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A Monte Carlo method is used to calculate the excitation spectrum of He II. The variational
Inethod and the trial wave function of Feynman and Cohen (FC) are used. No approximations,
such as the Kirkwood superposition approximation, or estimates are employed. Important
terms in the FC calculation are found to be in error by as much as 10-207' but the Gnal an-
swer, A =11.2 K, at the equilibrium density, is hardly different from the FC value D =11.5
K. Results of calculations for densities up to 1.2 times the equilibrium density (i.e., the
freezing density) are also presented; we find that the FC wave function does not lead to the
expected pressure dependence of 4. Some modifications to the usual Monte Carlo methods,
necessary for this calculation, are discussed.

I. INTRODUCTION II. CALCULATING THE SPECTRUM

The careful and ingenious variational calcula-
tion of Feynman and Cohen' (FC) of the excitation
spectrum of Hen gave the first (and perhaps only)
detailed insight into the structure of the roton and
illuminated the role of the He-He interaction in the
properties of the energy spectrum. Some ques-
tions were raised by their work, however, and
remain. How good was their estimate of the errors
involved in the Kirkwood superpositiorP approxi-
mation? How about the neglect of oscillating in-
tegrands and other analytic approximations'? Why
does the FC spectrum not seem to approach the
Feynman phonon' spectrum for k- 0? %hat is
the effect of using an "up-to-date" structure factor
in the calculation? Is the FC method able to re-
produce the behavior of the roton energy under
pressure? And finally, how good is the FC wave
function in the first place? The present work is
an attempt to answer these questions.

In Sec. II we review the FC theory and explain
how the Monte Carlo method' is appl. ied. Tail
corrections are very important in this calculation
and must be handled carefully to obtain sensible
results; this aspect of the problem is discussed
in detail. Section III presents the results of the
calcul. ation and a comparison with FC. In the
Appendixes we comment on the "sparse-averaging"
Monte Carlo technique used here and on a simple
lattice -sum technique.

A. Theory of Feynman and Cohen

FC write for a trial wave function

where

g(r) = Ak r/r' (2)

and P is the wave function of the ground state. The
function g(k) describes an excitation of wave vec-
tor k; since g(k) is an eigenfunction of momentum
(with eigenvalue kk) the expression

provides a variationally correct estimate of the
energy for each k. Variation of the parameter
A in (2) leads to a still better estimate of E(k)
We can imagine Eq. (1) as describing a motion
consisting of a representative atom moving through
the system with wave vector R and a flow ("back-
flow" ) around that atom. The backflow has the
velocity potential g(r), which has the form of
the ordinary dipolar flow around an object moving
through an incompressible fluid.

In order to simplify the calculations FC expanded
the exponential in (1) and calculated instead with
the trial function
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which does not substantially change the physical
content of g, so long as the Qg is not too large.

The Hamiltonian II has the standard form

H=g —, v, .—,'QV(r„),
2

and we have used

(4)

(5)
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V( r}= 4~ [(o/r)» —(o/r)'], (6)

with o =2.556 A and e/ks =10.22 K. FC found that
when (4} and (2) are substituted in (3) an expres
sion of the form

I, =(IsI'&/N,

f,=2((lm S)(HeT) —(Re S)(lmT))/N,

I,.=(ITI'}/N,

where we define

(Bh)
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results, where S(k) is the structure factor for the
ground state and I„I„.. . , I,o are integrals in-
volving g, Vg, and two-, three-, and four-point
correlation functions. The dependence on A is
exhibited explicitly.
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8. Reformulation of the problem and
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The evaluation of the three- and four-point aver-
ages by Monte Carlo averaging is very costly,
especially since the integrands are complicated
and often highly oscillatory because of factors of
e'"' which appear. It is possible, however, to
rewrite the Feynman integrals as N-point averages
(where N is the number of particles in the Monte
Carlo system and Na 50). There is only one N
tuplet for a given configuration versus roughly
N'/6 triplets or N'/24 quadruplets. The snag of
course is that the quantity to be averaged is still
more complicated, in our case generally involving
a double summation as well as g, Vg, etc. The
labor of calculating in this way is thus comparable
to that involved in calculating a two-point average,
however, so we still gain via the reformulation.

Here, in detail, is what we mea, n. Substituting
(4} and (2) in (3) and expressing the results in
terms of ground-state configuration averages
(denoted by angular brackets) we find

(10a)

e3 k. r,. ~{i) (10b)

all summations going from j. to N, k=z, and

g, (r) =(Ak) 'g(r) =(k ~ r)/r'
Thus each FC integral involves only a double sum-
mation for each configuration of N particles, ex-
cept for I, =S(k), which re(luires only a single
sum. The simplification we have achieved is of
the same sort that enables efficient calculation
of elastic constants by Monte Carlo techniques. '

Because the terms to be averaged are quite
complicated it is inconvenient, and unnecessarily
expensive, to compute using the standard "block-
averaging" technique in which the terms are re-
calculated each time a particle is moved, or a
move rejected. Instead we calculate contributions
to the averages much less frequently, typically
once every four passes through the N particles.
Little information is lost in this way since con-
figurations sampled more frequently would be less
independent. This "sparse-averaging" technique, '
which has been employed previously' for the calcu-
lation of three-point averages, is discussed fur-
ther in Appendix A.
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C. Tail corrections

The last question to be faced is the problem of
tail corrections. Because the computing time per
configuration increases as N', only relatively
small (X=50 to 80) systems were considered.
(This is large enough to give accurate values for
the parameters of the ground state and also, we
expected, for the excited states. } Even for three-
point averages, however, the problem of evaluating
tail corrections is complicated by the contributions
of triplets forming "thin" triangles where, say,
~» 0 but r» = v. For R-point averages the situa-
tion is still more complicated. %'orse, the factors
g and Vg decay very slowly with distance so the
tail corrections are quite important.

Our idea to overcome this problem is as follows.
The Monte Carlo configurations are generated in
a box with periodic boundary conditions; we can,
of course, also regard the configurations as in-
finite, but periodic. This is what we do, except
that we do not regard the flow superposed on the
ground state as periodic. Thus when we consider

to include is the contributions of "thin triangles"
(and similarly deformed higher-order polygons).
This contribution is sensitive to the correlation
between the vertices of the short side, but much
less so to a correlation which gives a weak bias
to the direction and length of the long sides. The
latter is the false correlation we have introduced
by periodically extending the system and we are
therefore motivated to neglect it.

Now use the above approach to transform the
I's, and redefine G"', H'", etc. according to (13).
Consider I, , i = 1, 7. The Q, generates a factor
N~ which is canceled by the factor N~ by which
the number of particles in the system is increased.
Hence

Furthermore, provided k is a vector of the recip-
rocal lattice, we have

I,. -%BI, , i =8, 10 (15)
we mean for the summations to go over every par-
ticle in the infinite periodic system. If % is chosen
as a vector of the reciprocal lattice of the lattice
of Monte Carlo boxes, then the first summation
becomes trivial:

images of ij in one box

(13)

in which performing the infinite sum is reduced
to performing a lattice sum of the form

cosO R- r

IR- r„l'

where r„ is a lattice vector indexed by ~. The
summation over images of i does not appear in

(13}but it is identically zero. A simple but effi-
cient method of evaluating this and another lattice
sum we required is discussed in Appendix B.

%e have found a way of averaging over configura-
tions with a large (infinite) number of particles,
but of course the question arises whether the class
of periodic configurations is an adequate sample.
Recall, however, that the physics we are trying

i in one box

where IVs is the number of boxes (temporarily
regarded as finite). The second summation, how-

ever, receives a different contribution from each
box:

again redefining the Q,. in S and T according to
(13). Hence the IVs's cancel out of Eq. (7) and Es
can be regarded as infinite.

The calculations were done in two stages. First
ground-state configurations were produced by a
Monte Carlo4 program and checked by comparison
of the ground-state properties with the molecular-
dynamics calculations of Schiff and Verlet. ' Can-
figurations of 50, 64, and 80 particles were gen-
erated, although the bulk of the running was done
with N =50 and N =64. The configurations were
then analyzed as described above. Reciprocal-
lattice vectors pointing along the coordinate axes
were used and the results for different k but equal
k were averaged together. Because there are ten
separate integrals and because moderately complex
lattice sums had to be evaluated for each pair in
a configuration, the calculations were fairly
lengthy. At least 20 minutes of computing time on
a CDC 6600 computer (150 50-particle configura-
tions or 100 64-particle configurations) is required
to obtain adequate statistical precision and at least
two runs with different N are necessary in order
to obtain a dense enough set of reciprocal-lattice
vectors. Representative results are shown in
Fig. 1, where I» I„and I, are plotted as a func-
tion of k for the equilibrium density p =0.02185/A'.
There is no detectable IV dependence (indicating
that our configurations are large enough, and that
our method of incorporating the tail corrections
is working according to expectations). These
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T = Qe'k'~ g(r„.}

= Q e'"' "i g(r, , )

geik r. g& k (16)

or

eik I. F(i)

The second sum in (16), L"', is the villain. In
a nonperiodic configuration the contribution from
particles in a shell at r» v is the order of the
angular average of e'"' [(cos8)/r'jr'dr, i.e. ,
shells at r =~ contribute equally with nearby
shells. In the lattice sum of g's, however, the
periodic structure leads to a more convergent
situation where the contribution of successive
shells decreases with r.

Equation (16) also provides the seed of the solu-
tion that we adopted, which was to evaluate T in
the form (17}, and carry out the Q,.„.only for r, ,
up to some cutoff radius r, (within the Monte Carlo
box, i.e. , r, &-,'a, where a is the box side). The
sum E"' was then corrected by adding

p e'k'g, (r}dr .

If r, is chosen to be —,'a exactly then this correction

results, which will be discussed in Sec. III, are
quite consistent with those obtained by FC.

In Fig. 2 are plotted results for Ig. These are of
special interest because it was found necessary in
this case (and for I„)to abandon the lattice-sum
method. ' A clue to the reason for the catastrophe
is found if T {Eq. (9f)j is rewritten

is precisely zero (since we use 0 =2vn/a, a
=1, 2, . . . ). Results of calculating Ig in this way
with N = 50, 64, and 80 and p = p, are shown in

Fig. 2 as triangles, circles, and squares, re-
spectively. Also shown are the results of FC,
which fall within the statistical uncertainties in
our results. The objection to the lattice-sum
method applies only to Ig and leap and, so far as we

can tell, there are no other pitfalls lurking in the
method. The internal consistency of the results
(for different iV's) and the agreement with the
analytic but approximate work of FC bolster this
belief.

A final point is worth mentioning. When eval-
uating I, FC introduce a convergence factor e '"
in g(r) in order to get rid of an unwanted term
This physically motivated modification of the trial
function was also found to be necessary in the
present work. The net effect of the substitution
(after e is allowed to approach zero) is to add
——,mp to each H,")

~ The reason for the difficulty
is that I, is essentially the integrated momentum
density. It is well known from the theory of clas-
sical fluids" that such integrals are only condi-
tionally convergent. The introduction of a con-
vergence factor and a density profile p(r) which
vanishes near a surface makes the classical inte-
gral well defined and equal to the impulse.

III. RESULTS AND DISCUSSION

A. Energy spectrum

The final excitation energy is determined by
minimizing (7) with respect to A using the values
of I,, determined in the Monte Carlo calculation.
In Fig. 3 we plot the quantity E,/E, of FC, which
is the ratio of the variational excitation spectrum

y N=64
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FIG. 1. FC integrals I 2, I 5, and S
& (in Angstrom

units) for the equilibrium density, as a function of wave
number. Results of runs with 64 and 80 particles are
shown.

FIG. 2. FC integral I&, evaluated using Eq. (17), as
a function of wave number. Results of runs with 50, 64,
and 80 particles are shown. The original calculation of
FC is given by the plus symbols.
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just determined to the spectrum'

E, (k) =k 'k'/2l S(k). (18)

Equation (18) is the "Feynman spectrum" resulting
from the trial function

yQ elk'E( (19)

Results for a number of runs at p = po are shown,
together with the values determined by FC. Also
shown on the same graph is the optimum value of
the variational parameter A. .

Noteworthy is the fact that E,/E, approaches
unity and A. zero for 0-0; this simply. reflects
the fact that the simple Feynman wave function
(19) is exact in this limit. These features are not
exhibited by the calculations of FC, however. One
should not be surprised at this as one of the ap-
proximations in FC depends on, the neglect of in-
tegrands oscillating from factors of e~&'&, an ap-
proximation which fails for small k. We see that
trouble sets in for k~1.8 A. FC were fortunate
indeed as this is just the location of the roton mini-
mum.

In Fig. 4 we plot the actual energy spectrum for
three densities, p =go, 1.1po, and 1.2po, which is
near the solidification density at T =0. We also
show for comparison the neutron scattering data
of Yarnell eI; a/. " The roton parameters we find
for p =~o are L =11.2 ~0.5 'K and ko =1.75 ~0.05 A

compared with 6 =11.5 ~ 0.5 K and ho=1.85 A '

obtained by FC. The closeness of the agreement
is actually somewhat fortuitous, as w'e discuss

below.
The results at higher densities are a little bit

surprising. Experimentally" the roton gap de-
creases by about 201 as the density increases to

p =1.2po. Such a change would be readily resolved
in this calculation, but instead we see that b, comes
out independent of pressure within our uncertainty.
It is true that the roton minimum is almost twice
as deep at p =1.2po as at p = po and this may be a
remnant of the expected behavior. The deepening
of the minimum is, however, due mostly to the
sharpening of the first peak in S(k). It does not
seem, therefore, that the FC wave function is as
good as has generally been believed. The error
in the wave function, which is one order lower
than the error in tne energy, must be substantial
at the freezing density, where b is about 500$

higher than experiment. One advantage of the
Monte Carlo method is that different and more
complex trial functions can be used without gen-
erating insurmountable analytical diff iculties.
Introduction of one additional free parameter would
be economically quite feasible, especially if the
search were confined to the vicinity of the mini-
mum at ko. Such calculations should be under-
taken.

There may also be a slight shift of ko to higher
wave number with density, which would be consis-
tent with the 10 jg shift observed experimentally.
The values of the roton effective mass p, at the
three densities were found to be approximately
0.17m, 0.17m, and 0.13m, which can be com-
pared with the observed" 0.16', 0.15m, and
0.13m. The behavior of p reflect;s the deepening
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FIG. 3. Upper curve: The ratio E2/E& of the FC spec-
trum to the Feynman spectrum. The original calculation
of FC is given by the plus symbols. Results of runs with
50, 64, and 80 particles are shown. Lower curve: The
optimum value of the variational parameter A.

FIG. 4. The FC spectrum, as determined in this work,
for three densities: solid line, p = p(), dashed line,
p = l.lpo, dots, p =1.2po. The raw computer calculations
are shown only for p = po. The lower solid curve is the
experimental dispersion curve from Ref. 11.
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of the roton minimum discussed above.
One curious feature of the results is the close-

ness of the variational and experimental curves
for 0=1.5 A. This probably reflects an inadequacy
in the representation of the ground state, however,
rather than excellence of the trial wave function.
In particular, the results depend sensitively on the
value of S(k) in this region. We have used the
Monte Carlo/molecular-dynamics results for
S(k) throughout rather than an experimental S(k).
One reason is simply for consistency and the other
is that there has been a significant drift in ex-
perimental S(k)'s over the years. " lt is interesting
to note, however, that the experimental S(k) is in
fact slightly smaller in this region than our S(k),
which would lead to a larger E(k).

8. Ft" integrals

The conclusions presented in this section apply
to all densities examined although the numbers
quoted will refer to p =pp.

There are two main sources of error in FC
which are avoided in the present calculation. The
first is the use of the Kirkwood superposition
principle and the second is the neglect of terms in
various integrals on the basis that oscillating fac-
tors of the form e' '' render their contributions
small, or the assumption that g, (r) is slowly vary-
ing compared to the correlation functions.

In addition the two calculations can be expected
to differ because the ground-state ft) is different,
i.e. , the P(r) and S(k) used by FC are not the
same as those implied by the Jastrow wave func-
tion we have used. As remarked above the excita-
tion spectrum is sensitive to the details of S(k),
particularly in the region around 0 =1 to 1.5 A ',
where S(k) is changing rapidly. This dependence
of the FC spectrum on the ground state has been
investigated in detail by Burke et al."

The validity of the Kirkwood superposition prin-
ciple in systems of comparable density (argon at
liquid densities) has been investigated by Krum-
hansl and Wang. " Their results are consistent
with the FC analytical estimates, which show the
approximation to be quite good when used in the
I,. 's. In fact, the FC estimate of the error intro-
duced by the Kirkwood principle is the order of
our own numerical uncertainty so we can do little
to improve the estimates of FC.

On the other hand, we have found that some
significant errors are introduced by approxima-
tions [Eqs. (40) and (41) in FC] based on the as-
sumption that g, (r) is slowly varying in the range
2~ r ~ 4 A. For example, I, is estimated by FC
to vanish to a precision of 0.001 A '; we find

lV. CQNCLUSIQNS

We have been able to carry out a complete and
consistent Monte Carlo calculation of the FC in-

Q 02I—

(A ')

QQ[—

Q.QQ

0.5 1.0 1.5 20 25
k(A")

FIG. 5. I C integrals I, and Iv, as a function of wave
number, as determined in this work.

(Fig. 2) that I„an oscillating function of k, is
0-0.003 A ' near the roton minimum. And the esti-

mate I, = —,vpi, [Eq. (58) in FC] is in error by
0.002 to 0.004 A in the vicinity of the roton mini-
mum. (See Fig. 5. ) FC approximate I, and I„,by
neglecting terms containing the oscillatory factor
ei] '~, which clearly is a poor approximation for
k-0. But even for k =2 A ' the approximation
I„=I, fails by about 10'/g. I,, is a constant, ac-
cording to FC; Fig. 1 shows this is only a rough
approximation, although by chance I, (k) is fairly
flat in the vicinity of 0p.

Each of the errors discussed in the previous
paragraph typically lead to an error of 5% or so
in E(k) or E,/E„and differences in S(k) and II(r)
could easily account for another 5 to 10%. A net
error of 20~/c or more would not have been unex-
pected. That our result ~ =11.2 K is within 0.3 K
of FC is therefore a surprise.

The Monte Carlo averages for the normalization
integrals I„I„and I]p are very noisy and limit
the precision of the calculation. The noisiest of
these is I, =S(k). Fortunately, however, I„ in-
volving only a single sum, is an order of magni-
tude cheaper to calculate than the other I' s. Hence
in the results presented here we have used values
of S(k) taken from much more extended Monte
Carlo runs. The only effect of using the accurate
S(k)'s is to reduce the scatter of the results by
about a factor of 2. The central values do not seem
to be affected.
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tegrals, without recourse to approximations other
tha, n the Jastrow approximation to the ground
state. Our results differ in detail, at points sub-
stantially, from FC. The roton parameters, how-
ever, are in substantial, albeit somewhat for-
tuitous, agreement with FC.

Calculations at elevated densities did not show
the expected decrease of 6 with density, raising
a question as to the excellence of the FC wave
function. The Monte Carlo approach allows, how-
ever, the possibility of treating more realistic
wave functions.

We plan to extend these calculations to two di-
mensions in the hope of gaining insight into the
properties of rotonlike states in films and re-
stricted geometries where large van der Waals
forces restrict the motion of the helium atoms.

APPENDIX B: LATTKE SUMS

The most general and elegant method for doing
lattice sums that we know of is the method de-
scribed by Nijboer and de Wette" which involves
splitting the sum into a highly convergent part
and a part which is Fourier transformed to make
it convergent also.

For our purposes their method suffers on two
counts. First, it involves two sums, and also
special functions which are inconvenient. Second,
for one of the lattice sums we need their method
does not converge. Consequently we used a much
more naive, but, for our purposes, equally effec-
tive method.

We have to evaluate lattice sums of the type

A = PJ (r„-R}, (Bl )
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APPENDIX A: SPARSE AVERAGING

The complex nature of the averages we evaluate
in this work makes the sparse averaging technique
described in Sec. IIB very useful. This method,
suggested by Woods, ' and used by Murphy et aL. '
to evaluate three- and four-point averages, con-
sists of averaging over a relatively few configura-
tions selected from the totality of configurations
generated by the Monte Carlo program. If the
sampling interval is sufficiently small very little
statistical information is lost; the larger the in-
terval, of course, the lower the computing costs.

We made a number of runs for liquid helium
employing the usual "block-averaging" system
and also spa. rse averaging with an interval of 4N
(four passes through the N particles). The results
for averages of ~ ', ~ ", and r ' agreed to within
statistical errors. Furthermore the statistical
deviations were essentially equal for the two meth-
ods.

The interval 4Ã, which impl. ies that each particle
has been moved an average of about two times,
seems about optimum for simple averages like
(r"). This implies a saving (presuming no loss of
information} of about a factor of 2 in the time
taken to calculate the averages. Intervals of 6'
and 8N were used in the present work for two
reasons: (i) Even for an interval of 8V it still
took substantially longer to evaluate the averages
than to generate the configurations. (ii) For an
interval of 4N weak correlations between succes-
sive configurations were detected in some of the
I, .

where r are lattice vectors indexed with A. . We
write this

p (jn) + g (out)
) (B2}

where in 3"") the summation. goes over the lattice
vectors in a. (small) cube centered at the origin
and A."""includes all the other terms.

Now expand

A"""= A"""(0) R VA""'(0)

+ (higher-order terms). (B3)

Because of the cubic symmetry, for the case f(r)
= (coss)/r' the first nonzero term in (B3) is

——, RRR: V VVA """(0) = —
6 RRR:g V V Vf ( r q).

A"""=cj-",z"--'(x'+v')z] (B5)

where

c = P —,
' (105g' —21r '„)r

and

R=(J, y, ~),

Equation (B6) can be evaluated once and for all
by the method of Nijboer and de Wette or by brute
force. The answer, taking the sum in A"") over
the nine lattice vectors nearest the origin, is

c = 1.406. (B7)

We also need the components (j, rl, $) of VA and
we similarly find

(B4)

Performing the indicated operations and using the
cubic symmetry one finds
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g(out& cf &2 i (+2 +~2)]

~(out)

g"""=cxz.

(B8)

We found that so long as H is referred to the
nearest lattice point that (B5), (B'7), and (B8) give

3, and 7'2 accurate to about 0.1"j~, which was ade-
quate for our purposes. If more accuracy is de-
sired, more ~'s can be included in A""' but be-
cause the convergence goes like a power it even-
tually becomes advantageous to switch to a method
like that of Nijboer and de Wette where the con-
vergence is exponential.
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