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A local-molecular-field description for the ground-state properties of the quantum solids
is presented. The dynamical behavior of atoms contributing to the local field, which acts
on an arbitrary pair of test particles, is incorporated by decoupling the pair correlations
between these field atoms. The energy, pressure, compressibility, single-particle-distri-
bution function, and the root-mean-square atomic deviations about the equilibrium lattice
sites are calculated for H2, 3He, and 4He over the volume range 5 & V —24.5 cm3/mole. The
results are in close agreement with existing Monte Carlo calculations wherever comparisons
are possible. At very high pressures the results agree with simplified descriptions which
depend on negligible overlap of the system wave function between neighboring lattice sites.

I. INTRODUCTION

The quantum solids have been difficult to under-
stand analyticallybecause of their large zero-point
motion. This motion invalidates standard semi-
classical approaches and those quantum- mechani-
cal calculations which do not account for the short-
ranged pair correlations between atoms.

Perhaps the most reliable theoretical description
of the ground-state properties of quantum solids
are the Monte Carlo calculations of Hansen and
co-workers" on helium and Bruce' on hydrogen.
This method is a quantum-mechanical analog of the
biased random-walk procedure described by Wood
and Parker. ' Classically, the bias is established
by the Boltzmann-probability distribution; where-
as, quantum mechanically, it is given by the ab-
solute square of the ground-state wave function
lC l'. A parametrized form'is generally chosen
for 4 and the parameters are determined varia-
tionally by minimizing the ground-state energy.

A form for the &-particle wave function which
satisfies the gross requirements of the system is

where the q(r;) =—rp(r, -8;) are single-particle
functions localized about the equilibrium lattice
sites R;. They exhibit spatial order characteristic
of the solid. The ~&(&-1) functions f(r, ,) cor-
relate the motion of all pairs of particles. The
limiting behavior for f(r) is lim„~f(r) =0,
lim„„f(r) = 1. Hence, these functions lower the
probability of finding two molecules close together
and they have no effect at large separations.

Although there are a number of aspects of the
Monte Carlo method which can lead to significant

error, ' it is generally believed that this approach
is fairly reliable. For this reason, the results of
our approximate theory are closely compared with
the Monte Carlo calculations. Qf course, com-
parisons with experiment are also made but it is
difficult to draw definite conclusions from this
information. The difficulty is that the semiphe-
nomenological interaction potential, incorporated
into the calculation, is of uncertain quality. ' As
pointed out by Hansen' and others, small differ-
ences in presently acceptable descriptions of the
helium pair potential, significantly alter calculated
results.

An important objective of this work is to provide
an approximate yet accurate description of quan-
tum solids. The detailed nature of these approxi-
mations are expected to give insight into the
systems dynamical. character by pinpointing those
particular aspects of the many-body behavior
which must be accurately described and those
which are of lesser importance.

II. MOLECULAR-FlELD DESCRIPTION

A. General developmen t

The expectation value of the Hamiltonian for an
&-particle system is

where V(r) is the pair potential and (4 l4} is the
normalization integral. To facilitate comparisons
with other work, V(r) is represented by the
Lennard-Jones (6-12) potential:

V(r) =4~ [{o/r)"—{ojr)'], I'3)

where 0 =2, 556 A, &=10.22 K for helium' and 0
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= 2.958 A, &= 36.7 K for molecular hydrogen. " The
ground-state wave function 4 is given by Eq. (1),
where

}3 /4 —( )) /2) ( r; —R,. ) (4)

(5)

where

v(r, ,) = V(r, ,}—(t)'/2)n) V, 'Inj(r, ,}.
For the purposes of this calculation, it is conve-
nient to rewrite Eq. (5} in the following form:

(H) =
4

+ (4 ~4') 'P )/)-'(r„)V'(r„)
3Ng p

where

&& f'(r), „)v(r)„}G(r„,r„)dr), dr, ,

i & j&{),g')

II I e(r, ) I'dr, "(d r~dr„) ' d r„.
(9)

The parentheses around the term (dr„dr„) ' in-
dicate that integrals over the enclosed variables
are deleted. At this point the calculation is exact
and it is here that different theoretical descriptions
diverge. An examination of Eq. (9) shows that
each particle in the system is dynamically coupled
to every other particle through the pair-correlation
functions f(r, , ) It is theref-or. e obvious that a
drastic approximation is necessary tc reduce this
coupled &-body problem to a tractable form.

In the Nosanow cluster-expansion approxima-
tion, ' evaluated to second order, the approximation
is very drastic. It is assumed that G(r„, r„)=1.
The supporting argument is that the f(r) in Eq. (9)
have already reached their asymptotic values of
unity for values of r where the integrand in Eq. (9)
is large. Under these conditions, the volume in-

The quantities P and a are variational parameters
to be determined. These forms for y andf are
used extensively in other related works where they
appear to have sufficient flexibility to adequately
represent the ground state of the system. ' ' They
are also adopted here partially because of the
stated objective to compare this approximate
theory with other calculations.

Using Green's theorem and with Eqs. (1), (4),
and (5), Eq. (2} becomes

3Kb j3
(H) = +(4 ~4) ' Q 4'v(r;, )dr, d.r„,

4&j

tegration of Il, ~ )p(r, )
~

terms in Eq. (9) give unity.
This was the first approximate calculation to yield
reasonable results for solid helium even though, by
present standards, the results are not very good.
A serious flaw in the cluster expansion as an
ultimate theoretical description was pointed out by
Guyer. " He showed that the only possible wave-
function resulting from an internally self-con-
sistent solution was a nonlocalized liquid-state
function.

In view of the deficiencies in the cluster-ex-
pansion method and other approximate theories, it
is apparent that the behavior of each molecule
depends strongly on the influence of large numbers
of neighboring molecules. Equations (9) and (9)
show that the effect of all &-2 other molecules on
an arbitrary dynamical pair, hereafter labeled
())., «), is embodied in G(r), , r„). The work pre-
sented in this article is directed at accounting for
this local molecular field acting on each pair (A., «)
and produced by the presence of the +-2 other
molecules. The major approximation underlying
this calculation is contained in the expression

[f'(~ ~.)f'(r ..)W'(r. -H.) dr. ]
s&&, y

(10)
This expression for G(r„, r, ) differs from Eq. (9)
in that it contains no direct correlations between
the &-2 atoms comprising the molecular field
which acts on ())., «). That is, the f(r;, ) which
connect molecular-field atoms to one another are
missing in Eq. (10). Only those pair correlations
which directly link the &-2 atoms of the molecular
field to the dynamical pair (~, ~) are considered.
This approximation is essential in that it sim-
plifies the problem to the extent that a tractable
solution is possible which still preserves the
important features of the system's behavior.

B. Static-field approximation

The lowest-order approximation which takes into
account the local field acting on a pair (X, «), due
to the &-2 other molecules, is a static field. That
is, all &-2 contributing molecules are fixed at
their equilibrium lattice sites. This is opera-
tionally accomplished by taking the limit

lim ~ )/)(r; -R;)
~

' -5(r, -R, )

for all i~A, ~ in Eq. (9). Then

G(r&, r„)= II f'(r~-H;) II f'(r„-H, ). (11)

In an earlier work" this expression was further
simplified by limiting the products over (i, j) to
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include only nearest neighbors of molecules (&, x).
Then each function f'(rz H-&) was expanded about
its value evaluated at the equilibrium lattice site
rz =8&, and angle averaged. This procedure was
similarly applied to the f '(r, H-, ) T. he expectation
value of the Hamiltonian [Eq. (8) j then reduced to
an easily soluble two-dimensional integral. Al-
though the results were fairly promising, it was
later established that the expansion of the f(r)
about their equilibrium lattice positions converge
satisfactorily only for a limited class of pair cor-
relation functions, namely those which reach their
asymptotic values for values of r &R„where Ro
is the equilibrium nearest-neighbor separation.
This limited variational capability was considered
unsatisfactory and the procedure was therefore
abandoned.

A more direct approach, hereafter called the
"static-field" approximation, is to evaluate Eq.
(11}exactly but only for a limited number of cor-
relations. In bcc solid helium, for example, only
pair correlations between atoms within three
nearest-neighbor shells of atom ~ have any appre-
ciable effect on the behavior of the ~th atom and
similarly for the xth atom. All the other f(r) in

Eq. (11) can be replaced by unity with the effect of
changing predicted ground-state energies by less
than 1%. For fcc molecular hydrogen, two nearest-
neighbor shel. ls are sufficient to produce equivalent
accuracy. The G(r~, r„) resulting from this proce-
dure was substituted into Eq. (8) and the lattice
sum was evaluated for all different (X, x) pairs up
to tenth nearest neighbors. Beyond that, lattice
sums were evaluated for a classical static lattice.
The error associated with this lattter procedure
is extremely small, on the order of 0.1%. The
six-dimensional integrals in Eq. (8) were evaluated
on a 7094 computer. Although the results are
reasonably good at low pressures, their agree-
ment with experiment becomes considerably worse
as the pressure increases. Another disquieting
feature of the calculation is that the minimum ener-
gy is obtained at all volumes for a value of the
parameter P =0. The energy actually varies quite
slowly with P for small P. In the cluster expan-
sion, P =0 implies that the solid is not stable
because the functions &p(r) in Eq. (1) are no longer
spatially localized. This difficulty does not exist
in the static-field approximation because G(r~, r„),
rather than being unity as in the cluster expansion,
is instead given by Eq. (11). The resulting internal
field, acting on (X, z) produce the restoring force
necessary to localize the atoms about their equilib-
rium lattice sites fA,}.This localization is
evident upon calculating the single-particle distri-
bution function R(r), in terms of the atomic dis-
placement from equilibrium, r =

( r; -H,
~
. These

data are presented in Sec. IIIA. Nevertheless, the
static-field approximation is, in some sense, in-
ternally inconsistent. On one hand the molecular-
field atoms are initially fixed on their equilibrium
lattice sites by taking the limit P -~, yet the
minimization of the energy gives the result P =0
for the test particles (&, ~).

G(, .)= g'f'( -It.) Q'f'(, -ft, )

i=nn X

M, (r„) II M, (r„)
j =nnK

x II N, (r~, r„),
f = rpt I)(. K

(12}

where the primes indicate that the product is not
to include index & or ~, &+~ —nearest neighbors
to particle ~, «~~ —nea. rest neighbors to parti-
cles X and ~.

I;( (= Jf (&.;lc' (&;-»(d s,

X,(r„, r„)=ff'(rz, )f'(r„)rp'(r, H, )dr, . (-14)

The first two products in Eq. (12) include all atoms
which are second- or third-nearest neighbors to
~ or ~. These products are simply the static-field
terms. As in the static-field approximation, pair
correlations beyond third-nearest neighbors are
neglected, a procedure which leads to no appre-
ciable error. The third product in Eq. (12) ex-
tends over all nearest neighbors to ~ except for ~.
As an example, consider a bcc lattice with (X, (()

nearest neighbors. Then there are seven terms in
that product. The fourth product in Eq. (12) is, of
course, similar to the third. The last product
does not exist in this case because there are no
nearest neighbors common to both ~ and z when
they themselves are nearest neighbors. Vfhen ~

C. Dynamic-field approximation

It is believed that the lack of good agreement
between the static field results and experiment is
due primarily to the rigidity of the lattice produc-
ing the local molecular field on (X, ~). As an exam-
ple, when an excursion of particle ~ takes it into
close proximity to molecular-field atom j, the
molecular-field atom will tend to move out of the
way. This cannot happen in the static-field ap-
proximation. The motion of (&, (() is, therefore,
restricted. In order to correct this deficiency in
the theory, the motion of nearest neighbors to
molecules & and ~ has been incorporated into the
calculation of the molecular field. Then
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and ~ are second-nearest neighbors, however,
there are four atoms which are nearest neighbors
to both ~ and ~. Then, the last three products in
Eq. (12) each contain four terms. Slightly different
results are, of course, obtained for fcc and hcp
structures. When ~ and a are third-nearest neigh-
bors or greater we simply return to the static-
field approximation, in which case

M, (r„)=f'(r„-R,),
(15)

&,(r„, r„)=f'(r&, -R,)f'(r„-R,).
Again, for (A., «) separated farther than tenth-
nearest neighbors, the lattice sums are simply
taken over a static lattice. Clearly, it is the in-
tegrals & and M in Eq. (12) which provide the
dynamical correlations connecting atoms («, «) to
the local field. Although the atoms responsible for
the local field couple dynamically to atoms ~ and
K, they do not couple dynamically to one another,
as evidenced by the separable integrals in Eq. (12).
The reason for this fortunate circumstance is, of
course, traced to the original approximation,
exhibited in Eq. (10). This separability reduced an
impossibly complex analysis to that of evaluating
a simple nine-dimensional integral on the '7094

computer. The details of this procedure are dis-
cussed in the Appendix.

To summarize, the dynamical motion of the
molecular-field atoms and the effect of this motion
on the various pairs (X, «) considered only when A

and x are either first- or second, -nearest neighbors
to one another. Then only molecular-field atoms
which are nearest neighbors to X and/or « are
dynamically incorporated into the analysis. All
other pair correlations are with a static field. It
is clear that the dynamical correlations have been
incorporated only into the leading terms in the

lattice sum, that is, for all first- and second-
nearest-neighbor pairs. Nevertheless, this is
sufficient to dramatically improve the results.
Additional dynamical contributions are found to be
small.

Within the dynamic-field approximation, the
single-particle distribution function R(r) is simply

ft(l r), -R„I ) = y'(r„-R„)y"-(r,-R„)f'(r„„)

x G(r~, r„)dr, dQ„, (10)

where dA& is the element of solid angle for the ~th
particle, G(r„, r„) is given by Eq. (11), and the
normabzation R(0) =1.0 is used. A similar ex-
pression as Eq. (16) exists for the root-mean-
square atomic deviation from its equilibrium lattice
site (r')' . The pressures and compressibilities
are derived by taking appropriate derivatives of
the ground-state energy with respect to the volume.

III. RESULTS AND DISCUSSION

A. Static-field approximation

Results for the ground-state energy of solid bcc
'He and 'He are presented on Figs. 1 and 2. We
are not concerned with the fact that solid helium
also exists in a close-packed lattice phase because
the energy difference between different structures
are known to be very small. In these figures, the
circles represent the experimental data" and the
dotted line represents the results of the static-
field approximation. The triangles represent the
Monte Carlo (MC) calculation of Hansen and
Levesque' and the inverted triangles represent a
similar MC calculation by Hansen and Pollock. '
Although the static-field results compare reason-

3He

Static field

Dynamic field

Horner14

Monte Carlo
{Hansen &evesque}
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FIG. l. Energy vs volume for solid bcc 3He. A com-
parison is made with different theoretical and experi-
mental works.

FIG. 2. Energy vs volume for solid 'He. A compari-
son is made with different theoretical and experimental
works.
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FIG. 3. Single-particle distribution function A(r} for
solid He at two different volumes, as a function of the
particle displacement from equilibrium r. The results
of two different approximation methods are compared
to one another and also to results from a Monte Carlo
calculation.

totally satisfactory because of the rigidity of the
lattice of atoms providing the local field. The
dynamical motion of an arbitrary atom ~ is j.n-
hibited because the fixed atoms confine ~ to a
smaller effective volume than it would have if the
atoms producing the local field were allowed to
move in response to the motion. This situation
apparently becomes more critical at higher pres-
sure where the effective volume per atom is
further reduced. McMahan" has recently cal-
culated the exchange integral J for solid 'He by an
approach that is apparently very similar to the
static-field method. Although his results are
reasonable at low pressure, they become in-
creasingly unfavorable as the pressure increases.
McMahan concludes as we do that the rigidity of
the lattice is to blame and that this effect is more
pronounced at higher densities.

The solution then is to properly describe the
motion of the molecular-field atoms and the effect
of this motion on all dynamical pairs (X, z). The
results of this dynamic-field approximation are
now described.

ably well with experiment and with the MC results
in the volume range shown, the comparison be-
comes increasingly unfavorable as the molar
volume is decreased.

The single-particle-distribution function R(r)
for 'He, at several different volumes, is shown
on Fig. 3 as a function of the particle displace-
ment from equilibrium r =

~
r„-R; ~

. The circles
represent the results of the static-field approxima-
tion, from which it is evident that the atoms re-
main localized despite the fact that P =0 mini-
mizes the energy. These results are compared
with the MC results of Hansen and Levesque, '

which are represented by the triangles. The val-
ues of ~ which minimize the energy in the static-
field approximation are larger than those derived
from MC calculations. " This is understandable
because, with j3 =0, the various f(r„-8;)are
entirely responsible for providing the localization
necessitating a larger ~ value.

As mentioned earlier, it is believed that the re-
sults of the static-field approximation are not

B. Dynamic-fie1d approximation

2. 'He data

Results for solid 'He are presented in Table I,
where (T) and (V) are the expectation values of
the kinetic and potential energies, respectively,
and E, is the total ground-state energy. The
quantities P and a are values of the variational
parameters which minimize the energy and (r-) ' '
is the root-mean-square atomic deviation from
the equilibrium lattice site. Pressures and com-
pressibilities are also tabulated. It should be
kept in mind that all work on helium was done
using a bcc lattice structure. Although the total
energy, pressure, and compressibility do not
differ significantly from one assumed lattice
structure to another, the quantities (T), (V), and
(r') '~' are somewhat more sensitive and any
comparisons with other work must be made with
this fact in mind.

Figure I shows the ground-state energy for 'He

over the volume range 19 ~ V» 24.5 cm'/mole. The

TABLE I. bcc 3He results.

Volume
{cm3/mole}

Pressure Compressibility {r ) ' 2

(atm} (10 atm '} A
p

(0 '} (~ '}

24.50
20.80
16.16
14.00
11.82
10.25

—22.19
—26.98
-32.31
—32.21
—24.76
-8.30

21.94
28,38
41.12
51.43
69.70
92.25

-0.25
1.40
8.81

19.22
44. 94
83.95

50
260
565

1380
2820

23.8
7.0
3.9
1.8
0.7

1.18
1.06
0.85
0.75
0,62
0.52

3.6 1.11
4.1 1.11
6.5 1.08
8.7 1.06

12.5 1.04
19.0 1,02
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circles represent experimental data, "the triangles
are the MC results of Hansen and Levesque, ' and
the inverted triangles are the MC results of Hansel
and Pollock. - The solid line represents the dy-
namic-field results, the dotted line is the static-
field results, and the dashed line represents the
theory of Horner. " A sample comparison of our
calculated energy and that of Hansen and Levesque
at V = 24.8 cm'/mole is E =0.21 and 0.63 K, re-
spectively. Similarly, at V= 19.12 cm'/mole, the
comparison is F. =4.01 and 4.07 K, respectively.
It is interesting to observe that results of the two
MC calculations differ from one another by
amounts that are significantly outside the statisti-
cal error quoted in either article. There are,
however, modest differences in the two calcula-
tions which could account for this fluctuation. The
dynamic-field approximation requires the evalua-
tion of a nine-dimensional integral. These inte-
grals have been evaluated with sufficient accuracy
to conservatively guarantee the resulting energy
values to within -3V(;. In view of the fluctuation in
the MC results we conclude that they and the dy-
namic-field results are in agreement. The energy
minimizing values for 13 and ~, listed in Table I,
also compare well with the MC results, unlike the
values derived from the static-field approximation.
Figure 4 shows the ground-state energy over a
greater volume range 10 ~ V- 24.5 cm'/mole. A

sample comparison of our calculated energy with
that of Hansen and Pollock at V= 11.17 cm'/mole
gives E=54.17 and 52. 5 K, respectively. We ob-
serve, as do Hansen and Pollock, that the energy
falls below the experimental values at low volumes.
This is attributed to the inexact description of the
pair interaction provided by the Lennard- Jones
6-12 potential. ' Figure 5 shows the pressure-
volume (PV) relationship and, in Fig. 6, is the
single-particle distribution function R(r) for six
different volumes. These data are tabulated in
Tables I and II. The compressibility is shown in
Fig. 7 and compared with experiment over the

25

20

15

I
L
0

k)2

10 12 14 16 18 20 22 24 26
Volume (em~/mole)

FIG. 5. Pressure vs volume for solid 3He. A com-
parison is made with other theoretical work and experi-
ment.

The calculated data for solid 'He are presented
in Table III. Figure 2 shows the ground-state
energy over the volume range 16 ~ V~ 21.65 cm'/
mole. Similarly, Fig. 8 shows the energy over a
greater volume range 10 ~ V~ 21.65 cm'/mole.
The experimental data" and other theoretical re-
sults are presented with the same format as Figs.
1 and 4 for 'He. A sample comparison of our
calculated energy and that of Hansen and Levesque
at V=21.49 cm'/mole is E= —5.14 and -5.17 K,
respectively. Similarly, at V= 17.08 cm'/mole,
the comparison is E=-2.63 and -2.39 K, respec-
tively. A comparison with Hansen and Pollock's

Volume

0.8—

volume range 10- V- 24. 5 cm'/mole. These re-
sults are substantially more uncertain than the
energy because they involve a second derivative
of the energy with respect to the volume.

2. 'He results

Qynamtt: field 0.6

Rlr)

60 0.4—

0.2

I

10 12 14 16 18 20 22 24 26
Volume (cm /mole)

0
0. 2 0.4 0.6

rlo)

I

0.8 1.0

FIG. 4. Energy vs volume for solid ~He over the
volume range 10 & V ~ 24.5 cm3/mole. A comparison
is made with other theoretical work and experiment.

FIG. 6. Single-particle distribution function R(r) vs
particle displacement from equilibrium for solid 3He

at various volumes.
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TABLE II. R(r) data for He.

Volume
(cms/mole) 0

Particle displacement from equilibrium r(0)
0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80

10.25
11.82
14.00
16.16
20.8
24.5

1.00 0.928 0.717 0.466 0.254
1.00 0.935 0.757 0.559 0.363
1.00 0, 957 0.824 0.480
1.00 0.961 0.859 0.567
1.00 0.975 0.905 0.688
1.00 0.922 0.738

0.042
0.107
0.206
0.293
0.445
0.515

0.0035
0.019
0.060
0.117
0.246
0.317

0.0018
0.012 0.0015
0,036 0.0078
0,116 0.046 0.0148 0.0039
0.173 0.083 0.034 0.012

3. MolecuLar-hydrogen results

In Fig. 11 the energy of molecular hydrogen is
presented over the volume range 10 ~ V~ 22.65

50 —, Dynamic field

'E N

3Q

g 20

E
Q 10

10 12 14 16 18 20 22 24

Volume {cm /mole)

FIG. 7. Compressibility vs volume for solid 3He.

work at V~ 11.17 cm'/mole gives E =32.06 and
80.15 K, respectively. Again, it is evident that
there is close agreement between experiment, the
MC calculation, and the dynamic-field results. As
for 'He, however, calculated results lie slightly
below experiment at the higher pressures. Figure
9 shows the PV results and Figs. 3 and 10 give the
single-particl. e distribution function for solid 'He
for various molar volumes. Note the considerable
narrowing of ft (t') with decreasing molar volume.
Figure 8 shows a comparison of results for A(r)
at V=21.6 cm'/mole obtained from the static-field
approximation and from the dynamic-field approx-
imation. As expected, the static-field approxima-
tion yields a narrower R(r) indicating that the
particle is more localized about its equilibrium
lattice site than is predicted by the dynamic-field
approximation. This result, of course, confirms
our speculation that the static molecular field
confines & and ~ more than if the molecular-field
atoms also are all.owed to dynamically respond to
a changing environment, as provided for in the
dynamic-field approximation. Also shown in Fig.
3 is the MC solution' for R(r). The close com-
parison with the dynamic-field approximation is
evident. The data for It (r) is tabulated in Table IV.

cm'/mole. All calculations on H, are based on an
fcc lattice structure. The solid line represents
the results of the dynamic-field approximation
and the squares show the MC calculations of
Bruce. ' The triangles display the Heitler-London
results of Etters, Raich, and Chand" and the
inverted triangles represent a Domb-Salter"
approximation scheme. At normal vapor pressure,
V= 22.65 cm'/mole, the dynamic-field calculation
gives a ground-state energy Ep 85 K which is
virtually identical to the MC result of Bruce. At
V= 11.39 cm'/mole, a comparison of our work
with Bruce's gives E=444.V1 and 445.34 K, re-
spectively. Similarly, at V=6.34 cm'/mole, the
comparison is E =2296.51 and 2300.83 K, respec-
tively. The dynamic-field and the MC results
agree closely over the entire volume range, but
not with the Heitler-London" and Bomb-Salter"
calculation, especially at the lower densities.
This is not surprising since the latter two calcu-
lations are inherently unreliable at low pressure.
In Fig. 12, the energy is displayed for the volume
range 5» V» 11 cm'/mole. The comparisons and
format are identica1. to Fig. 11. It is apparent that,
at these high pressures, the results of all four
calculations displayed here are in fair agreement
with one another. However, the MC data of Bruce
extends only to V= 9.34 cm'/mole. The pressure-
volume data is shown in Fig. 13 for the volume
range 10 V» 22.65 cm'/mole. In addition to the
format of Figs. 11 and 12, the experimental data
of Stewart" are displayed as circles. It is appar-
ent that, at low molar volumes, the different
theoretical calculations all predict pressures
considerably higher than experiment. " Until re-
cently, it was considered possible that this dis-
crepancy was due to experimental effects. How-
ever, recent measurements indicate that the
original data was reasonably accurate. " It also
appears certain that the theoretical calculations
are fairly accurate at high densities. " Hence,
the discrepancy between theory and experiment is
almost certainly due to the poor representation of
the pair interaction provided by the Lennard-Jones
6-12 potential. In Fig. 14 the pressure calculated
over the volume range 5» V» 11 cm'/mole is
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TABLE III. bcc 4He results.

Volume
(crn /mole)

Pressure
(atm)

{~P) 1/2

(A)

21.60
17.50
15.50
13,75
11.82
10.25

—27.48
—34.27
—38,9
-40.46
-40,46
—31 .2'3

22.29
30.85
39
49.07
65.83

4

-5,19
-3.42

0.1
8.61

25.37
52.17

93
250
500

1035
1790

1.03
.83

0.76
0.64
0.56
0.48

4.5

5.7
8.0

11.5
50

20.0

1.13
1.13
1.12
1.11
1.10
1.10

presented. The close agreement of the dynamic-
field results to those derived from the Heitler-
London" and Domb-Salter" calculations indicates
that the overlap of the wave function between
neighboring sites is very small at these pressures.
Otherwise, these latter two approximate methods
would not yield satisfactory results. The results
confirm the claim"' "that solids become more
and more classical i» behavior as the pressure is
increased. The data for H, are tabulated in Table
V.

IV. CONCLUSIONS AND DISCUSSION
OF APPROXIMATIONS

There are two features of the Monte Carlo cal-
culations that make them suspect at high pres-
sures. At high enough pressures, the number of
atoms contained in a volume sufficiently large to
simulate the bulk system becomes great, perhaps
beyond available computer resources. Then any
proposed solution requires a compromise which
weakens the integrity of the results. In addition,
the Monte Carlo program may not sample phase

50

space ergodically at high pressure because the
close-packed repulsive potential cores give rise
to walls of very low probability surrounding regions
of high probability. This difficulty has been well
documented for a collection of hard disks. ' We
have been concerned that the poor agreement at
high pressures between the MC results for helium
and experiment is from one of these effects. The
close comparisons between the dynamic-field cal-
culations and the MC work' ' dispell that concern,
however, because the dynamic-field approximation
is in no way limited at high pressures. In addi-
tion, the unsatisfactory nature of the Lennard-
Jones 6-12 potential at high pressure has also
been demonstrated by others, using a simplified
theoretical approach. '

The variational parameter ~, which minimizes
the energy, remains essentially constant at all
volumes for both helium and hydrogen. For mo-
lecular hydrogen this parameter remains very
near ~ =1.13 over the entire volume range 5 ~ ~
~ 22.65 om'/mole. This general result agrees
completely with the findings of Hansen and Pollock
on helium' but not quite so well with those of
Bruce on hydrogen. ' The results of Bruce are
admittedly not calculated to high accuracy and it
is our opinion that ~ is approximately density in-
dependent. We agree with Hansen and Poll.ock that

25—0

10

E
m 15

g 10

10

I

12 14 16 18
Volume lcm I mole}

22 10 12 14 16 18
Volume (cm /mole}

20 22

FIG. 8. Energy vs volume for solid He over the
volume range 10 ~ V ~ 21.65 cms/mole. A comparison
is made with other theoretical work and experiment.

FIG. 9. Pressure vs volume for solid 4He. A com-
parison is made with other theoretical work and experi-
ment.
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FIG. 10. Single-particle distribution function A(r) vs
particle displacement from equilibrium for solid ~He at
various volumes.

this result illustrates the importance of pair cor-
relations at all pressures but it is worth empha-
sizing that approximate approaches such as the
Heitler-London method and the Domb-Salter
approximation also properly account for these
correlations at high pressures. %'ith increasing
density, the dependence of the energy upon the
parameter P becomes increasingly weak. That is,
the energy minimum with respect to P forms a very
shallow well. Hydrogen, for example, has an
energy minimum at 9 cm'/mole for P =150. How-

ever, for p =100, the energy is less than 11
greater than the minimum value. The physical
implications of this result are not fully understood.
Because of this relatively weak dependence of the
energy on P, the minimizing values of P listed in
the tables are not very accurate at the higher
pressures.

An important approximation in the dynamic-field
method is the cutoff of products of two-body-cor-
relation functions f(r„) The produ. cts retained in

G(r„, r„) are the correlations of molecules X and
~ to their first-, second-, and third-nearest
neighbors. The functions f outside this range are
replaced by unity. Some idea of the effect of this
approximation can be seen in Table VI where (T),
(V), and F., are presented for a typical 'He calcu-
lation of 21.6 cm'. 'mole. These results are dis-
played as a function of the number of nearest-
neighbor shells contained in the product of pair-
correlation functions f(r,&) As. can be seen from
the table, these results converge quickly even
though the f(r) used in this study are fairly long
ranged. Most of the results for H, were obtained
with a second-nearest-neighbor cutoff in products
of f(r), a procedure which resulted in negligible
error.

As mentioned earlier, the integrals in the lattice
sum of Eci. (8) were calculated exactly only for the
first ten nearest-neighbor shells, The contribu-
tions from remaining shells are evaluated for a
static lattice. It was found that over the range of
densities studied, the energy could be determined
to within 0.5 K if only the contributions from the
first four nearest-neighbor shells were calculated
exactly, with the other shells being evaluated for
a static lattice. This approximation is made in
most Monte Carlo studies. ' ' The use of static
lattice sums after ten nearest-neighbor shells
leads to negligible error. Some idea of the magni-
tude of contributions to the energy from different
nearest-neighbor shells can be seen in Table VII.
This table contains contributions to (T), (V, , and

I:,from different groups of nearest-neighbor
shells for 'He at 21.6 and 10.25 cm'/mole. As can
be seen from this table, the contributions from
the first two nearest-neighbor shells are very
large at low density. The contributions from other
shells become increasingly important with higher
densities. However, the contributions from the
first four or five shells dominate the total energy
even at these high densities.

TABLE IV. R(r) data for He~

Volume
(cm3/mole) 0.0 0.05 0.10

Particle displacement from equilibrium v(v)
015 020 030 040 0 ~ 50 0.60 0.80

10.25
11.82
13.75
15.50
17.50
21.60

1.00 0.916 0.681 0.417 0.207 0.027
1.00 0.922 0.730 0.495 0.292 0.064
1.00 0.955 0.809 0.412 0.133
1.00 0.829 0.484 0.217
1.00 0.862 0.587 0.319
1.00 0.901 0.675 0.424

0.0012
0.0070
0.026
0.068
0.137
0.227

0.0028
0.019
0.045
0.102

0.0022
0.011
0.038

0.0019
0.011 0.0028

10.25
21.60

Static-field approximation

1.00 0.885 0.610 0.323 0.130 0.0084 0.000 15
1.00 0.975 0.902 0.657 0.380 0.168 0.054 0.013 0.0022 0.000 32
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FIG. 11. Energy vs volume for solid fcc H2 over the
volume range 10:V ~ 22.65 cm3/mole. A comparison
is made with other theoretical work.

18

16

Dynamic field

Monte Carlo

Figure 15 contains a comparison of the single-
particle distribution function and e " for 'He at
two specific volumes. The quantity e " would be
the single-particle distribution function if the wave
function did not contain pair correlations. This
figure, therefore, gives some indication of how

much the pair correlations contribute to localizing
the individual molecules about their equilibrium
lattice sites. Note that the pair-correlation func-
tions are responsible for a substantial portion of

10 12

I

14 16 18 20 22 24

Volume {cm /mole)

FIG. 13. Pressure vs volume for solid fcc H2 over the
volume range 10 —V —22.65 cm~/mole. A comparison
is made with other theoretical worl. and experiment.

the localization at both volumes tested.
To recapitulate, the principal approximation of

this calculation is the decoupling of pair correla-
tions between different molecular-field atoms, as
exhibited by Eq. (10). This approximation together
with the others already discussed earlier in this
section, have lead to a theoretical description of
solid 'He, 'He, and H,. which is essentially in very
close agreement with the results of Monte Carlo
calculations. The agreement with experiment is
also excellent, except at high pressures, where,
for both helium and hydrogen, the poor compari-
sons are attributed to an inadequate representation
of the pair potential.

Several major advantages over the Monte Carlo
work accrue to this method of calculation. In

addition to the considerably less computational
effort required and the physical insight afforded
by the the successful approximation techniques,

10

E

"h
6

L

CL

7 8 9
Volume {cm3imole)

10 ll 7 8 9
Volume {cm /mole)

10

I"IG. 12. Energy vs volume for solid fcc H2 over the
volume range 5 —V —11 cm~/mole. A comparison is
made with other theoretical work.

FIG. 14. Pressure vs volume for solid fcc H2 over the
volume range 5 ~ V —11 cm~/mole. A comparison with
other theoretical work is made.
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TABLE V. Results,

Volume
{cm /mole)

Pressure
{atm ~ 10')

K

(cr ')

23.30
18.52
13.99
12.35
ll 11
9.26
7.72
6.17
5.56
5.14

—150.5
-188.0
-149.0
—25.5

159.0

65.5
126.0
243.5
297.5
353.5

—H5. 0
—62,0

94 5

272.0
512.e3

1306
3120
8290

12 280
17 000

1.06
6.12

11.95
21,69
60.1

147.7
454, 9
726.0
998.0

30
67
80
95

150
300
375
500

1 19
1.14
1.12
1.11
1.10
1.12
1.10
1.10
1.12
1.12

it is in principal possible to determine and solve
the coupled differential equations for the optional
form of y and f which minimize the energy. This
is possible because the dynamics of only a limited
number of particles are involved. Another valuable
feature is that the exchange energy can be calcu-
lated in a simple direct fashion. Work on this
problem is in progress.

To evaluate G(r„, r„) for a particular value of
r& and r„, there are a product of three-dimen-

sional integrals to solve, i.e.,

G(r„r„)- IIM, (rx)M, (r„)&(rx, r„),

where N, , M; are defined by Eqs. (13) and (14).
The products extend over all different nearest
neighbors to particles (&, ~). I et the integrand of
iV;(r~) be f (r„, r;, R;) and of N, (r ~, r„), H(r„, r„.,
r;, R;). A Monte Carlo integration routine is used
to evaluate these integrals, in which case they are
expressed as sums:

G(r~, r, )
—II

N N
' g I (r„, r,„,R;) N QI (r„r,„,R&) N ' g H (r„,r„r,„,R, )

f
ff fl

In a bcc lattice structure and with (A, x) nearest
neighbors, there are 14 such three-dimensional
integrals (sums). The index & on the set of vectors
11;, , I r,„r,„r,„) specifies a particular value for
these 14 vectors, selected at random. Each three-
dimensional integral, |n Eq. (18) is evaluated by
summing the & values of its integrand, obtained
using the N randomly selected vectors (r,„), and
then dividing by &. It is important to note that the
integral M, (rq) with integrand f(r„, r&, R;) and

M, (r~) with integrand f(r„, r, , R, ), is j, are in-
dependent of one another with respect to the vari-

ables r; and rj. Clearly, every integral in

G(r~, r„) is independent of one another in the set
of variables II;, ,fr&, r, , r,j. This means that the
same randomly selected vector, a„, which is used
to evaluate one integrand at one point, may also be
used to evaluate the integrands in all the sums of
Eq. I'18).

Hence, instead of selecting 3&14 different
random values to define the vectors in the set
I;I, , r;L„, r„„,r, „), at one point in phase space,
a single vector a„can be used to evaluate the
integrand in each of the 14 sums. This, of course,

TABLE VL Product of correlation functions approximation. Energy calculated from the
dynamic-field approximation incorporating pair correlations between particles (A, , &) and their
first; first and second; or first, second, and third shells of nearest neighbors.

Number off (r&&) products
in calculation of G(r&, r, )

1st-nearest neighbors
1st- and 2nd-nearest neighbors
1st-, 2nd-, and 3rd-nearest neighbors

-24.10
-25.17
-25.10

20.40
19.95
19.95

—3.70
(3 22

-5.15
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TABLES VII. Energy contribution from different nearest-neighbor shells in lattice sum.

Volume
(cm /mole)

iNearest-
neighbor

shell

Contribution
to (V~

Dynamic Rigid
field lattice

Rigid
lattice

Contribution
to (T~

Dynamic
field

Rigid
lattice

Contribution
to Eo (E)

Dynamic
field

21.60 1st
2nd

3rd —10th
11th-38th

Total

-14.95
-6.64

5 33
—0.39

27031

12.50
2.38
0.97
0.03
6.25

22.13

0.03
= 3k~P /4}w

—2.45
-4.26
—4.36
—0.36
-- 6.25
-5.18

10.25 1st
2nd
3rd
4th

5th —10th
11th-38th

Total

+ 8.77
-11.45
-8.19
-5.52

—1.74

—23.06

-5 69
-4.96
—1.74

42.45
8.92
1.84
1.03
0.70
0.15

27.80
82.89

1.00
0.70
0.15

= 3@P/4m

51.22
—2.53
-6.35
—4.49

23
—1.59

+ 27.80
59.83

-4.69
—4.26
—1.59

simplifies the evaluation considerably. G(r}„r,}
is then substituted into Eq. (8) and the resulting
six-dimensional integral is solved to obtain the
energy.

As an experiment, it was decided to constrain
the motion of the atoms comprising the molecular
field in such a way that they all move in concert

about (X, K) as a single entity. That is, the dis-
placement vectors of all nearest-neighbor mo-
lecular-field atoms are taken to be the same,
(y„= r;„-R;, i = 1, 2, . . . , 14), in each configuration
used in evaluating G(r~, r, ). The y„are selected
randomly to generate other configurations. Then,
Eq. (18) becomes

(19}

1.0

0.8

0.6

0.4

0. 2

'0 0. 2 0.4 0.6 0.8 1.0

FIG. 15. Comparison of B(r) and e 8' for solid 4He

at two different volumes.

The value of the energy, obtained with G(r„, r„}
calculated in this fashion, agrees to within 1%
of the exact numerical evaluation. Within the
statistical error associated with the Monte Carlo

integration routine, the results of these two
different methods of calculation agree completely.
This conclusion was fortified by comparing results
of the two methods at several different volumes
for 'He and 'He. As a result, the calculation of
G(r„, r„), as expressed by Eq. (19), requires the
solution of only one three-dimensional integral
rather than 14 such integrals. The total energy
then results from the evaluation of a nine-dimen-
sional integral. The considerabI'. simplification
of algebraic analysis is obvious.

Although we do not fully understand all the
implications of this result, it does seem apparent
that the dynamical behavior of an arbitrary pair
(A, ~) is insensitive to the relative orientations of
the molecular-field atoms with respect to one
another but instead depends only on their individual
orientations with respect to (X, }}}.In practice the
evaluation of Eq. (8}utilized the following proce-
dure. All of the equations were first rewritten for
the computer program in terms of the vector dis-
placement of each molecule from its equilibrium
lattice site. That is, the following vectors were
introduced:
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r re Rg~ z rx R

Y=-rs - Rs =r p-Rp. (20)

Six random numbers were chosen for the com-
ponents of the r and z vectors. Importance sam-
pling was used for the two random numbers chosen
for ~r[ and [z(. It was found that biasing the other
four variables had a much smaller effect on statis-

ties and was therefore not employed. For this six-
dimensional point in phase space G(rz r„) was
evaluated using one of the above techniques. This
process was repeated for a total of typically 10000
to 100000 points. It is estimated that the computer
time used was approximately an order of magnitude
less than for a full Monte Carlo simulation for
comparable statistical errors.

"Work partially supported under NASA Grant No. NGL
06-002-159.
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