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Time-dependent Landau theory for the smectic-A-nematic phase transition
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A time-dependent Landau theory is proposed for the smectic-A-nematic phase transition.
It is shown that the nematic viscosity coefficients exhibit a pretransition effect similar to
that for the elastic constants.

I. INTRODUCTION

According to the microscopic theory, " the
smectic-A-nematic phase transition is expected
to be second order when the temperature range
of the nematic phase is large. Second-order tran-
sitions have now been observed'' for several ma-
terials. deQennes' and this author' have written
down a Landau theory for this transition, and
deoennes predicted a pretransition increase in

the twist and bend elastic constants of the nematic
phase. This effect has been observed' ' in a num-
ber of laboratories. It has, of course, been known
for a long time that the cholesteric helix unwinds

at the smectic-A. -cholesteric transition as a result
of stiffening of the twist elastic constant.

There has been some recent theoretical. work on
the dynamics of the smectic-A. -nematic transition
by Brochard'0 and by Kobayashi. " Light-scatter-
ing experiments are in progress at Qrsay and by
the author to measure some of the relaxation
times. Mieboom" has recently observed a pre-
transition increase in one of the nematic viscosity
coefficients (y, ) using the Tsvetkov method. "

In this paper, we examine the pretransition ef-
fects on the viscosity coefficients theoretically in

order to explain Mieboom's results and to provide
a theoretical. framework for the interpretation of
the light-scattering experiments. %e mill. extend
the Landau theory to a, time-dependent Landau
theory in the usual way by adding a viscous time-
dependent term. The smectic-A order parameter
is coupled to the nematic director and one must
incorporate the Leslie-Erickson nematic hydro-
dynamics" " to describe the time dependence of
the director. Having written down the theory, we
can then calculate the effective viscosity coeffi-
cients in the nematie phase, taking into account
thermal fluctuations of the smectic order param-
eter. %e find pretransition effects in the rotation-
al viscosity (r, ), the shear alignment viscosity
(r, ), and in one of the anisotropic liquid viscosities
(~i,")

After this work was completed, I learned of a
similar but more sophisticated calculation by

Janig and Brochard, ' who used a linear-response
method assuming restricted dynamical scaling"
for the smectic order parameter. The present
work was intended to provide a simple physical
explanation of the pretransition effect and was
carried out using the mean-field approximation.
The present results agree with those of Janig and
Brochard if we use the dynamical scaling assump-
tion for the smectic viscosity coefficient.

II. TIME-DEPENDENT LANDAU THEORY

Ne will. assemble the theory from various known

parts. Ne begin with the free energy as a function
of the smectic order parameter g and the nematic
director n.

d'r Q(r)p' '+&y' C+„~ (n. v7 iq, )yi
'

+C~l»&~el'+~&„, (& n)'+~&»

x[n (gxn)J' +'K„[nx(gxn)]' & (n ~ H)'[

(~)

y(r) is a complex scalar order parameter describ-
ing the density wave in the smeetic-A phase. The
particle density is given by

O(r) =P.[l+lte[O(r) J) .

The parameter A is usually assumed to vary lin-
early with temperature and the other parameters
are temperature independent. If one then treats
the order-parameter fluctuations as a perturba-
tion, as we will do in this paper, one obtains
classical exponents for various physical properties
near the critical temperature. In order to obtain
the proper critical exponents one must treat the
order-parameter fluctuations in a nonperturbative
way. However, deQennes has shown that one can
assume that

A(T) =A, (T —T,)"

in the nematic phase and obtain approximate crit-
ical exponents perturbatively. Equation (3) will
be used in this paper. The director n(r) is a unit
vector pointing in the direction of the local optical
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axis. The local torque acting on the director is
described by a molecular field"

where the torque is nxh. The generalized force
acting on the smectic order parameter is

ar
8$

We now include the Leslie-Erickson hydrodynam-
ics to describe the dynamics of the director. The
frictional torque acting on the director is written
as

dn A, ~I'=nx yo, ——~&n +y20An
dt

where ~= ~~~v is the local rotational velocity of
the fluid, A is the shear rate tensor

]. dU dv,.
A. "=-, ' +,dx. dx

and v is the local fluid velocity. Neglecting the
rotational kinetic energy one sets the frictional
torque equal to the elastic torque

I'=nxh .

eters in the Leslie-Erickson hydrodynamics. It
is convenient to define the Miesowicz" viscosities
which are the anisotropic liquid viscosities mea-
sured with the director held fixed (g,"measured
with the director parallel to the flow direction,
q", measured with the director parallel to the ve-
locity gradient, and q, measured with the director
perpendicular to both the flow direction and the
velocity gradient). In terms of the u's and y's, one
finds"

~2 —~1.
—&a~ 'I3-&~a

(14)

—+v VQ

It is convenient to take y„y» q,'", and 'q,"as four
independent parameters. The fifth, which enters
only in measurements along low-symmetry direc-
tions, will not be discussed here.

The above theories have been borrowed from
various sources and are a, ll well known. The only
addition we wish to make is to include the relaxa-
tion of the smectic order parameter by writing
down the relevant time-dependent Landau equation:

The director motion is coupled to the fluid mo-
tion and the Leslie-Erickson expression for the
stress tensor is

~jj +pk~p~kp~i~j + 2 i j + 3 j i

+ &4&)j+0'Pg~~&a j + &6~j"a&~a ~

where

dn
N =——u)xn

dt

and the equation of motion is

(10)

+v ~ &4* (c c )

Using the local torque

~g = ~xy +~ye

and an Onsager relation, one finds

&X = ~3- ~2

&2=~6 ~5= ~2+~3

(12}

so that there are five independent viscous param-

where p is the fluid density and P is the pressure.
The local force density due to the viscous drag of
the smectic order parameter on the fluid is

The time derivative on the left is taken in the ref-
erence frame moving with the liquid. The y, re-
laxation process describes the motion of the
smectic planes relative to the background liquid
and this involves diffusion of molecules from one
smectic plane to the next. We have inserted the
appropriate viscous term in {10}.

The parameter y, is a viscosity and is expected
to have the magnitude and temperature dependence
of an ordinary liquid viscosity outside the critical
region. We make contact with Ref. 17 by using
dynamical scaling arguments for z, using the
analogy to the ~ transition. The smectic order-
parameter relaxation time T = l,/44 is propor-
tional to $' ', where $ A ' ' is the coherence
length. Thus y,

-
5

'~' in the critical region.

III. NEMATIC VISCOSITY COEFFKIENTS

In this section, we compute the effective viscos-
ity coefficients in the nematic phase near the
smectic-A. -nematic phase transition. We will
show that there is a pretransition increase in the
viscosity coefficients in addition to the pretransi-
tion increase in the elastic constants found by
deQennes.

We begin by considering the effect of a moving
director on the thermal fluctuations of the smectic
order parameter. We first write y(r) as a Fourier
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series in a box of unit volume: which is

v(r)=g~, &"' .

%ith the fluid at rest and in the nematic phase,
the time-dependent Landau equation for p, is

[A+C (n q —(f.)'+C, (n&'q)'i 4', +g, (t),Bt y3

where g, (f) represents the coupling of the smectic
order parameter to a thermal reservoir. The
function g, (t) is a Gaussian distributed random
variable which drives the thermal fluctuations of

We consider the case where n is uniform in
space and rotates with a constant angular velocity
Q. This is the geometry of the Tsvetkov measure-
ment of y, and will enable us to compute y, . %'e

write Eq. (17) as

dg 1
at' = (18)

where

1/2r, (f)=(2/y, )[A+C„(n q —q, )'+C, (uxor)'] .

(19)

For fixed q, 7, is a function of time. The solution
of Eq. (18) is

kg
' «A+C»(n q —4(,)'+C, (n&(:q)' '

Comparing Eqs. (23) and (24), we find that we
must choose

(g, ) = 4k T/y, . (25)

The time-dependent mean-square fluctuation sat-
isfies

Thus (42(t)) approaches the equilibrium value
with time constant 7, (t).

Now we consider the case of a uniform director
rotating slowly. %e take

n, = sinhkt, n =0, ng-cosQt

so that the director points in the ~ direction at
time t = 0. We assume that Qt, «1, where &, is
the longest time constant in Eq. (19}; That is,

~, =- y, //4A .
We substitute (27) into (19) to find r, (t) and then
use the exact solution (22) to find (4&,'(0)). To low-
est order in Q, we find

AT C,q,q, y, kTQ
'I'a =

D 8D3

dt"
'Pq(t) = exp —

27 (t )
g (f ) df

OO 2, (t )
(20)

D, =- A + C, ((1, —q,)'+ C,q'„, (30}
We now compute the mean-square amplitude at
time t averaged over an ensembl. e of functions

~.(i)

((!('» f«' u=—ef 2, ,„&)

ds"
x 48 exp — „g~*t g s

=-(g', )7, (f) . (23)

In this limit, the time-dependent theory for the
mean-square fluctuations should reduce to the
value given by equilibrium statistical mechanics,

(21)

The value of g at time t' is uncorrelated with the
value at +' so the correlation function vanishes
unless t' =s'. %'e find

((!(&» 'rr '& f «' xy(=-, f. , ,„&) .

In the adiabatic limit ~~i'~t «1, we find

(()&q(f) )= &4",(f)),

I'x = Q [- 2C» ((fc —Vo)(fx+2C&. Vz'Pxl(}&,
' —2)t HP,

{31)

In the nematic phase, we want to integrate out the
smectic order-parameter fluctuations and we re-
place (&&', (t) by its expectation value (4&,'(l)). The
dominant contribution is from q, near qo; setting
q, =q„we find

h, =2C, q, g q„(4,'(t))-2 tH), H, . (32)

with the director stationary the mean-square
fluctuations peak at q = yon. With the director
moving, the mean-square fluctuations lag behind
the director.

We have just solved for the time-dependent be-
havior of the smectic order-parameter fluctua-
tions with a moving director. %e will now exam-
ine the effect of these fluctuations on the equation
of motion of the director. The molecular field
acting on n is given by Eq. (4). We take a uniform
director and set n =2 after the differentiation and
find
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Finally using expression (29) for (g', (0)) when the
director does point in the & direction, we find

C~~q~~y, 0TQ ~ q„2
X s x

q(

qoy3ATQ
(33)

The torque exerted by the field is
(35)

X,&'sin2& =(y", +q', y, kI'/128m(AC~~)'~')&

which defines the effective rotational viscosity y, .

y, = y', + q', y, k T/1 2 8 rr (A C„)'~~ . (3'I )

This is our central result. It is in agreement,
within a numerical factor, with Eq. (6.6) of Ref. 16.

We now want to discuss a simple physical pic-
ture of the pretransition phenomena. In the ne-
matic phase near the smectic-2-nematic phase
transition the fluctuations of the smetic-A order
parameter are large and important. One can pic-
ture regions of the nematic liquid crystal in which
the molecules have moved temporarily into a
smectic-like configuration. These smectic drop-
lets are characterized by a. longitudinal dimension
(along the director) of g~~

= (C„/A)'~' and a trans-
verse dimension t~ = (C, /A)'~'. The smectic drop-
lets are transient and disappear after a time 7,
= y, /4A. The correlation lengths and relaxation
times increase as one approaches the transition
temperature. What effect will these smectic drop-
lets have on the elastic constants' It is energeti-
cally very costly to bend or twist the smectic
planes, while a splay distortion costs no energy,
A smectic droplet occurring in a distorted region
of a nematic will tend to straighten out the bend or
twist distortion. This leads to an increase in the
bend Bnd twist elastic constants near the phase
transition. ' The effect on the viscosity coefficients
has a similar origin. In the Leslie-Erickson hy-
drodynamics, the rotational viscosity y,

' represents
a frictional torque between the director and the
fluid. We have introduced a new viscosity y, which

represents a frictional force on the smectic planes

The direct frictional torque between the director
and the background fluid is

(34)

which is balanced by the elastic torque which we
have just computed

when the liquid flows normal to the planes. When
the director rotates the smectic droplets are
forced to rotate by the elastic forces. A frictional
torque then develops as the fluid is forced to flow
across the planes in the droplet. This torque adds
to the Leslie-Erickson torque and is the origin of
the pretransition contribution to y, . This contri-
bution becomes larger near the phase transition
as the sm. .ctic droplets become larger 3nd longer
lived.

Having computed the pretransition contribution
to y„we can find the contributions to the other
viscosity coefficients by simple physical argu-
ments. We first discuss the flow-alignment vis-
cosity y, Assume the liquid to be flowing in the
x direction with a velocity gradient in the z direc-
tion 2nd the director lying in the x-z plane at an
angle 6 with respect to the x axis. The torque on
the director is

1 ~ 'z)„I'„= (y, + y, cos26)—

y, = —
~ y,'~+qoy, k T/128m(AC „}'~'.

The torque vanishes when

cos2(9 = —p~/y2

(39}

and in a flow experiment the director takes up a
steady -state value provided y„& ~ y, ( . If y, &

~ y, ~ the

director tumbles. Note that. the theory predicts a
decreasing magnitude of jy, ( as one approaches the

phase transition so that the director should de-
stabilize and tumble for a range of temperatures
near the transition temperature. In a fluid vis-
cosity measurement, it is clear that q", measured
with the director parallel to the flow direction will
exhibit the pretransition effect and that q,

" and f~,

will not. Since q,"=q", —y, does not show the effect,
we must have

q", = q;"'+ q', y, k T/128m(A C„}'~'

v
02 =Op

,qht q3fo

deGennes' predicted the following pretransition
effect on the Frank elastic constants

+ll ~11 ~

ff „=I.o, + (k rq2! 24v)(2C', /C „A)'",

ff„=Sr,', + (k rq', /24v) (2C, /A)" .

This effect has been observed by static measure-

With 0=90' the flow is parallel to the smectic
planes and there wiB be no pretransition effect on
the torque (proportional to y, -y, ) in this configura-
tion. Recalling that y,

" is usually negative, we have
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ments of the critical field of the Fredericks tran-
sition' ' and by light-scattering intensity mea-
surements. ' With light scattering, one can also
measure the relaxation times of the director fluc-
tuations. " For the pure twist mode, the relaxa-
tion rate is

1 16v 2 (C~~C, )'~'

73 3 y3
(46)

as T approaches T, . For both these modes, the
elastic constant increases and the scattered-light
intensity goes to zero as T- T, . %'ith the mean-
field assumption, y, -const, the relaxation times
approach a constant. With the dynamical scaling

which approaches

1/~. - ~~2(eZ~. )C,
as T approaches T, . The expression for the relax-
ation time of the pure bend mode is more compli-
cated, but it approaches

assumption, y, -( ' ', the relaxation times go to
zero as E '~'. For the pure splay mode, the elastic
constant and the relevant viscosity remain finite
at T- T, and we have

{47)

Thus the splay mode remains essentially unmodi-
fied as one approaches the smectic-A phase.

lV. CONeLUSroNS

The time-dependent Landau theory predicts a
pretransition increase in y„y„and q,". The pre-
transition effect on y, had been observed by Mei-
boom. The present results are in agreement with
those of Janig and Brochard if we use the dynami-
cal scaling assumption for y, .
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