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Extensive calculations have been carried out to obtain the quadrupole shielding or anti-
shielding factors R(nd) for the lowest excited nd states of the alkali-metal atoms. In all
cases except for lithium, an appreciable net antishielding [R(nd) &0] is found. For Li and

Na, R(nd) is approximately equal to the total ionic shielding or antishielding factor y„, as a
result of the fact that the nd wave function vo (nd) for these atoms is essentially hydrogenic,
and hence the overlap between vo(nd) and the core wave functions uo{nl) and their perturba-
tions v&{n/ l') is very small. For Li, y„ is positive, and accordingly 8=—0.25, whereas
for Na, p„ is negative (antishielding), and correspondingly 8=—-3,9 to -4.8, in going from
3d to 5d. For the heavier alkali-metal atoms, namely, K, Rb, and Gs, A(nd) is generally
antishielding, but with much smaller absolute values than for Na. Thus R{nd) lies generally
in the range from —0.2 to —0.5. The values obtained for Rb are the most reliable, and range
from -0.48 for Rb 4d to —0.20 for Rb 6d. For K and Cs, the values of R(nd) obtained are
less reliable, because of the sensitivity of the valence wave functions vo{nd) to the details
of the effective one-electron potential &eff {r}.

I. INTRODUCTION

Values of the atomic quadrupole shielding or
antishielding factors' R have been obtained in sev-
eral recent papers by the present author. ' ' In
these papers, a serious attempt was made to ob-
tain reliable and accurate values, by using valence-
electron wave functions which reproduce the exper-
imental energy eigenvalues' (ionization potentials).
The results of Refs. 2-5 refer to both atomic
ground states and low-lying excited states. Ref-
erence 2 dea1.s mainly with two excited states of
the copper atom; Refs. 4 and 5 concern themselves
with a number of atomic ground states, while the
paper of Ref. 3 is devoted to a study of 8 for the
first three excited nP states of each of the five
alkali atoms. With the exception of the lithium
nP states for which A& 0, it was found that for the
other alkali atoms, 8 is negative (antishielding),
and of the order of -O. i to -0.25, depending upon
the atomic &P state considered. The results for
8 are given in Table XI of Ref. 3, and they enabled
us to obtain accurate values of the nuclear quadru-
pole moments Q of twelve alkal. i isotopes, using
the experimental (uncorrected) values of Q, which
have been compiled in the review artic1e of Fisch-
er. ' The resulting corrected quadrupole moments
of the alkali isotopes (together with those of Cu"
and Cu~')' are listed in Table XIV of Ref. 3.

About a year ago, it was pointed out to the auth-
or by Happer' that a calculation of 8 for the ex-
cited nd states of the alkali-metal atoms would be
of interest, in view' of the experiments on these

excited states which he was then carrying out.
Some of the results of Happer and co-workers
have since been published, ' and although the values
of the quadrupole coupling constants 8 are not very
accurate at present, there is the expectation that
future experiments along similar lines will provide
values which are sufficiently accurate to permit a
check on the atomic theory of hyperfine structure
(hfs) for excited d states, using the corrected Q
values obtained from the hfs for &P states as input
data.

Fol.lowing the suggestion of Happer, a systematic
attempt was made to obtain the values of R(nd) for
a few of the lowest excited & states for each of the
five alkali atoms. The purpose of the present pa-
per is to give the results of this investigation.
Some of the results were rather unexpected, and
most of these features can be attributed to the
very external nature of the nd states (with the ex-
ception of Rb 4d, Cs sd and Gd), and the resulting
small values of (& ') „~, which determines the un-
corrected (valence) part of the tluadrupole hfs.

In Sec. II, we present the method of calculation
of A(nd), and the resulting values of this para, m-
eter. Section III gives a summary and discussion
of the results obtained here.

ll. CALCULATIONS OF R(nd)

The formalism used to calculate R(nd) is essen-
tially the same as that employed in our earlier
papers on this subject, ' ' in particular, Refs. 2
and 3, in which 8 was determined for two excited
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states of copper, and for the excited nP states of
the alkali atoms. In particular, we could use the
radial wave functions ()', (nl —l') of the core elec-
trons of the alkali atoms, which had been previous-
ly determined in Ref. 3. These wave functions are
the solutions of the following inhomogeneous equa-
tion':

——,+, + V, —E, U', (nl —l')iP l'(l'+ 1)

=u'(nl)(r ' —(r ')„,5„), (1)

where p is the electron density in atomic units
(number of electrons per a'„, where a„ is the
Bohr radius). In terms of the core wave functions
uo(nl), which are normalized to 1,

[u'(nl) ]' dr = 1,

V,„.,„(r) can be written as follows:

(2l +1)[u,(«)]
exch( Ry,

n1

where u,'(«) is & times the radia, l. part of the un-
perturbed («) core wave function. The effective
values" of V,(r) —E, (V, is the unperturbed poten-
tial; E, is the unperturbed energy eigenvalue)
were obtained in the same manner as in Refs. 1
a,nd 10:

where the numerical factor (12jv')' "=1.0673.
The potentials" V„z(r) have been tabulated in

Ref. 21, which pertains to the calculation of the
alkali-atom dipole and quadrupole polarizabilities"
o.„and o, With the experimental va, lue' of E,(nd),
we now write

1 d'u,' l(1+1)
u,' dr' (2) V„,(nd) = V„~+a] V,„,„(

The method of solution of Eq. (1) has been de-
scribed in Ref. 2 (see the discussion on pp. 13-15).
The core wave functions u', (nl) are the Hartree-
Fock wave functions of the corresponding alkal. i
(positive) ions. Thus for Na' and K', we used
the functions of Hartree and Hartree"; for Rb'
and Cs', the wave functions of Watson and Free-
man" were employed. For Li, the 1s function of
James" was used.

The valence wave functions ()(nd) were obtained
in essentially the same manner as the valence
functions U(np) of Ref. 3. Thus for the zero-order
potentials V„we used the effective potentials V+
which reproduce the ground-state eigenvalues, as
given in the tables of Moore. ' These effective po-
tentials V„+ were previously used by the author in
a calculation of the dipole and quadrupole polariza-
bil. ities n„and a, of the alkali atoms. " The effec-
tive potentials V„+ were obtained for Li, by Seitz";
for Na, by Prokofjew'6; for Rb, by Callaway and
Morgan"; and for K and Cs by Sternheimer "'8
The potentials V„&(r) should form a very good
first approximation to the effective potentials for
the excited nd states, which will be denoted by
V~(r). The fact that V„+ will not exactly repro-
duce the observed Eo(nd) is presumably due to the
sl. ightly different effects of exchange and correla-
tion for different valence states (nos and nd). For
the purpose of obtaining the radial dependence
(shape} of 5 V=- V„, —V„+, we have assumed that
this radial dependence is given by the Slater ex-
change potential. " %hen this potential is multi-
plied by the factor 3 introduced by Gaspar, and by
Kohn and Sham, 'o it becomes

V...h(r) =-4[3&gx)p]' ' Ry,

where a is an adjustable parameter determined
by the Schrodinger equation for v(nd), namely,

6 )'.~+ I
)'..., I

—&,( &)) ( &)=0.

Thus
~ V,„,„~ provides the shape of the small cor-

rection to the potential V„z. Equation (7) is an
eigenvalue equation for a, i.e., the constant a
must be so chosen that U(nd) will be well behaved
at r- ~. The computer program, which integrates
Eq. (7}, tries a large number of a values, and by
interpolating between two final functions (both of
which diverge very slowly a,s r- ~, with different
signs), one obtains a function which behaves prop-
erly, i.e. , it is approximately proportional to
exp[-~ E,(nd)

~

'~'r] at large r. It may be noted
that the total running time is 32 sec on a CDC-6600
computer, distributed into four calculations of 8
sec each. Between each two successive calcula-
tions, one narrows down the range of a values,
which the computer investigates, by a factor of
-50. Thus initially a is allowed to range from
-0.5 to +0.5 (interval equal to 1), and after the
fourth (final) set of integrations, a is determined
to better than 10 6. We note that this very effi-
cient computer program for solving for a was
devised and written by Peierls. The values of a
are quite small, as would be expected, since V„+
is a good approximation to the actual. effective po™
tential V~.

The method of calculation of R was the same as
in Refs. 2 and 3. In particular„ the values of the
coefficients C(«- l'; n, d; f.) which appear in the
exchange terms of A(n, d) were obtained from
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Table II of Ref. 2. These val.ues are as follows
for the cases of interest in the present work:

C(ns —d;n, d; L =2) =4/5;

C(np p; n, d; L = 1)= 26/25,

C(np- p; n,d; L =3) =36/175;

C(np-f n d L =1)=12/25

C(nP-f; n, d; L =3}=144/175;

C(nd-d n d L = 2) = -12/49,

C(nd —d; &i,d; L =4) =16/49;

C(nd g-n, d; L = 2) = 144/245,

C (nd -g n d L = 4) = 40 '49.

(9)

(10)

(12)

Radial wave functions v(nd) were obtained for
the following states: Li 3d; Na 3d; K 3d, 4d, and
5d; Rb 4d, 5d, and 6d; Cs 54 and 6d. The corre-
sponding values of (r ')~ are given in Table I. Of
course, (r ')~ is obtained from

(13)

Vg= Vns+&'I V-a, I, (14)

where u' is a constant similar to a, which is so
adjusted that the corresponding wave equation

It should be noted that in several cases, we have
actually obtained two wave functions f'or each nd

state, which will be denoted by type e and type b.
Type a wave functions are those cal.culated in the
potential V„,+a~ V,„,& ~

described above. They
are thus based on the potential V„ for each alkali
atom [see Eq. (7)].

Type b wave functions are based on the effective
potentials given by Herman and Skillman, " V»,
which were derived from the Hartree-Fock-Slater
method. " V» in Rydberg units is actually given
by 2ZU(r)/r, w-here U(r) is the function tabulated
in Ref. 22. The potential V, of type 6 is given by

(
d' 6, ~ —,~ V„a'~ V„,„l —8,( d)) I ( d)=0,

@fr)=——2+ V„~+al V,„,„~ —Eo(nd) .6
r (16)

Q(r) is very small in the above-mentioned region
of r, as a result of the almost complete cancella-
tion of the (positive) centrifugal term 6/r""and t'he
(negative) potential term V„& + a~ V,„,„~ —E (nd).
As a result, d'v/dr' is essentially zero, and
since dv/dv is also very small in this region, u(r)
is approximately constant over this interval of r.
A similar behavior has been found for the other
two heavy alkali atoms, i.e., K &4 and Cs «.
However, the cancell. ation described above is ob-

is satisfied by the function n, (nd), which is re-
quired to be mell behaved at &- ~ with the experi-
mental energy eigenvalue E,(nd}, in the same man-
ner as for Eq. (7}with V, = V„+. In the same nota-
tion as for Eg. (15), v(nd) in Eg. (7) should actual-
ly be written as ~,(nd).

In Table I, n, is the principal quantum number
of the lowest unoccupied d state. For greater
ease of identification, we have actually noted the
state involved in parentheses after the correspond-
ing value of (r ')~. The 3d functions for I.i and

Na, and the 4d, 5d, . and 64 wave functions for Rb
are of type a [potential of Eq. (7)]; the correspond-
ing values of (r ') are listed in Table I. The func-
tions v, (3d) for Na and u, (5d) for Rb are shown in

Figs. 1 and 2, respectively. The reasons for con-
sidering wave functions of type b (as an alternative
to type a} can be understood in terms of the behav-
ior of u(5d) for Rb, as shown in Fig. 2. We wish
to point out the nearly flat region of v, (5d} between
r =—2.0a„and r =—4.5a~. This arises from the fact
that the function to be defined as Q(r}, which ap-
pears in Eq. (7), is nearly zero over this range,
and moreover the derivative dv(nd)/dr is also
very smail. Here Q(r) is the function of radius
inside the large parentheses of Eq. (7):

TABLE I. Calculated values of (~ ) „~ (in units a~ ) for the nd states of the alkali atoms.
In the entry for (nd), no is the principal quantum number of the lowest unoccupied d state of
the atom. Actually, for easier identification, we have also listed the pertinent nd value in
parentheses after each (r 3) „~ . In connection with the results for Li and Na, we note that for
hydrogenic wave functions, (r ) & -—1/15n =0.002 469az . For K and Cs, the two results giv-
en for each nd were obtained by means of the wave functions a and b, respectively, described
in the text.

(n(), d)
(n( +1,d)
(no+2, d)

0.002 501 (3d) 0.002 802 (3d) 0.026; 0.074 (3d) 0.1896 (4d) 0.43; 0.79 (5d)
~ ~ ~ 0 ~ 0 0.018; 0.044 (4d) 0.096 35 (5d) 0.156; 0.239 (6d)
4 ~ 0.010; 0.025 (5d) 0,04946 (6d) ~ ~ ~
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4~3
0( '8 81(20)l/2

the value of (r ') ~,„ is 1/15n' = 1/(15)(27) = 2.469
X 10 ' aH'. Thus for Li, we have

(r ')at, t, 2.501
(r ')M „2.469 (18)

and for Na,

viously a delicate phenomenon, and depending on
the extent of the region of cancellation and the
value of dv/dr in this region, a whole variety of
shapes of v(r) vs r can result. This in turn af-
fects the value of (r ') ~.

For this reason, it was decided to recalculate
(r ') in a few cases, using a second type of base
potential, namely, V„s (type 5). For Na and Rb,
the differences between (r ')~ for type a and type
6 wave functions were very smal. l, but this was
not found to be the case for K and Cs. The results
for K, which are listed in Table I, can be under-
stood in terms of a phenomenon which is the 3d
analog of the lanthanide contraction of the 4f wave
function at the beginning of the rare-earth region. "
First, we note that the smaLLerof the (r ')~ values
for K in Table I refers to the type apotential, while
the larger (r ')~ values refer to the type b potential.
Although these values differ considerably in each
nd case, they are always considerably larger than

the values for I.i and Na 3d. These l.atter values
are nearly hydrogenic. In this connection, we

note that for a hydrogenic 3d wave function with

effective charge Z=1, namely,

( ') sr!.Na

(r ')M „2.469

Considering the 3~ wave function, we note that
the values of (r ')

M for K are 0.026/0. 0024't = 10.5
and. 0.074/0. 00247 =30.0 times larger than the
hydrogenic values (for Z,« =1) for type a and type
4, respectively. %'e note that for Na, we have
plotted the 3d hydrogenic wave function, alongside
the Na 3d wave function in Fig. 1, showing that
the two functions are almost indistinguishable.
Actually beyond the maximum at r =9a~, the dif-
ferences are so small that they could not be shown
in the figure. What is happening for K is that this
element is in the region where the 34 wave function
rapidly becomes more internal with increasing Z,
in the same ma, nner as the 4f wave function in the
region of lanthanum (Z = 57) and cerium (Z= 58).
Thus K has atomic number Z =19, and scandium,
with Z=21, is the first element for which the 3d
wave function is essentially internal; for Sc, we
have' (r-')~ =1.428as', as calculated in Ref. 5.
Thus (r ')~ varies very rapidly with Z near Z=19
(K), and this fact probably accounts for the dispar-
ity in the values of (r ')~ obtained with wave func-
tions of type a and b. The same argument applies
to the values of (r ')~ and (r '),„ for 4d and 5«t,

respectively, for the case of potassium. However,
because of the high sensitivity of (r )~ to the de-
tails of the wave functions, we do not consider the
resulting values of 8(+d) for K as very reliable.
Qn the other hand, for Na 34, the two values of
(r ')~ obtained from type a and type 5 wave func-
tions are 2.790&10 ' and 2.813&10 'a~', respec-
tively. The difference is less than 1/o, and the

045 & r

0.40-

0.35-

0.50

~ 0.25

o 0.20

O. I5

O. I 0

0.05

0 2 4 6 8 IO I2 I4 l6 I8 202224
RADIUS r (GH)

0.5

O. I

LA

-Q. l

L I I I I j

0 2

Rb
V, (5d)

8 IO 12 14 l6 I8 20 22 24
RADIUS r (oH)

FIG. 1. Valence wave functions vp(3d) for Na and H, as
a function of the distance r from the nucleus. Note that
the radial wave functions are multiplied by r, and nor-
malized to 1; fo vodr=l. For rZSos, the wave functions

vp(3d) for Na and H are essentially indistinguishable, and
for this reason, a single curve has been shown in this
region.

FIG. 2. Radial wave function vp{5d) for Rb, as a func-
tion of the distance r from the nucleus. The Qat region
of vp(5d) from r - 2aH to r- 4.5aH reflects the near-zero
values of the differential coefficient Q(r) t.Eq. (16)j,
which results in d2vp/dr being nearly zero in this re-
gion. For larger r (r &Ba~), vp(5d) has an essentially
normal third maximum, which is attained at r- 17aH.
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v', (Is —d) = &Z', '(1+ 3Z,r)e—(21)

We note that the value of y„(tonic antishielding
factor)~' corresponding to the functions (20) and

(21) is y = 2/3Z„which for Z, = 2.69 becomes
y„=0.2478. Thus the direct term Rs(3d) =0.2469
is very close toy, and since'~ is so small, as dis-
cussed above, the total 8 = 0.2454 is also approx-
imately equal to z . These results can be readily
explained by the fact that the 3d wave function is
so external to 1+, that the 3d electron acts virtual-
ly like an external charge, for which we expect
that B approaches y .

For the case of Na 3~, the results for A~, A~,
and A«1 are presented in Tabl. e II. For compari-
son, the values of y (nl-I') are listed in the last
column of the tabl. e. Similar to the case of Li 3&,
the values of RD(nl I'}are very close to y„(nf I'), -
especially for the angular modes (I' =/+ 2), namely,
1s- d, 2s - 1, and 2p- f. For the radial mode
(l' =I), 2p- p, the difference between the two quan-

value of R(3d} is therefore believed to be very
reliable.

For Rb 5+y We have also carried out calcula-
tions for both type u and type h wave functions.
The resulting vaiues of (r ')~ are (r ')~,
= 0.096 35 and (r ')~, =0.10897, which differ by
only 13%. The wave functions a were used in
the calculations of 8(nd}, and based on the small
discrepancy between the two values of (r ')„, the
results are believed to be quite accurate.

For the case of Cs 5~ and Cs 6~, the two values
of (r ')~, (n =a, b) differ considerably, and as a
result the values of A{nd) obtained in the calcula-
tions are not very accurate. In the table listing
the final results (Table VII), we have given the
average of the results of two calculations pertain-
ing to wave functions a and 5, respectively, for
both 5& and 6d.

For the details of the calculations of 8, in par-
ticular the direct term BD and the exchange term
A~, we refer to the papers of Refs. 2 and 3. The
programs to calculate the direct and exchange in-
tegrals for A were written by Peierls in connec-
tion with the work of Ref. 2.

The results for A(nd) will now be presented and
discussed. For I.i 3d, we find AD(3d) =+0.2469,
Rs(3d) = —0.0015, giving a total value Jf(3d)
=+ 0.2454. %'e note that in this case, the exchange
term is very small, due to the smallness of the
overlap between the 3d function (see Fig. 1 for
Na) and the internal ls function. For the 1s wave
function, we used the hydrogenic approximation
of James, "with Z, = Z - 0.31 = 2,69. Thus,

u', (Is}=2Z', i're so", (20}

for which the perturbation &', (Is- d) is given by"

TABLE H. Values of the direct terms RD, the ex-
change terms 8&, and the total R for the Na 3d state.
The values of the ionic antishielding factor y„(n/ 1'}
are listed in the last column for comparison fifth the
corresponding entries for R«, .

nl —l' R tot

1s d
2s~d
2P f

0.064 05 -0.000 05
0.2234 -0.0046
0.3098 -0.0069

0.064 00
0.2188
0.3029

0.064 10
0.2286
0.3180

Total (ang}
2P P
Total,

+ 0.5973
-5.043
—4.446

-0.0115
+0.554
+0.542

+ 0.5857
—4.489
-3.904

+ 0.6107
—5.389
-4.778

TABLE III. Values of the terms of R «I (=direct+ex-
change} for the angular modes for Rb 4d, 5d, and 6d.
For convenience, each of the terms has been multiplied
by 10~.

nl E' 10R4~ 102R 5„

ls d
2s d
3s d
48 d
2P-f
3P -f
4u-f
3d g
3d s

Total {ang}

l.711
1.722
1,657
1.715
2.997
2.641
2.733
3.327
0.809

19.312

1,709
1.701
1.579
1.478
2.972
2.522
2.334
3.185
0, 741

18.221

1.709
1.693
1.553
1.402
2 „965
2.482
2.206
3.137
0.718

17.865

tities is somewhat larger, and as a result the
total AD is -4.446, as compared to y = —4.778.
%e also note that the exchange terms are very
small for the angular modes (combined effect
= —0.0115), whereas they are somewhat larger
(+0.554, i.e., 11%)for the single radial mode
present in Na. In any case, the total correction
factor 8 is -3.904, which is of the same sign and
not much small. er in magnitude than y„=—4.778.
Thus the situation for Na is very similar to that
for Li.

For the case of potassium, as discussed above,
a very reliable value of A could not be obtained
in the present work, on account of the sensitive
dependence of (r ')~ on the details of the radial
wave functions. The final values of A calculated
here exhibit a small antishielding (A& 0); these
values were obtained using the wave functions of
type h for which (r ')~ has the larger values.
The values of R(nd) are as follows R(3d}= -0.32,
R(4&) =-0.09, and R(5d) =-0.03.

For the case of rubidium, the 5d wave function
is not sensitive to the details of the potential. , and
the resulting values of (r ')

M for type a and type
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TABLE lV. Values of the terms of R,o, for the
radial modes n/ E for Rb 4d, 5d, and 6d. The last
three rows of the table list the total radial contribution
from all radial modes, the similar total for all arqpdar
modes {from Table GI), and the grand total R for Hb
4d, 5d, and 6d.

2P-p
3P p
3d~d
4p~p
Total (rad)
Total (ang)
Total

-0.0516
-0.4453
-0.1197
-0.0584

-0.6750
+ 0.1931
-0.4819

-0.0482
-0.4159
-0,1097
+ 0.1354

-0.4384
+ 0.1822
-0.2562

-0.0470
-0.4061
-0.1062
+ 0.1788

-0.3805
+ 0.1787
-0.2018

h wave functions differ by only 13$, as discussed
above. It is therefore believed that the calcula-
tions of 8 are reliable and accurate in this case.
We will. present detailed results f'or 8 of Rb»d
obtained with the type a wave functions based on
V~ Icf. Eq. (7)]. These results are presented in

Tables HI-VI. Table III gives the angular terms
R„„(&l- I') for the three states n, (f = 4d, 5(f, and
64. Note that these terms have been multiplied
by 10' for convenience. The radial terms
R„&(nl-I) are listed in Table IV, which also
gives the total angular contribution and the re-
sulting total A~, A~, and A~. As pointed out
above, the 5d wave function (of type a) for Rb is
shown in Fig. 2, as an example of the n, d wave
functions for the heavier alkali atoms.

Tables V and VI give, separately, the direct
and exchange terms in each case, i.e., for each
n~- ~" mode for Rb 5&. We note that for the angu-
lar modes (Table V}, Rz is generally much smal-
ler than A~, so that the resulting values of
R„(nl-(I'} are positive in all cases. The nota-

tion Rs(L,} and Rs(L, ) in the heading of these
tables should be explained. As discussed in pre-
vious papers, in particular in Refs. 2 and 3, the
exchange terms involve the angular momentum
(multipolarity) L of the interaction, and there may
be more than one L value for a given »I - ~' inter-
acting with n, d (n, is the principal quantum num-
ber of valence electron; n the principal quantum
number of core electron). The L-type interaction
energy involves the double integral:

ii( i i; -~;C)
0

where the function g~(r) is defined by

(22)

where I'z(nl -I'; n, d; L) is defined by

I'z(nl - I'; &,(I; L) = —C(nl - I', n, d; L)

x Z(nl —I'; n,d; I.), (25)

and C(nl-I'; n, d; L) is the coefficient given by
Eqs. (8)-(12).

In Eq. (23), v', (nl —I') is the solution of the equa-
tion'

—
& 2 +, + Vo-Eo vI(nl-I')(
O' I'(I'+ I)

', ( i) —,— —, i„.}, (26)
1 1

nl

i( ( I- 'i;,d)= „J ', (nl-(') '(,d)i' drr"
0

ri U' nl-l' u' n d x ~ 'dr
r

(23)

The term Rz(nl-I', n, d; L) is then given by

I's(nI- I'; n, (f; L}
E o e

TABLE V. Values of the direct and exchange contributions for the angular modes (l' &l) of
Rb 5d. For the exchange terms Rz(L &), 4; denotes the multipoiarity of the exchange inter-
action between rd —E' and 5d, as discussed in the text [Eqs. (22}-{25)]. The value of L& is
entered in parentheses after each value of Rz(L &).

RE(I 2)

18
2s ~d
3s d
4s ~d
2p-f

4p ~f
3d g
3d s

Total (ang)

0.017 87
0.024 08
0.01649
0.022 70
0.038 76
0.026 84
0.034 99
0.035 21
0.007 71

-0.000 78 (2)
-0.007 07 (2}
—0.000 70 (2)
-0.007 92 (2)
-0.004 58 (1)
—0.000 52 (1)
-0.005 82 (1)
-0.001 69 (2)
-0.000 30 (2)

-G.029 38

-0.004 46 (3)
-0.001 10 (3)
-0.005 83 {3)
-0.001 67 {4)

-0.013 06

0.017 09
0.017 01
0.015 79
0.014 78
0.029 72
0.025 22
0,023 34
0.031 85
0.007 41

0.182 21
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TABLE VI. Values of the direct and exchange contri-
butions for the radial modes (Z' =Z) of Rb 5d, For the
exchange terms Rz(L &), L& denotes the multipolarity of
the exchange interaction between nl Z and Sd, as dis-
cussed in the text [Eqs. (22)-(25)]. The value of L; is
entered in parentheses after each value of Rz(L;).

nl Z R tot

2P -P
3P P
4P ~P
3d d

-0.1607 + 0.1014 (1) + 0,0111{3) -0.0482
-0.3531 -0.0585 (1) -0.0043 {3) -0.4159
-0.8131 + 0.8588 {1) +0.0897 (3) +0.1354
-0.1103 -0.0009 (2) + 0.0015 {4) -0.1097

Total (rad) -1.4372 + 0.9008 -0.4384

We note that the direct term Ra(« —I', n, d) is
given by

(27)

where the integral I's(nl -I'; n,d) is defined by

I'
D(

nl- 'I; n, d)=, ' [u(n, d})'dr,
0

r'

and the function y(nl -I'; r) is given by

r
y(nl —I'; r) = c(nf -l') a'(nl)v', (nf - I'}r ' dr'

0

+&' u' nl v', nL-L' r 'Ch'

The angular coefficients c(«-&') have the follow-
ing values; 8/5 for ns-d and nd-s; 48/25 for
np- p; 72/25 for np-f; 16/7 for nd-d; and 144/35
for Pll g.

Referring again to Tables V and VI, the num-
bers in parentheses after each entry for Rs(L, )
and Rs(L,) give the multipolarity L of the exchange
interaction involved for A(nl-I'; n,d; L}, as given
by Egs. (22) and (23). As an example, in Table
VI, for Rb 2P- P; the L, , =1 term of R~ is +0.1014,
and the L, =3 term is +0.0111.

The entries of Table V show that for the angular
modes (I' =I +2), the direct terms RD are always
shielding (i.e. , positive), whereas the exchange
terms Rz are negative (antishielding), and general-
ly much smaller than RD, so that the net effect for
each mode is shielding (positive). The largest
ratios of ~RJ/R~ occur for 2s- d, 4s- d, and
4p- f, in which cases (Rs~ /Rs is of the order of

The situation is quite different for the radial
modes, nP-P and 3d-d, as is shown by Table
VI. For the modes 2P- P and 4P-P in this table,

the exchange terms are of the same order as the
direct terms, and since they have opposite sign,
they actually reverse the sign of 8„,for the case
of 4P- P, where B~ = -0.8131 and 8, , =+0.1354.
The large magnitude of Rz(4P-P) and Rs(4P-P;
L = 1)=+0.8588 can partially understood in terms
of the smallness of the denominator (r '}~ in Eqs.
(24) and (27). Thus (r ')~ is only 0.09635az' for
the 5d state of Rb. The interaction energies
I'n(4P-P; 5d) and C(4P-P; 5d; L = I)is(4P-P; 5d;
L = I) are of the same order of magnitude as
(r '}~, because of the relatively large overlap
of the u', (4p-p) perturbation with the valence
wave function v', (5d).

It is seen from Table VI that when the results
from all four radial modes are added, the corre-
sponding total R,~ is negative, i.e., -0.4384, and
thus gives the antishielding effect which is gener-
ally expected for the radial modes. %hen this re-
sult is added to the shielding term 8,„,=0.1822
(see Table V), there is a net total antishielding
8 = -0.2562. Table IV shows that this net anti-
shielding effect exists for all three states, 44, 5d,
and 64, although there is a large variation in go-
ing from 4d to 5d and 6d. This variation is obvi-
ously due to the wide variability of the radial
term (see Table IV), which is in turn due to the
near-cancellation of the direct and exchange terms,
particularly for 4P-P interacting with +d.

For the case of cesium, very extensive calcula-
tions were carried out for the states 5d and 6d,
both with the wave functions of type a and type b.
The situation with respect to the angular terms
R(« -/+2) is essentially the same as for Rb nd.
These terms each give a shieMing, with the direct
term being appreciably larger than the (negative)
exchange term in all cases. However, it may be
noted that the total R(ang) is somewhat smaller
than for Rb Nd. Thus the values are

R(ang; Gd, ) =0.1293; R(ang; 6d~) =0.1257;

(30)

R(ang; 5d, ) = 0.1399; R(ang; 5d, ) = 0.1305 .
(31)

These results are 30/smaller than the corre-
sponding values for Rb, namely, R(ang; nd) = 0.18,
a,s given in Tables III and IV. Vfe note that in Eqs.
(30) and (31), the subscript (a or 5) of nd denotes
the type of valence wave function used in the calcu-
lations.

For the radial modes of Cs 5d and 6d, the situa-
tion is somewhat more complicated. For all
modes exceptfor 5P-P, thenet value of R(=RD+Rz)
is negative (antishielding), i.e., it has the same
sign as the predominant direct term A'~. The
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largest term R(ni-I) among these modes is pro-
vided by 4P-P, for which the calculated values
range from -0.3660 for 6d, to -0.4522 for 5d, .
On the other hand, for SP-P, there is a net
shielding in all cases (i.e., 5d„5d„6d„and 6&,).
This shielding ranges from +0.2219 for 5d, to
+0.3249 for 5d, . (The values for 6d, and 6d, are
intermediate between these limits. } To see how

these results are obtained, we consider, as an
example, 5P-P interacting with 6d, . We have

Rn(5P -P; 6d~) = —0.4125;

R~(5P-P; 6&„1=1)=+0.6360;

Rs(5P-P; 6d~; L =3)=+0.0679,

(32)

(33)

(34)

giving a total R(5P-P; 6&,) =+0.2914. It is obvious
from Egs. (32)-(34) that the J. =1 exchange term
is dominant, and together with the L = 3 exchange
term, it provides a substantial shielding which
outweighs the antishielding produced by the direct
term. The total values of R,~ (as obtained by
combining all modes nl - l) are negative (anti-
shielding), but vary fr'om -0.2697 for 5d, to
-0.4631 for 5d, . The resulting grand total
A =A,~+A~ is antishielding in all cases, with
the following values: R(6d, ) = -0.2552; R(6d, )
= —0.1610;R (5&,) = —0.3232; and R(5d~) = —0.1392.

The average of the two results for wave functions
a and 5 is R(5d) =-0.23+0.09 and R(6d) = —0.21
+ 0.05, where we have included a probable error
of such magnitude as to overlap the results found
with wave functions a and b, separately. These
values are listed in Table VII, together with the
corresponding results for I.i, Na, K, and Rb. As
mentioned above, the values for K a,re only to be
taken as indications, on account of the great sen-
sitivity of (& ') to the type of wave function con-
sidered. For I.i and Na, values for 3d were cal-
culated and are appropria. tely given in Table VII.
The values for 4d and 5d are estimated on the
basis of R(3d) and the limiting value for large &,
for hydrogenic nd wave functions, namely, the
ionic antishielding factor2' y for the correspond-

ing positive ion. Thus y (Li') =0.2478 and y„(Na')
=-4.78 (see Table II).

The results of Table VII exhibit a general anti-
shielding (except for Li), as was expected from
the previous results for the excited nP states of
the alkalis. ' However, for the case of Na, the
antishielding is much larger than the range of
values 8 —0.1 to —0.3 previously encountered
for the alkali atom nP states. As explained above,
the reason is that for hydrogenic nd states (which
exist up to atomic number Z 15), R(nd) approach-
es y with increasing n, and this fact is borne
out both for I.i and for Na. The situation for I.i
3d may be contrasted with that for Li nP (see Ref.
3, Table V), where already the direct term RD is
appreciably less than y (RD = 0.17), while the ex-
change term Rs is also appreciable (Rs = —0.07),
owing to the extensive overlap of the nP wave
function with u, (ls). The resulting R„, is of the
order of 0.10, and thus much smaller than y„
=0.248. By contrast, for Li 3d, we have RD(3d)
=0.2469 (=y„), and Rs(3d) = -0.0015 is very small,
indicating the smallness of the overlap of 3d with
1s, as opposed to the overlap of 2P with ls.

The results for the heavy alkalis (K, Rb, and
Cs) show a much smaller antishielding than y„,
as a result of the fact that the nd wave functions
are much more contracted than the hydrogenic
wave functions. This is, of course, also demon-
strated by the values of (r ')~ in Table I. For
Rb and Cs, the antishielding R(nd) is of the same
order as R(nP) (see Ref. 3, Table XI), namely,
R(n&) —0.20 to —0.25, except for Rb 4d, for
which the calculated 8 is —0.48. However„ in
contrast to the situation for the nP states (Ref. 3),
we must emphasize that for nd states, there is
potentially a large variability of A owing to the
cancellation of large direct antishielding terms
A~ w'ith equally large exchange shielding terms
A~, both of order 0.6-0.8, for the outermost
&p- p excitations interacting with n, d. This situa. -
tion has been extensively described in connection
with the results for Rb in Table VI, and in connec-

TABLE VII. Summary of the resulting values of R(nd) for the lowest three excited nd
states of the alkali atoms. As discussed in the text, the results for Li, Na, and Hb are be-
lieved to be essentially reliable. The values for K have considerable uncertainty, owing to
the difficulty of obtaining a reliable value of {'x ) „& from the radial wave functions. The re-
sults for Cs represent the range of values obtained with valence nd wave functions a and 6,
respectively {e.g. , -0,16 for the wave function 6d&, as compared to -0.26 for the wave func-
tion 6d,).

no d)
(no+1, d)
(n() +2, d)

+ 0.245 {3d)
=0.25 (4d)
=0.25 (5d)

-3.90 (3d)
--4.5 {4d)
--4.8 {5d)

-0.32 (3d)
—0.09 (4d)
-0.03 (5d)

-0.48 (4d)
-0.26 (5d)
-0.20 (6d)

-0.23 + 0.09 (5d)
—0„21+ 0.05 (6d)
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tion with the similar results for Cs 5P-P interact-
ing with 6d [see Eqs. (32)-(34)]. Thus it is possi-
ble to have a rather wide variation in the total R
with increasing &4, although the trend of all of
the values for Rb and Cs is that the total net 8 is
antishielding, and of order —0.2 to —0.5.

III. SUMMAR~ AND DISCUSSION

%e have carried out extensive calculations of
the quadrupole shielding or antishielding factors
R(nd) for the three lowest excited «states of the
alkali atoms. The results are essentially reliable
for the cases of Li, Na, and Rb, while for the cases
of K and Cs, there are appreciable uncertainties,
which are connected with the difficulty in those
cases in obtaining reliable valence &d wave func-
tions. For the case of K, this difficulty has been
attributed to the rapid change with Z of the nature
of the nd wave function from an essentially hydro-
genic function for 8& 17 to an internal wave func-
tion for Z& 21 (case of scandium). This situation
is analogous to the lanthanide contraction of the
4f wave function, which was first investigated by
Mayer. "

In all cases, except for lithium, an appreciable
net antishielding was found. The results are sum-
marized in Table VII. For Li and Na, R(nd) is
approximately equal to the total ionic shielding or
antishielding factor y . This results from the fact
that the &4 wave function for these atoms is es-
sentially hydrogenic (with effective charge Z, =1),
and, as a result, the overlap between v, (nd) and
the core wave functions s,(nl) and their perturba-
tions e,(nl-l') is very small. Of course, for Li,

is positive, and accordingly A =—+0.25, where-
as for Na, y„ is negative (antishielding), and cor-
respondingly 8 =—-3.9 to —4.8, in going from 3d
to 5a.

For the heavier alkalis, namely, K, Rb, and Cs,
R(«) is generally antishielding, but with much
smaller absolute values than for Na. Thus R(«)
varies generally in the range from —0.2 to —0 ~ 5

(with the exception of K 4d and 5d, for which no

reliable values could be obtained, as discussed
in Sec. II).

This situation differs somewhat from that en-
countered previously for the excited nP states of
the alkali atoms, as described in Ref. 3. In that
case, R(nP) was -+O.l for Li nP, and in the range
from —0.12 to —0.26 for all of the excited nP
states of the four other alkali atoms (see Table
XI of Ref. 3). Also the expected uncertainties of
the calculated R(&P) values were sufficiently small
( +0.03), that is was possible to obtain corrected
values of the nuclear quadrupole moments Q of
twelve alkali isotopes (see Table XIV of Ref. 3).

In the present work (and also in the work of
Refs. 1-5), we have used only the first order of
the perturbation of the core by the nuclear mo-
ment Q, and also the first order of the electro-
static interaction between dif ferent eLectrons (e.g. ,
the va, lence electron and a core electron). Recent-
ly, calculations which incorporate some of the
higher-order diagrams in the interelectronic in-
teraction have been carried out by Nesbet, "
Hameed and Foley, "and Ray, Lee, and Das. -'
%e note that these higher-order diagrammatic
calculations are related to the earlier work of
Kelly, '9 and of Chang, Pu, and Das." The caLcu-
lations of Ray et a~."util. ize the linked-cluster
many-body perturbation-theory (LQMBPT) pro-
cedure of Brueckner and Goldstone. " Without a
detailed calculation for the nd states, it seems
impossible to estimate the effect of the higher-
order terms on the values of R(nd), except for
the general comment that the values of A' for the
more highly excited states are expected to be less
affected by the higher-order terms than the values
of R for the ground states or the first excited
states (e.g. , for lithium"" and beryllium").

The effect of the higher-order terms on the
ionic antishielding factor y„has also been inves-
tigated by Ray et at. both for'- Fe" and for the
ions" Rb' and Cs . In both cases, the net effect
of the higher-order terms is small, of ihe order
of 1(P~ for Fe", and 1$~ for Rb' and Cs'. Thus
the first-order calculations of y„ for these ions,
which had been previously carried out by the pre-
sent author" are reliable to at least 10@, which
is the order of the inaccuracy introduced by uncer-
tainties in the zero-order wave functions uo(nl).
In this connection, we may note that extensive
first-order calculations of y„have been recently
carried out by Feiock and Johnson" (relativistic
calcuLations) and by Gupta, Rao, and Sen." The
calculations of Gupta et a&."go beyond previous
calculations, " in that the shielding or antishield-
ing factor has been evaluated not only for the nu-
clear site (y„here denoted by Ao), but also for
various sites within the atom (denoted by &„, for
the site at the &l shel. l).

In connection with the validity of the first-order
calculations presented in this paper, we wish to
point out that similar first-order calculations pre-
viously carried out using the same formalism have
given very good agreement with experiment in

several cases. Thus for two excited states of the
copper atom, ' '" namely, 3&94+' and 3d"4P, the
uncorrected values of the nuclear quadrupole mo-
ment Q differ by 42+4@. When the two different
correction factors C,~ = 1/(1 —R~) = 1/0. 822 = 1.217
and C~ = 1/(1 -R~) = 1/1.175 =0.851 calculated in
Ref. 2 are applied, the resulting corrected values



R. M. STERNHEIMER

of Q(Cue') are in excellent agreement with each
other. A similar situation exists for the config-
urations 4f'6s' and 4f'5d6s' of the terbium atom,
i.e., for the quadrupol. e hyperfine structure of
Tb'", which has been investigated by Childs. "
Again the two uncorrected Q values are brought
into good agreement by applying the two (different)
correction factors C,&=1.1 and CM=0. 77 (see the
discussion in Ref. 3, p. 847).

Besides the striking evidence of considerably
different shielding and antishielding effects for
different atomic states of copper and terbium,
there is additional evidence in favor of the values
of A for excited states calculated by the present
first-order theory. In particular, the extensive
investigation of zu Putlitz and co-workers~0"
has shown that when the quadrupole moments of
Rb" and Cs'" are obtained from different excited
atomic nP states, there is appreciably better
agreement between the values of Q obtained from
different states, when the correction factors
C„,=1/(1-A„,) for each state are appropriately
applied, than without these correction factors.
As an exampl. e, Bucka, zu Putlitz, and Rabold"
have shown that for the uncorrected "experimen-
tal" values Q„. p$

for Rb and Rb",

Q~,„v, /Q~~, „v, (Rb8', Rb8~) = 1.07 + 0.03, (35)

which can be compared with the calculated ratio
C~/C~ = 0.840/0. 796 = 1.055. The improved agree-
ment for several alkali isotopes, when the calcu-
lated values of C„, are applied, is shown specifi-
cally in Table XIII of Ref. 3.

Summarizing the situation, there is extensive
evidence from a number of excited atomic states that
the first-order perturbation theory for A used
in the present work gives good agreement with
the experimental results on the quadrupole hyper-
fine structure.
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