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Channel interaction and threshold behavior of yhotoioni~~tione
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Channel interaction is shown to have a substantial effect of "spectral repulsion" that distorts the
photoionization spectrum near the threshold of a wreak channel. This effect is illustrated by calculating
numerically the cross section of the 3s cp transition of Ar, taking into account its coupling saith the

3p cd transition. The result is very different from that obtained by an independent-particle
approximation. Examples calculated by other authors on He, Ne, and Xe serve as additional
illustrations.

I. INTRODUCTION

The cross sections for scattering or reaction
processes generally show rapid variations, as
functions of energy, at the threshold where a new
channel opens. In a wide class of processes, like
the photoproduction of particles, with no Coulomb
interaction between the final products, the cross
section has infinite derivative at the threshold.
This singular behavior, known as a "Wigner cusp, "'
is the result of the sudden opening of a new chan-
nel. In a number of other processes, like the
photoionization of atoms, there is Coulomb inter-
action between the final products. It is known
that no singularity occurs in the cross sections.
In an attractive Coulomb field, there exist virtual
bound states (forming Rydberg series) when the
incident energy is still below the threshold. The
density of bound states increases rapidly [in pro-
portion to (s-p)', where s is the principal quan-
tum number and p is the quantum defect] as the en-
ergy of the incident particle approaches the reaction
threshold. Because of the presence of these virtual
bound states, the opening of a new channel in a Cou-
lomb field is a gradual process, and therefore the
threshold behavior is altered. Nevertheless, the
opening of a new channel can perturb substantially
the relative cross sections for different reaction
channels. It is the objective of this paper to study the
cross section for photoionization of atoms into dif-
ferent channels, corresponding to different levels
of the ion, near the threshold of a new channel.

Partial information about the cross section near
the threshold of a new channel can be obtained
from the properties of virtual bound states. These
bound states are stationary only within an indepen-
dent-particle approximation. Interactions between
the particles actually cause these bound states to
autoionize into the continuum. Autoionization is
an example of the transitions between channels
that are classified as effects of "interchannel in-
teraction. " Channel interaction exists over the

whole spectrum, but its effects are particularly
apparent where the bound states of one channel
overlap the continuum of another channel; the line
profiles resulting in this case have been studied
by Pano' and by Fano and Cooper' within this con-
text. The theory considers separate amplitudes
for transition to the continuum directly from the
ground state and through the quasistationary bound
state. The transition probability, as detailed by
Fano and Cooper, 4 can be broken into four terms,
which represent contributions: from the direct
transition to the continuum, from the transition
through the discrete state, from an interference
term between these two amplitudes, and from a
term called spectral repulsion. The interference
term accounts for the asymmetry of the line pro-
file; the spectral repulsion term has the effect of
depressing the direct transition probability in the
vicinity of the line.

Single autoionizing states mere treated earlier, '
but the levels of neutral atoms or ions generally
belong to Rydberg series and each series should
be treated as a whole, together with the continuum
adjoining the series limit. The autoionization of a
whole Rydberg series has been discussed briefly
by Fano and Cooper. ' Experimentally, in the
higher levels of a Rydberg series we are inter-
ested in the total cross section averaged over a
spectral range that includes many lines. As shown
in Ref. 3 (especially p. 1371), the average total
cross section also has terms representing the ef-
fects of interference and spectral repulsion. This
is not surprising if one recognizes that interfer-
ence and spectral repulsion, as results of inter-
channel interaction, must be present over the
whole energy range where the two channels inter-
act.

Interchannel interaction always produces a re-
adjustment of the results of an independent-parti-
cle calculation. Its strength is indicated by the
magnitude of the residual interaction, which cou-
ples the two channels and is often weak. Never-
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theless, interchannel interaction may have large
effects in narrow spectral regions. In particular,
interference between the independent-particle
amplitudes contributing to the cross section of
different channels becomes conspicuous through-
out the spectral range, where one channel has
singular features, such as discrete lines, a
threshold, or a combination of them, because its
effect varies rapidly along the spectrum. In spec-
tral ranges without singular features the effects
of interference are not obvious in the spectrum,
but can be detected only by comparing quantitative
experimental cross sections with theoretical cross
sections calculated in the independent-particle
approximation. Actually the combination "thresh-
old plus Rydberg series" may be viewed as a sin-
gle large singular spectral feature. Interference
should become inconspicuous only far below the
first autoionizing Rydberg line or far above the
threshold.

The effect of spectral repulsion between two
channels is quite familiar in discrete spectra,
when a level of one configuration (or channel}
lies in the midst of another configuration; con-
figuration interaction (or interchannel interaction)
causes the energy levels of the second configura-
tion to be shifted away from the perturbing level.
In the autoionization of a Rydberg series, spectra, l
repulsion manifests itself in the sense that the
oscillator strength of the continuum is thinned out
in the proximity of the discrete levels. In the en-
ergy region where two or more channels are open,
spectral repulsion readjusts the distribution of
oscillator strength between the channels. This
readjustment should be very obvious throughout
the range where the opening of a new channel con-
stitutes a singularity in the spectrum.

The effect of interchannel interaction on the cal-
culations of photoionization cross sections was
discussed qualitatively by Pano and Cooper, ~ but
has been studied only recently. %hile the present
work wa, s in progress, a. series of calculations on
the same subject was reported by Amusia et al. '
This paper is presented nevertheless because it
starts from a different point of view and particu-
larly because its calculation is designed to display
separately various contributions to the effect of
channel coupling. The results of the various cal-
culations appear consistent and in agreement with
experiment, as mill be detailed below.

In this paper, we see how the cross section of
the 3s- ep (e is the photoelectron energy} photo-
ionizing transition in Ar is changed by the channel
coupling with the 3P- « transition. %'e are par-
ticularly interested in the energy region near the
threshold of the 3s- eP process (Au&-30 eV),
where independent-particle-model calculations

show the cross section of the direct single-chan-
nel 3s-&P transition to be small, and where the
main contribution to the total cross section comes
from 3P- ed transition. Calculations of the
3s- &P transition have been performed by Cooper
and Manson' using wave functions generated from
the Herman-Skillman model potential, ~ and by
Kennedy and Manson' using Hartree-Fock wave
functions. Although their results disagree in

magnitude, both calculations show the cross sec-
tion to be small and to increase monotonically
with energy near the threshold. %e will show
that addition of interchannel coupling to the direct
transition changes the threshold behavior of
3s- &P completely. The inclusion of interchannel
interaction is equivalent to removal of a 3s elec-
tron through an intermediate virtual excitation of
the 3P subshell, i.e., through a transition 3s23P
-3s 3PS&'4-3s3P &P, where &' is the energy of
the virtually excited electron.

In Sec. II, the final-state interaction between
photoelectron and ion core is taken into consider-
ation by a rea, ction-matrix method. This method
has been applied by Starace9 to a single-channel
problem in calculating the photoionization cross
section of Ar from the 3P subshell and of Xe from
4d subshell. The general formulation is given
here for an arbitrary N-channel problem, but
explicit results are given for our two-channel
problem in order to bring out the significant
features of channel interaction. Section III
gives the results of a numerical calculation for
the photoionization cross section of the 3s- &P

transition of Ar. The interaction of the final state
channel 3s3P'eP 'P with 3s'3P'~'d'P is included
by the method of Sec. II. The calculation in Sec.
III improves the final-state wave function only;
the ground-state wave function is not improved.
The cross section thus calculated is compared
with the result of an independent-particle approx-
imation, where neither the ground-state nor final-
state wave function are improved. The significant
difference of the cross sections for these two cal-
culations near the 3s threshold indicates the im-
portance of interchannel coupling. The departure
from the results of the independent-particle calcu-
lation is interpreted as due to spectral repulsion
resulting from channel. interaction. Section IV
gives a brief discussion of how to include an im-
provement of the ground-state wave function in a
simple and effective way. This is done by using
a simplified method of random-phase approxima-
tion with exchange. The resulting equations are
very similar to the formulas of Sec.II. The result
of this calculation is then compa. red with those in
Ref. 5. In Sec.V we show other examples that ca,n
be understood in terms of interchanne1 interaction.
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II. THEORY

The calculation of photoionization cross sections
requires accurate wave functions of the initial
state and of the final state of the electron-plus-
ion system. The cross section is given by

(4(j(l Q sj I ka)

gy states.
In the following, we concentrate on the final-

state wave function of the electron-plus-ion sys-
tem. Following the method of Sec. 6.2 of Ref. 4,
we represent the coefficients a(j(.(E) in terms of
the elements of a reaction matrix E, which rep-
resents the effect of final-state interaction be-
tween the photoelectron and the ion,

for transition to a particular channel i. Atomic
units are used throughout this paper and in this
formula ao is the Bohr radiuS, u is the fine-struc-
ture constant, ~ is the photon energy in atomic
units, Q,~ is the final-state wave function for chan-
nel i with total energy E, normalized per unit en-
ergy, and Q~ is the wave function of the initial
state from which photoionization occurs. The
summation of j extends over all the electrons in
the atom.

The wave function of the atom is to be construc-
ted as a linear combination of antisymmetrized
products of single-particle wave functions. The
choice of these basis functions is detailed else-
where. ' Briefly, we split the spin-independent
total Hamiltonian H of the atom,

a(sd(E) =P(E —E') ' Q K(j( js(E)Bj(E)

+ 5(E' —E)B((E).
In this formula, I' indicates that principal-part
integration is to be taken at E'= E when a( j(I(E) is
substituted into Eq. (2). The coefficients B,(E)
will be determined by the boundary condition ap-
propriate to the photoionization process.

The wave function P& is then given in terms of
E-matrix elements and coefficients B, as

V. = Z (...B,(Z)

+Q Z f [, II, „(Z)/(E -Z')] .dE'B, (B)),

Z
H= ——V2-—

2 Y$

into a mode1 Hamiltonian

& w = Q [- B ~g + Vss (r() )

and a residual interaction V„,

z 1
V„, = —Q —+ V~(r, ) + Q —,

where V» is a local potential tabulated by Her-
man and Skillman. e The basis set for the many-
electron wave functions of the atom consists of
an infinity of antisymmetrized solutions u&~ of

The subscript E in u, ~ indicates the total
energy of the atom (or electron-plus-ion system);
i is a set of discrete quantum numbers that are
required besides E to identify (((j(. Each s of the
discrete set identifies a different channel. Note
that the channels cannot be classified without
reference to the independent-particle model. An
eigenstate of the total Hamiltonian H is repre-
sented as a linear combination of these basis
functions, i.e.,

dE' a, .(E)((,

where the integral over the energy E' is under-
stood to include a summation over discrete ener-

where the matrix element K(j( jj((E) satisfies the
coupled integral equations

K(B' j]((E) Vi j(I jE

+ Qf dE Vj, [Z/(Z"-B")]BB(E), , «

with

V(s,jj(=((((s l V-* l((js) .
To determine B,(E), we examine the asymptotic

behavior of the wave function g~ of the system
when the electron is very far away from the ion
core. The asymptotic behavior of the basis func-
tion u;~. is represented as

"(j('„=„C,r 'sin[k(r+8, ],
with

ei —k, ' ln(2k, r) —B l, s +arg1 (l, + I —i/k) + 5( .
In this equation k, = k, (E'), 5( is the phase shift due
to the short-range (non-Coulomb) part of the HS

potential, r is the distance of the photoelectron
from the ion core. The photoelectron has orbital
angular momentum l& and kinetic energy ~lt,'&'. The
wave function of the core electrons, the spin of
the photoelectron, and the normalization factor
are represented together by t";. Antisymmetriza-
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tion of the photoelectron and core-electron variables is implied but not explicitly indicated in (6).
The asymptotic form of W)E is obtained by substituting (6) into (4) to give

„= Q —I sin(k»r+e, )B,(E)+[-E cos(I»»r+e, )]+K,E,E(E)B,(E)
C

This expression is now represented in terms of ingoing and outgoing waves of the photoelectron by

where K»»(E) = K,E»E-(E) indicates the K-matrix
elements diagonal in energy, i.e., "on the energy
shell. "

The boundary condition appropriate to observa-
tion of the photoelectron in channel i requires
that the outgoing-wave part of all channels i 4 i
vanish. That is, the coefficient in front of
e"~&"'8&' for i ei must be equal to zero, and
that in front of e»(2» "' e»' must be equal to unity.
For an N-channel problem this condition gives N
linear algebraic equations whose solution gives
the N unknowns B,(E).

For our purpose, we want to examine the case
of a two-channel problem. When channel 1 is to
be observed, we obtain

B(1)(E) [I —2«22(E)]
d(E)

(,) (E)
2 EK2,(E)

n(E)

where

n(E) =det( I —2»»K(E) (

= [I -»EK„(E)][I- 2EK„(E)]

+ E 'K„(E)K„(E).

The eigensolution for a two-channel problem
with observation in channel 1 is then

(1) 22 +g dE ) 1$1, lE ~ ~) 22+ 2 ~ 1&4 n(E) lE E -S' E-E'

21 +)1,t dE( 2E 2E d2E +f2 dE( 1E 1E,2E
g(E) 2E

The dipole amplitude for transition to channel 1 is given by

(6)

Il'"(2)= " d P dd' ' ' ' ~ )' dd '* ' '' )'n(E) ', E -E' E —E)

21 g +~ ~) d1$1I) 22E P ~) d2& 2E 22+
n(E) 2E El

where d»E =gong»E» ~»»»E). A similar equation for
the dipole transition amplitude to channel 2 can be
obtained by interchanging the indices 1 and 2 in
Eq. (9).

From Eq. (9), we see that the problem of calcu-
lating dipole amplitudes requires the solution of
the system of integral equations (5) for K-matrix
elements. It is to be noted that no approximation
at all has been imposed in this formulation, ex-
cept for restricting the number of channels. %'e

do not require the residual interaction to be small.
Equation (9) displays the effect of interchannel

coupling clearly. In particular, the spectral dis-
tribution of a channel (say channel 1) with a small
dipole transition amplitude d» in the independent-

particle approximation will be changed signifi-
cantly by the effect of interchannel coupling with
a channel (say channel 2) with large d2E . In Eq.
(9), the effect of interchannel interaction upon the
transformed dipole matrix element D'"(E) can be
separated into two parts; one is given by the sec-
ond line of Eq (9), which. is an "on-the-energy-
shell'" effect, and the other is given by the last
principal-part integral PfdE

' d,E.K2E»/(E —E ')
of the first line, which is an "off-the-energy-shell"
effect. Information about the importance of the
interaction "on the shell" can be obtained through
experimental observation on the line profile of
autoionizing states, since the linewidth provides
an estimate of the magnitude of K»." However, a
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small K» does not guarantee that the effect of
interchannel interaction is small. The "off-the-
energy-shell" part can be important if the prin-
cipal-part integral PfdE'd, siK»i, s/(E- E') is
not small compared with d,~. The contribution of
the dipole transition amplitude d» to the D'"(E}
of channel 1 given by this integral is to be called
an effect of spectral repulsion. It results from
admixture into g~z" of channel 2 wave functions
u», whose energy E' is different from the energy
E of channel 1. Notice that the influence of spec-
tral repulsion upon the photoionization cross sec-
tion can be singled out only by explicit calculation
of cif1g d2g and K»», as contrasted with any
direct calculation of D~" that fails to separate the
various terms of (9). Rapid variation of the prod-
uct ~ Qp K2g 1g as a function of E ' increases the
value of PfdE'd» K»»/(E E'),-and thus im-
plies importance of spectral repulsion by channel
2 upon the photoionization cross section of channel 1.

III. NUMERICAL RESULTS FOR THE

Ar 3s ep PHOTOIONIZATION

ln this section we calculate the photoionization
cross section of Ar from the 3s and 3p subshells,
taking into consideration the interchannel inter-
action of the final-state wave functions. As the
photon energy A(d exceeds the 3s subshell. ioniza-
tion threshold (1„=29.5 eV), either a Ss or a 3p
electron can be ionized. The photoelectron may
leave the Ar' ion with kinetic energy ~1 S~- I3,
or g=k&u —I» (I» =15.6 eV). The ab initio cal-
culation in this section contains the following as-
sumptions.

(i) photoionization from 3p to as is neglected,
only the transition from 3p to ~d being considered.
This simplification is justified by the results of
independent-particle calculation, showing the
3p- zs cross section to be an order of magnitude
smaller than the 3p- ~d cross section. Further-
more, the dipole transition amplitude of the 3p- as process is smooth, which should further
reduce the effect of the coupling of the 3p- cs
transition with 3s- ep transition, as is apparent
from the discussion of Eq. (9).

(ii) The core electrons remain unexcited during
the photoionization process. Hence the single-
particle wave functions of the core electrons in
the final state are the same as that of the ground
state, being eigenfunctions of the model Hamil-
tonian --,' V,'+ V„s(r,), with appropriate sets of
discrete quantum numbers.

(iii) The wave function of the initial 3s or 3p elec-
tron is calculated directly from the model Hamil-
tonian. No attempt is made in this section to im-
prove the wave function of the initial state. This
approximation will be partly removed in Sec. IV.

With the foregoing assumptions, the photoion-
ization of Ar wiih photon energy above the 3s
ionization threshold is approximated by a two-
channel problem, consisting of 3s-~p and 3p-cd
transitions. The basis set for the final-state
wave functions comprises an infinity of Slater
determinants

u~s=~ls2s '''383p Ep P }

u»=
~
ls 2s' Ss'Sp'f«d P )

The channel index i(i = 1, 2) also indicates the
orbital angular momentum of the photoelectron.
Capital letters E, E', E are used for the total
energy of the photoelectron-plus-ion system; e,
e', and c are used for the kinetic energy of the
photoelectron when it is far away from the ion.
An unprimed energy index refers to the state
reached by photoionization, while primed energy
indices refer to virtual intermediate states in the
calculation. The zero level of the total energy is
so chosen such that the magnitude of E is equal
to the kinetic energy g of the 3p —c2d transition;
The kinetic energy c, of the photoelectron in chan-
nel 1 is given by e, =E -(I„—I») for a given total
energy E The photon . energy cu, which gives a
system with total energy E, is & =I3p+E.

The calculation of dipole matrix elements in Eq.
(9) requires us to solve Eq. (5) for the K-matrix
elements. This can be done separately for final
states of channel 1 and of channel 2. For channel
1, we solve the coupled equations

y +g jE «16 16 «16 d~gp+ p jE «2& 2f «16 grill
« «sgC

jE «16 jE «16 -E -I,+I p38 3p

with z = 1, 2 and for channel 2 we solve

(10)

y +~ jC 16 1C «26 g~lt+~ j6 ~ QC 2C «2E d'artjK ~
2E' jc «26 —I p+I, f ff

3p 3s

with i = 1, 2. In Eqs. (10) and (11), we use K„&, to represent K„&,(E) for a given total energy E. The
intermediate states c' and e' include bound states as well as the continuum states. The integral in (10}and

(11) is understood to include a sum over these discrete states.



For a given energy E, the calculation is done

separately for channel 2 with ~=8 —I„+I» and

channel 2 with e =E. For a given & of channel 2,
the coupled integral equation is solved by reducing
the linear integral equations to algebraic equa-
tions, which can then be solved by standard ma-
trix-inversion methods. The principal-part inte-
gral in Eq. (10) is expressed as a finite sum, with

the high-energy cutoff chosen at 3,505 a.u. for
channel 2, and 4.0 a.u. for channel 2. The re-
sulting energy range is then divided into a mesh.
A proper way of treating the principal-part inte-
gral in this continuum energy range and of sum-
ming the infinite discrete energy states has been
explained by Altick and Moore. ~ Using this meth-
od, we choose 22 mesh points for channel 2, and
28 mesh points for channel 2. The solution of the
resulting algebraic equations obtained from Eq.
(10) involves the inversion of a matrix with dimen-
sion 30 x 30. Equation (11) is solved in the same
way.

After choosing the mesh points we have to eval-
uate the matrix elements of the residual inter-
action. For the intrachannel interaction matrix
elements V„. «(i=1, 2), the numerical procedure
is discussed by Starace. ' For the interchannel
interaction matrix elements

V2, i „-=(ls 3s Sp t'd 'P
( V~,

x
i
ls' ~ ~ ~ SsSp'cd'P'),

the angular integral can be evaluated exactly" and
we find

V„.„=~W[-RI"(SsA'd, Spep)

+ 2R'"(3se'd, epSp)],

with R"I(ab, cd) defined as

The cross section calculated for the 3p- ~d

transition is found to be almost unchanged by the
interchannel coupling with the 3s - ~p transition.
In fact, the result departs no more than 10%%uII from
the result' of a single-channel calculation. This
is not surprising because the dipole amplitude for
3p —ef transitions is an order of magnitude
greater than that of 3s- ~p transitions in the ener-
gy range considered here. The small amplitude
of 3s- ep transitions cannot contribute a significant
amount to the 3p- ~d cross section, even when the
coupling is not small.

On the other hand, the effect of interchannel
coupling with the 3p - ~d transitions will have sig-
nificant effect on the cross section of 3s- ep
transition if the coupling is not too small. In Fig.
2, we present the Ar 3s- ep transition cross sec-
tion calculated from D'"(E) and from d,s, that is,
with and without taking into account the interchan-
nel interactions with 3p- ~d channel. %e see that
the spectral distribution just above the 3s thresh-
old differs qualitatively for the tw'o calculations.
The cross section, instead of rising smoothly from
the threshold, as predicted by the independent-
particle approximation, is found to have a rather
rapid variation with energy near the threshold in
the coupled-channel calculation. The existence of
a dip and rapid variation with energy of the calcu-
lated cross section should be regarded as the
main result of this calculation.

In order to understand the difference between the

l.5(

Ar 5S —qP

R'"(ab, cd) = dr, dr,
"0 0

l.0-
K-MATRIX

and

R „(~)rR„(r)dr
0

where r, and r, are the greater and lesser of r,
and r, . 8, is a real radial wave function of the
electron in state a, generated numerically using
the Herman-Skillman potential V„~ for Ar.
R'"(ab, cd) is obtained by integrating Eq. (12) nu-
merically.

The dipole transition amplitudes D'"(E) and
DI2I(E) are obtained by performing the principal-
part integration in Eq. (9). Within the approxima-
tions of this section, we have

E

0.5

b

0.5 I.O t. 5

Energy Abave Threshold {o.u. )

FIG. 1. 6, 0, results of numerical calculation; -—,
interpolated results of X-matrix method (Sec. III) ~

interpolated results of SBPAE method (Sec. IV); — —.,
results of Ref. 6 {Herman-Skillman model). Curve (1):
result of Amusia et aI, . (Ref. 5); curve {2): result of
Amusia et el. (Ref. 17). The experimental data are
taken from Lynch et al. (Ref. 16).
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two calculations, we study the various terms in
Eq. (9). In particular, the last principal-part
integral of the first line of Eil. (9) gives a large
contribution, as shown in Table I. This term is
classified in Sec. II as representing the "off-the-
energy-shell" part of the effect of interchannel
interaction and can be written in the form

P de' d„.K„.„j(~—~'),

contributes very little to (9) because d„ is small
as compared to d„.over the energy range con-
sidered. Therefore, the energy dependence of the
cross section calculated from D'"(E) can be under-
stood from the magnitude

d„+& d&' d2~~+2E 1~ f. -f. -Is, +Isp

in terms of the energy e' of the photoelectron in
the ~'d channel.

The large value of this principal-part integral
results from the rapid variation of the numerator
of the integrand d„iK„„across the singularity.
Table II shows some of the matrix elements
K„„calculated from Eq. (10). We see that the
matrix elements decrease monotonically with
energy ~' of the 3p- e'd transition for a given ~.
Since d„. also decreases monotonically (in abso-
lute value) over a wide range of energy, the prod-
uct d„K„„decreases (in absolute value) rather
fast with the energy ~'; this makes the integral
quite large compared with d„. In fact, the calcu-
lation shows that D'"(E) is dominated near the
threshold by the value of this principal-part inte-
gral. This integral is negative and has absolute
value much larger than d„. This explains why the
cross section near threshold calculated from
D'"(E) is larger than that calculated from d„.
However, the absolute value of this integral de-
creases rapidly with energy ~ because K„„de-
creases rapidly with ~, as can be seen from Table
II. Table I gives the values of d„and

d2~'+2&' 1~ so+ sp

for several energies e. On the other hand the inte-
gral

TABLE I. Contribution of d«and P fdm, iICtg jg/
(e —e' —I»+ I&&) d'e' to the dipole transition amplitude
Q&)

At the lower energies, the integral is dominant,
but the cross section [-~D'"(E)~'] decreases very
fast because the integral drops very fast with in-
creasing energy ~. The minimum in Fig. 1 at the
energy -O.V a.u. occurs when the two terms are
approximately equal but with opposite sign. The
further rise of the cross section occurs where
d„becomes dominant. Eventually the cross sec-
tion calculated from D'"(E) and d„should nearly
coincide.

The analysis of the numerical results in the last
paragraph shows how the effect of interchannel
interaction manifests itself in the calculation of
the photoionization cross section. It also illus-
trates how the effect of interchannel interaction
decreases as the energy increases above the
threshold. This calculation shows that interchan-
nel interaction may sometimes substantially up-
set the picture predicted by an independent-parti-
cle approximation.

IV. IMPROVED RPAE- TYPE CALCULATION

The numerical results of Sec. III give only the
qualitative behavior of the cross section for the
3s- ep transition of Ar, because an analogous
calculation for the single-channel 3p - ed transi-
tion in Ar ' fails to reproduce the experimental
result with any accuracy. The main reason for
its failure has now been traced to lack of im-
provement of the initial-state wave function, in
view of the success of calculations'4 using random-

(gQ &EQ &
~ $ gP, ' de'' —I3 + Ipse

TABLE II. Values of E2, &, for Ar. Matrix elements
diagonal in g are underlined.

0.005
0.105
0,205
0.305
0.405
0.505
0.705
1.005
2.005

0.17929
0.22780
0.25548
0.27417
0.28372
0.28875
0.28832
0.26852
0.20884

—2.3801
—1.7974
—1.2981
—0.91698
—0.67012
—0.50112
—0.29596
—0.12133
—0.01312

3d
0.0d
0.5d
1.0d
2 5d
4.0d

0.037 72
0.351 81
0.18335
0.11389
0.020 99

—0.014 54

lea
b 0.005p

2E

0.025 75
0.210 46
0.11642
0.069 54
0.021 05

—0.004 75

0.01721
0.141 66
0.070 08
0,024 01
0,014 ll
0.000 52

0.20 5p 0.405p 1.105p

0.005 20
0.044 90
0.065 20
0.002 10

—0.010 61
0.002 87

2.005p

0.000 86
0.009 62
0.032 06
0.020 25

—0.041 00
—0.006 20

'e is given in a.u. to indicate the energy of the photo-
electron in the final states 3s3p ep'P of channel 1.

'lz means values of cp with e in a.u. for continuum states
3s3p @ 'P of channel l.

"2e' means ftd for discrete states or values of ~'d with e' in a.u.
for continuum states 3s 3p e'd'P of channel 2.
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phase approximation with exchange (RPAE) that
include such an improvement. Since the calcula-
tion of Sec. III depends on the value d3p g over
the whole energy range, we cannot expect its
numerical results to predict experimental results
correctly. In this section we want to improve the
ground-state wave function also, so as to obtain a
more-accurate prediction. The qualitative be-
havior of Fig. 1, i.e., the dip and rapid energy
dependence of the cross section near the thresh-
old, should not disappear, but, the position of the
minimum and the numerical value of the cross sec-
tion will probably be changed.

Instead of improving the ground-state wave func-
tion separately, we improve both initial and final-

state wave function simultaneously, using a sim-
plified version of the RPAE method (SRPAE),
which is introduced in a companion paper. "
BrieQy speaking, this method permits one to
calculate the dipole transition amplitude in a way
similar to the reaction-matrix method of Sec. IQ,
yet with a simultaneous improvement of the
ground-state wave function. The substantial im-
provement of the cross section for the 3p- ~d
transition calculated by this method" permits us
to expect the results of this section to be better
than those of Sec. III.

According to this simplified RPAE method, the
ground-state correlation effect is included by
solving the system

P 1
~&~' l~+ g 2 +la" la6'-E' 6+ 6 + 2ISq

P 1
+ I d6 V

J
gI +I 6+ @++I +I 2&, 1& &

Se SP 84'

with i = 1, 2, instead of solving Eq. (10). A similar system for K«. „(i= 1, 2) is obtained from Eq. (11).
The dipole transition amplitude is then given by

g- g'- j +I q+ g'+I +ISe SP Sg SP

Z(&) " " e e' I»+ I-„-e+e'+ I»+ I„
P 1+ g

g I g+ g I+ 21 2E, 26
SP

where Z(E) is defined as in Eq. (7), with K,t re-
placed by R,~. With this choice of Z(E), we have
neglected a contribution to normalization from
ground-state correlations. However, this contri-
bution is very small (~5%) as compared to Z(E).

The result of the cross section calculated by
this method for the Ss - ap transition in Ar is
shown in Fig. 1 also. %'e see that including the
improvement of the ground-state wave function
reduces the magnitude of the cross section near
threshold and moves the minimum of the dip to
lower energy. However, as expected, the quali-
tative behavior of the cross sections calculated
by the independent-particle approximation and by
the method of Sec. III results from the interchan-
nel interaction between the final-state channels„
improvement of the ground-state wave function
does not change this qualitative behavior, even
though numerical values do change.

The results of our SRPAE calculation are plotted
in Fig. 1, together with those of Sec. III, with
those of Amusia et al. , and with the experimental
data obtained recently by Lynch et al." Curve
(1) of Amusia et a/. , from Ref. 5, shows a point
of vanishing cross section at a distinctly lower
energy than the other results. It has been pointed
out later by Amusia" that Ref. 5 used an unreal-
istically higher value of the ionization potential
IS, obtained from the Hartree-Fock calculations.
Replacement of that value with the experimental
one yields the curve (2).

The over-all agreement of the various data is
reasonably satisfactory. The remaining discrep-
ancy between the SRPAE results and Amusia's
curve (2) derives presumably from differences in
the approximation methods. In particular, the
SRPAE is based on setting the residual interaction
matrix elements (n, l „n,l, (( U, [)n,t» , n) -t
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(n, l„»,l, ()U, [~(»,E„»,l, ) inEq. (&) of Ref. 15.
This approximation is quite good for igA achannel
interaction matrix elements, but not as good for
interchannel interaction matrix elements.

V. CONCLUSIONS

As was already said in Sec. I, this paper is pri-
marily aimed at studying the effect of interactions
between channels upon the partial photoionization
cross section of each channel. We have shown
that these interchannel interactions have an im-
portant influence upon the photoionization cross
section, especially for a weak channel near its
ionization threshold. We have outlined in Sec. II
a general method for studying this effect. The
numerical example of the Ar Ss- «p transition
in Secs. III and IV shows an interaction effect so
strong that the oscillator strength of the 3s- ep
transition is dominated near threshold not by the
direct transition process but by coupling with the
3p- «d transition. However, we do expect that
interchannel effects will show up even if the inter-
action is not so strong. We also expect that this
effect is most prominent near thresholds, because
this is the spectral range where singular be-
havior occurs, as seen in the calculations in Secs.
III and IV. In general, interchannel interaction
should produce irregularities of the cross section
near a threshold, i.e., an energy-dependence
trend different from the smoother one prevailing
at higher energies.

Measurements of photoionization cross sections
for separate channels have been rare up to the
present time, especially for channels with smaller
cross sections. This kind of experiment should
provide a test of the general phenomena indicated
above and of different theoretical calculations.
Even though there are as yet few experiments
that allow us to see the presence of irregularity in
the cross section near the threshold as a result
of interchannel interaction, there do exist some
ab initio calculations which permit us to point out
these phenomena.

For other rare-gas atoms, the calculations of
Amusia et ul. ' also show that the cross section
of Ss —«p transition of Xe has an energy depen-
dence similar to that of Ar in the 3s-«p transi-
tion, i.e., the cross section near threshold has a
rapid energy dependence and a dip, whereas the
independent-particle model predicts monotonic
rising in that energy range This example .is quite
analogous to that of Ar. For Ne 2s - «p transition,
the result calculated does not have features simi-
lar to those of Ar and Xe, However, Fig. 4 of
Ref. 5 does show an effect of interchannel inter-
action; the RPAE calculations, which include

interchannel interaction with the 2p - «d transi-
tion, show an energy dependence near threshold
not as sharp as that predicted by the independent
particle model. We may understand why the
threshold effect is weaker in Ne than in Ar by
considering that d „is quite smooth in Ne through
the 2s threshold, in contrast to the case of Ar;
presumably the matrices V„„and K„.„are
also smoother, yielding a much smaller value of
the spectral-repulsion integral

P d«d2~&K2~& ~~ « -« -Ig~+Igp ~

Another example is found in the calculation by
Jacobs and Burke" of the photoionization cross-
section ratio o(He', »=2)je(He', »=1) in the ener-
gy range from the He' (» = 2) threshold (65.4 eV)
up to about 200 eV. They find this ratio to have a
hump with a maximum at about 75 eV, after which
it decreases rather smoothly on the higher-energy
side [see Fig. 2(a)]. Because of the availability
of accurate groumi-state wave functions and of the
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FIG. 2. {a) Photoionization cross-section ratio
o{He',n =2)/o {He+,n =1) calculated by Jacobs and Burke
{Ref. 18); {b) photoionization cross section o {He+,g =2);
{c) photoionization cross section o {He+,n =1), experi-
mental, Ref. 21.
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usual accuracy of the close-coupling calculations
for the final-state wave function of He, ere regard
this calculation as reliable. In fact, this calcu-
lation has been experimentally confirmed by
Krause and Wuilleumier" at several energy
points between 100 and 200 eV. The existence of
the hump near the threshold is not experimentally
observed, except for some indications near the
n =2 threshoM. '0 We want to point out that this
hump is not surprising in view of the effect of
interchannel interaction. We plot in Fig. 2(b)
the cross section v(He', n=2), taking the ratio
of v(He', n = 2)/v(He', n = l) calculated by Jacobs
and Burke" and v(He', n = l) from experimental
data" t Fig. 2(c)j. We see that the cross section
v(He', n= 2) drops monotonically on the higher-
energy side, but also shows a depression near
the threshold. The existence of this depression
in v(He', n= 2) and the monotonic decrease of
v(He ', n = 1) at this energy region accounts for

the hump in the ratio v(He', s=2)/v(He', n=1).
The depression of v(He', I=2) near threshold is
presumably another example of the effect of
interchannel interaction. Therefore, this effect
is important not only for channels that have dif-
ferent subshell structures, as in Ne, Ar, Ke, but
also for channels that are distinguished by dif-
ferent excitation states of the ion, as in He,
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