be value of
tV,","—lV,"p" in MHz, had there been an ultraviolet
photon cutoff at k, under the column "Lamb shift, "
for both cases with and without retardation. The
numerical integration is done by tra, pezoidal rule
up to a cutoff about ten times the electron mass.
The contribution from frequencies higher than
this is estimated by assuming that the integrand
scales simply as I/k'. The table illustrates where
retardation becomes significant and where contri-
bution to the energy shift is maximum, facts which
help explain why Bethe's answer is so surprisingly
close to the actual value, as will be discussed in
the conclusion of this paper.

We note that with a cutoff at the electron mass
we do obtain in our nonretarded calculation W,","
=1056.7 MHz, and W",,"- N"2'p" = 1053.9 MHz, which
is in close agreement with Bethe. ' In the retarded
calculation, we obtain

lV""=9311MHz N ""-N ""=9503 MHz

In the Appendix, we discuss an alternative ap-
proach to treat the mass renormalization term.
There we obta, in

grren 1330 MH ~karen qpren 9962$ 2s 2P

V. CONCLUSION

We have shown that the inclusion of higher multi-
pole effects in the calculation of the nonrelativistic
Lamb shift produces a. finite answer for the energy
shift of the hydrogen bound states, without the in-
troduction of an ultraviolet cutoff as in the calcula-
tion of Bethe. The modification that is introduced
in the integrand of the integral over photon energy
by higher multipole effects become significant in
the range Znpn & tt& rn, whereas the dominant con-
tribution of the nonrelativistic calculation to the
Lamb shift (the InZn term) comes from k- (Zo)'m.
Therefore, it may be argued that the surprisingly
accurate agreement of Bethe's answer with exper-
iment is a consequence of two facts. In the region
of maximum contribution, the integrand with and
without cutoff do not sensibly differ, and in the re-

gion where Bethe introduces a cutoff, the retarda-
tion effects produces an effective cutoff anyway.

Apart from whatever light our calculation may
shed on this point, we wish to emphasize that re-
tardation effects evidently play a sizable role in
the numerical value of the Lamb shift even in hy-
drogen, and would contribute much more signifi-
cantly in heavy hydrogenic ious, where Zn- (Zo)'
-1. In view of experimental interest in such ions,
it would appear worthwhile to examine the contri-
bution of retardation effects there in details. Of
course, this must be done within a relativistic
theory, since (v/c)'-(Za)' also. It may, however,
be feasible to use the technique of the Coulomb
Qreen's function in that case a.iso,"or at least to
carry out the low-frequency part of the calculation
in that way. Ne hope to return to that question
el sewhe re.
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APPENDIX: ALTERNATIVE APPROACH

FOR MASS RENORMALIZATION

As discussed in Sec. III, a second alternative
for the mass renormalization counter term is mo-
mentum dependent and makes ~E =0 for a free
particle. In such cases, the counterterm would
be given by

2n p' f kdkd cos6sz' =—
3m 2m'„k'/2m+k —pk cos8/rn

as compared to (P'/2m)5m/m, where

4n "
Ader

3m, 0+k'/2m

as given in Sec. III. The difference between these
two forms of counter-terms is equal to (P'!2m')
xE(p), where

2Q. " kdkd cos6) 2Q.
" @de

3v q k'/2m+k-Pkdcos&/m 3w, k'/2m+k

1-—ln 1 ——4am' p p3' m m

1+—ln 1+—+—= — Q(p) .P p 2p 4am~

pn, m m 3mP

This would give an additional contribution to the
energy shift

~F.„' =.', n
) [E(p)/m](p'/2m) ( n& =(n ~ (2o/3v)pG(p) [ n) .

(A3)
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In particular, for the 2s and 2P states in hydrogen,
%e have

so

g7lcA gT j.'cll gg $33028 28 28

~Z,', =399 MHz,

4E2p =352 MHz.

(A4)

(A5)
and

~ren ~rCn gg6 62P

AE28 —AF2~ = 47 MHz; (A6) in such an approach.
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