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Optimizedcluster theory, the Lennard-Jones fluid, and the liquid-gas phase transitione
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The optimized cluster theory is applied to the Lennard- Jones Quid. The coexistence curve
obtained from the theory is presented. It represents the most accurate microscopic calcula-
tion of the liquid-gas phase diagram for a fluid with a realistic Hamiltonian. The theory is
shown to be quantitatively accurate for all Quid states except those very close to the critical
point. Phenomenological procedures are devised which extrapolate towards the critical point
from regions in which the optimized cluster theory is accurate. The extrapolation calcula-
tions predict nonclassical values for the critical exponents which are in fairly good agree-
ment with experiment. In addition to investigating the liquid-gas phase transition, the equi-
librium pair correlation functions are calculated at several states. Further, the internal
consistency of the optimized cluster theory is discussed.

I. INTRODUCTION

Much progress has been made recently in the
theory of simple liquids. ' The principal physical
concept associated with this progress originated
with the work of van der Waals. This is the idea
that for a dense fluid, the repulsive forces (which
are nearly hard-sphere interactions) dominate the
intermolecular structure. Indeed, it has been
shown' 4 that the radial distribution function g(r)
for a dense Lennard-Jones (LJ) liquid agrees
closely with that for the fluid in which the inter-
actions are just the LJ repulsions and there are
no attractive forces.

A qualitative explanation of this structural phe-
nomenon follows from a simple description of the
environment of a particle in a dense liquid. For
the LJ fluid, high density corresponds to ther-
modynamic states at which p

' ' sro, where p is
the particle density and r, is the location of the
minimum in the LJ potential. (A glance at a phase
diagram shows that "high density" characterizes
most of the liquid phase outside the critical re-
gion; see Fig. 2 in Sec. III of this paper. ) Because
p

' ' sr„nearest neighbors in a dense liquid are
crushed extremely close to one another, and any
displacement of a particle will cause a large
change in the energy associated with the inter-
particle repulsive forces. However, the change
in energy associated with the attractive forces
will be relatively small because these interac-
tions are not quickly varying functions of the inter-
particle separation. As a result, the repulsions
dominate the high-density structure.

At low and moderate densities, particles are

not so close together, and the longer-ranged at-
tractive forces can play a significant role in form-
ing the structure. Indeed, in the extreme limit
of zero density, the effects on g(r) due to repul-
sions and due to attractions are comparable in
size.

Thus, the relative importance of the attractive
forces on the interparticle correlations in a fluid
becomes smaller as the density is increased.
The mechanism for this reduction is "repulsive
force screening": the particles are so close to
one another at high densities that the repulsive
forces form a structure (essentially due to ex-
cluded volume effects) which is not appreciably
changed by the attractive interactions. '

The optimized cluster theory (OCT) introduced
by Andersen and Chandler" provides a micro-
scopic theory for the structural phenomenon de-
scribed above. The purpose of this paper is to
present the predictions of this theory when it is
applied to the I.J fluid in the vicinity of the liquid-
gas phase transition. We will show in Sec. III
that the OCT is quantitatively accurate except for
thermodynamic states very close to the critical
point.

The principal procedure in the OCT is a re-
arrangement of the Mayer cluster expansion which
allows one to replace the attractive interactions
with an "optimized" renormalized potential. This
renormalized (or screened) potential embodies
the repulsive force screening which reduces the
effect of the attractions at high densities. At low

densities, the repulsive force screening does not
exist, and the OCT renormalized potential be-
comes, in the limit of zero density, the bare at-



QP TIMIZ E D C LUSTER THEQRY, THE LE NNARD - JQNE S. . .

tractive interaction.
In Sec. II, the QCT is reviewed; the precise def-

inition of the optimized renormalized potential
is given; and the internal consistency of the QCT
is examined. Then„ in Sec. III, the theory is ap-
plied to study the LJ fluid for thermodynamic
states of low, moderate, and high densities. The
liquid-gas phase diagram is calculated, and the
theory is used to study correlation functions and
thermodynamic properties near the critical point.
The paper is concluded with a discussion in Sec.
IV.

This paper has been written with the assumption
that the reader is familiar with recent publica-
tions on the theory of simple liquids. The particu-
lar papers that we regard as prerequisites to the
present paper are Refs. 3, 4, and 6. The notation
and terminology which we use are consistent with
the notation and terminology used in those refer-
ences.

ll. THEORY

A. Review of optimized cluster theory

As presented in Ref. 6, the QCT is applicable
to a system in which the total potential energy
is a sum of pair interactions, and the pair poten-
tial is of the form au(r) =g.,(r)+u(r), where u, (r) is
the hard-sphere potential, i.e. ,

u~(r) =~, r ~ d

=0, y&d.

The fluid composed of hard spheres of diameter
d is the reference (or unperturbed) system, and
u(r) is the perturbation.

Rather than expand properties of the total sys-
tem in a perturbation series that is ordered in
powers of u(x)/ksT (ks is Boltzmann's constant
and T is the temperature), the OCT uses a re-
arrangement of this series to express the effects
of the perturbation in terms of a renormalized
potential. The renormalized interaction is
-ksT6(r), where 8(r) is the sum of simple chains
of cluster diagrams involving -u(r)/ks T bonds
and reference system pair correlation function
bonds. The mathematical formula for e(r) is
given by Eq. (3.8) of Ref. 6.

The incorporation of repulsive force screening
is made with the "optimization condition" which
is defined mathematically by Eqs. (4.1) and (4.1' }
of Ref. 6. It is important that the formulas written
below are used together with the optimization con-
dition. If the optimization is not performed, the
formulas will not include the physics of repulsive
force screening; and without this physics, the
formulas are not accurate.

A discussion of how the optimization procedure
incorporates repulsive force screening into the
QCT is given in Ref. 6. In addition to that dis-
cussion, it can be shown' that the optimization
procedure inserts into the renormalized potential
an infinite class of (topologically specifiable) dia-
grams that are not contained in the unoptimized
renormalization.

With -kent'6 (r) denoting the optimized renor-
malized potential, the principal results of the QCT
are

lf (+) g pxr (+) gd (+) expl @(+)J

and

(2.1)

(2.2)ORPA+ S~ HTA RING

Here, we use the notation and terminology estab-
lished in Ref. 6: g~ (r) is the radial distribution
function for the hard-sphere fluid; 9 is the Helm-
holtz free-energy density; and Q,„TA is the free-
energy density which gives the exact 9 through
first order in u(r)/ksT [it is the result obtained
for Q if one assumes that the perturbation does
not affect the structure, i.e., g(r) ~g, (r}]."The
sum emA +a RING ls the optimized-random-phase
approximation (ORPA) for 8.' The quantity B, is
like a second virial coefficient; however, it in-
volves the renormalized perturbation rather than
the bare interaction u(~).'

The evaluation of Eqs. (2.1) and (2.2) requires
the knowledge of the free-energy and pair cor-
relation function for the hard-sphere fluid. This
information is obtained from the Verlet-leis for-
mula for g, (r) ' and the Carnahan-Starling formula
for the equation of state." These equations sum-
marize in analytic form the results of exact ma-
chine calculations on the hard-sphere system.

Equations (2.1}and (2.2) are exact in the low-
density limit. ' Furthermore, because the repul-
sive force screening is described by the optimized
p {r), these equations are extremely accurate at
high densities. ' At moderate densities, however,
it is not obvious that they will remain quantitative-
ly precise. It is the moderate density region in
which the l.iquid-gas phase transition occurs. For
this reason, the results reported in Sec. III are
concerned mainly with thermodynamic state s in
the vicinity of the liquid-gas coexistence curve.

The corrections to the approximations given in
Eqs. (2.1}and (2.2) are written explicitly in Ref.
6 as infinite series involving g~ (r) and 8(r). The
expansion parameter in the series is A. =pR't. .
Here, R denotes the range of the renormalized
potential, and 8 is the average magnitude of the
renormalized potential. Except for states near a
critical point, R is of the order of the particle
diameter d.
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If necessary, it is always possible to use higher-
order terms in the optimized cluster expansions
and evaluate corrections to Eqs. (2.1) and (2.2).
However, if A. is small, this is not necessary since
it is shown in Ref. 6 that for each value of r the
fractional error ing(r) =g (r) (which is called
the exponential approximation} is of order X, and
the error in 8 = 8 ogpu g is of order A,'. For the
fluid studied in this paper pd'8-10 ' for all fluid
states. As a result, except for points in the criti-
cal region [where (R/d)' becomes relatively large],
A, is small enough that the corrections to Eqs.
(2.1) and (2.2) are negligible.

The theory which we summarily call the QCT
is the EXP (exponential) approximation for g(r),
Eq. (2.1), and the ORPA+ B, approximation for
the free energy, Eq. (2.2).

B. Lennard-jones fluid

The Lennard-Jones {LJ)fluid is the system in

which the total potentia, l energy is a sum of pair
potentials of the form m~(r) = 4&[( o/r "}—(o/r)'].
Here, c and o are constants with units of energy
and length, respectively.

Our analysis of this fluid begins with the separa-
tion of the potential into a reference part u, (r)
and a perturbation u(r). An intelligent separation
must satisfy two requirements. First, uo(r) must
be a harsh repulsive interaction. " This permits
us to relate, as described below, the properties
of the system with interactions u, (r) +u(r) to the
fluid with interactions u, (r)+u(r). The latter is
the type of system that can be treated with the
OCT as outlined in Sec. IIA.

The second requirement is that the high-density
structure of the total system must be very close
to that of the reference system. If this condition
is satisfied, then p[g(r) -g,(r)] is small, where

g,(r) is the reference system radial distribution
function. This difference, of course, is of order
pe(r) [see Eq. (2.1)], and pe(r) must be small
for the OCT to be accurate. In other words, the
OCT is a theory which calculates the effect of the
perturbation on the structure of the fluid. If this
effect (times the density) is small, the OCT is
accurate.

A separation of the LJ potential which satisfies
these two requirements is the one in which u, (r}
contains all. the repulsive forces and none of the
attractions, and u(r) contains all of the attractions.
Mathematically the separation is

C. Consistency of the theory

It is possible to unambiguously test the accu-
racy of the OCT on the LJ fluid because "exact"
molecular dynamics and Monte Carlo calculations
have been made on this system. However, the
QCT is a general theory which is applicable to
a wide va.riety of atomic liquids, liquid mixtures,
and molecular liquids. As a. result, one hopes
that the theory will be applied to numerous sys-
tems which are of experimenta, l interest but have

not been investigated with computer simulations.
Thus, it is important to be able to assess the
accuracy of the QCT in the absence of exact nu-
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where r, =2' 'a. The reference potential is in-
deed a harsh repulsion, and, a,s described in Sec.
I, the high-density structure of the reference
fluid is very close to that of the high-density LJ
fluid. '4

Since the reference interaction, is not a hard-
core repulsion, it is convenient to introduce a
trial system for which the pair potential is ur(r)
=u~ (r) + u(r). The OCT is used to predict the
properties of the trig/ fluid. Once these are
known, the properties of the LJ fluid are straight-
forwardly obtained through the application of a
type of cluster expansion" (which is called the
"blip function" expansion). The formulas needed
to find the LJ properties from those of the trial
system are given in Eqs. (11)-(14)of Ref. 4.

The optimized renormalized potential for the LJ
trial system is graphed for three representative
states in Fig. 1.

u, (r) =e+w (r), r ~r,

(2.3a)

FIG. 1. Optimized renormalized potential for the
trial system of the Lennard-Jones fluid at three repre-
sentative thermodynamic states. For all three, k~T/~
=1.15; the densities are pcr3=0.0, per~ =0.50, and pcT3

= 0.85.
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merical results.
One satisfactory method for determining the

accuracy is to estimate the relative size of the
corrections to Eqs. (2.1) and (2.2). Since these
corrections have been described explicitly in
Ref. 6, this procedure is certainly a practical
one. A detailed analysis of the order of magni-
tude of the corrections is given in Secs. V and
VI of Ref. 6. In general, if the parameter A, de-
fined in Sec. IIA, is small, one knows that Eqs.
(2.1) and (2.2) are accurate. If it is not small,
one must either calculate higher-order terms
in the optimized cluster expansions or devise
a new separation of the intermolecular potential
which satisfies the requirement discussed above
that the high-density structure of the reference
fluid is close to that of the total system (or, equiv-
alently, find a separation that makes a small).

Another method for testing the accuracy of the
QCT is one that is usually used on theories for
which it is not practical to evaluate corrections.
This procedure calculates the equation of state
from two (or more) different routes to the thermo-
dynamics. The comparison of the results ob-
tained from the different routes is regarded as a
test of the internal consistency and thus the accu-
racy of the theory. %e have applied this kind of
test to the QCT for the LJ fluid. Let P~ denote
the pressure obtained by differentiating the ORPA
+B, approximation for the free energy. I,et P„
denote the pressure obtained from applying the
virial theorem to the EXP approximation for g(r).
Then the following results are representative of
what is found throughout the density-temperature
plane:

PE 017
ksTp

for pv' = 0.56 and - ~ = 1.25,
~' =0.18

kg I'p

and

= 1.52
ks Tp

for pv' = 0.76 and = 1.25 .
= 1.54

k~ Tp

completely neglects the effect of the attractive
forces on the structure. At high densities, g, (r)
is indeed very close to g(r). However, the ap-
proximation g(r) ~g,(r) is not accurate to several
significant figures. But this kind of accuracy is
required if the virial theorem pressures are to
agree closely with those obtained by differentiating
the free energy. Indeed, at the representative
state per' =0.80 and ks T/e =1.35, the virial theorem
applied to g(r) ~g, (r) gives p/ks Tp = 3.10, while
differentiation of the free energy in the HTA gives
P/ksTp =2.40. (Computer simulations" give 2.42. )
Thus, the HTA, which is the zero-order theory
in the optimized cluster expansions, is not a con-
sistent theory in the sense that two independent
routes to the thermodynamics give the same re-
sults. This should be expected for a zero-order
theory. The first natural corrections to the HTA
are Eqs. (2.1) and (2.2). It is seen that these equa-
tions do satisfy the consistency test to an excellent
approximation.

III. RESULTS

We now discuss the predictions of the QCT when
it is applied to the LJ fluid for thermodynamic
states in the neighborhood of the liquid-gas phase
transition. Qur results are expressed in terms
of reduced variables for the temperature, densi-
ty, and pressure; these are T*=ksT/e, p~ =pe',
and p*=po'/e, respectively.

In Sec. IIIA, thermodynamic properties are
considered. In Sec. III 8, the equilibrium pair
correlation functions are discussed.

A. Thermodynamic properties

We have used Eq. (2.2) to calculate the Helmholtz
free energy. By numerical differentiations, other
thermodynamic properties were obtained.

For a few representative states, the QCT re-
sults are compared in Table I with those obtained
from computer simulations. " The agreement is

TABLE I. Comparison of the results obtained from
the optimized cluster theory (OCT) and Monte Carlo
computer experiments (MC) for the Lennard-Jones fluid
{Ref, 14). T* and p* denote the reduced temperature and
density, respectively. AA is the excess (with respect to
the ideal gas) Helmholtz free energy; p is the pressure;
AE is the excess internal energy.

The agreement between p~ and p„is excellent.
It is possible to attribute the entire difference
between them to the uncertainty in our knowledge
of the hard-sphere equation of state and of g~ (r)."
Both of these quantities are needed as input for
our calculations.

The same consistency test can be applied to the
high-temperature approximation' (HTA) which

1.15

1.35

0.65
0.75
0.85
0.10
0.90

-~/Xk gT
MC OCT

1.84 1.85
1.89 1.91
1.78 1.80
0.29 0.30
0.56 0.56

0.31 0.22
1.17 1.10
2.86 2.84
0.72 0.72
0.50 0.51

4.45 4.47
5.13 5.13
5.67 5.69
0.78 0.78
1.51 1.50

p /k~Tp -~/Xc
MC OCT MC OCT
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excellent. (Note that the uncertainty in the de-
termination of p/ks Tp from computer experiments
ts 6 0.05 at llguld densities. )

We have found that at high densities (p*a0.65),
the ORPA+8, free energy [Eq. (2.2)] is virtually
indistinguishable from the optimized-random-
phase approximation (ORPA) free energy dis-
cussed in Ref. 4. The reason for the agreement
is that the difference between these two approxi-
mations is second order in the renormalized po-
tential, and the renormalized potential is very
small at high densities. Extensive comparison
between the QRPA and computer simulations can
be found in Ref. 4. It is seen there that at high
densities, the ORPA (and thus the OCT) predic-
tions agree with those of the computer experiments
within the possible error of the latter.

With the free energy and pressure determined
from the QCT, we have calculated the liquid-gas
coexistence curve from a Maxwell construction, .
The results obtained are given. in Table II and
Fig. 2. Since the QCT is exact at very low densi-
ties' and nearly exact at very high densities, ' the
Iow-temperature portions of the coexistence curve
must represent accurately the exact phase dia-
gram of the LJ fluid. At higher temperatures,
however, it is not obvious that the theory will
remain precise.

Computer experiments have not been used to

TABLE II. Coexisting gas and liquid densities and the
corresponding pressure of a Lennard-Jones fluid at var-
ious temperatures as calculated using the optimized
cluster theory.

make extensive studies of the liquid-gas phase
diagram. The only accurate study at a tempera. -
ture significantly higher than the triple point tem-
perature (which is T* =0.70) is the calculation
of Hansen and Verlet for the isotherm T*=1.15."
At this temperature, they find that the densities
of the coexisting gas and liquid are p* =0.073 and
p~=0.606, respectively, and the pressure of the
coexisting phases is p *= 0.0597. These numbers
agree exceptionally well with the entries in Table
II, Thus, we conclude that the coexistence curve
predicted by the QCT is quantitatively accurate
for T*s1.15.

For reduced temperatures greater than 1.15,
critical-point singularities begin to become im-
portant in forming the nature of the coexistence
curve. Thus, even if computer simulations were
done to predict the phase diagram for T~& 1.15,
they would not provide a test for the theory. The
computer experiments are performed on small
systems. As a result, they cannot duplicate the
behavior of a macroscopic fluid with long-ranged
correlations. To study the prediction of the QCT
in the critical region, we have tried to compare
our calculations with experiments on real liquid
argon. The principal difficulty with this approach
is that the LJ potential does not represent quan-
titatively the interactions between argon atoms. "
However, the comparison should provide a quali-
ta,tive test of the QCT.

From the juxtaposition of the theoretica. l co-
existence curve and the curve for argon, "we find
tha, t the "best" fit is obtained with the LJ param-

1.345
l.340
1.335
1.330
1.325
1.320
1.315
1.310
1.305
1.300
1.295
1.290
1,250
1.200
1,150
1.100
1.050
0.950
0.850

0.309
0.282
0.264
0.249
0,236
0.224
0.214
0,204
0.196
0.188
0.180
0.174
0.131
0.096
0.072
0.053
0.039
0.020
0,009

0.384
0.404
0.419
0.432
0.443
0.452
0.461
0.469
0.477
0.484
0.491
0.497
0.541
0.584
0.621
0.653
0.682
0.734
0.781

0.146
0.143
0.140
0.137
0.134
0.131
0.129
0.126
0.123
0.121
0.118
0.115
0.096
0.076
0.059
0.045
0.034
0.017
0.007

There are uncertainties in the third decimal place
owing to the uncertainties in the hard-sphere equation of
state used to calculate the OCT pressure {see Ref. 13).

——HTA
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FIG. 2. Liquid-gas coexistence curve of the Lennard-
Jones fluid in the temperature-density plane. The solid
curve is obtained from the optimized cluster theory
[Eq. {2.2)), the dashed curve from the high-temperature
approximation {H,ef. 3), and the dotted curve from the
experimental results for argon {Ref. 16) assuming that
argon is a Lennard-Jones fluid with the parameters equal
to those described in the text.
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eters given by cr =3.401 A and e/ke =115.8'K.
These values are similar to (but not the same as)
those found by Michels et al."from fits of the
low™density properties of argon; and they are
also similar to the parameters that Verlet and
%'eis" found from considering the high-density
properties of argon. The criterion we used to
find the "best" e and o was based on the conclu-
sion, stated above, that for r~~1.15, the OCT
provides a quantitative description of the LJ co-
existence curve. Therefore, we determined the
LJ parameters for which the theoretical phase
diagram in that temperature region agrees as
closely as possible with the argon phase diagram.

With the above stated values for v and c, the
experimental argon coexistence curve is shown
in Fig. 2. Very close to the critical point the OCT
disagrees with experiment. The disagreement
is large enough that it must be due to errors in
the OCT and not to inadequacies in the LJ poten-
tial as a model for interactions in liquid argon.
With our values of a and e, the experimental criti-
cal point is T~(expt) =1.303, p,*(expt) =0.318, and

P,*(expt) =0.121. The OCT predicts Z',*=1.348,
p,*=0.349, and p+ =0.148.

Incidentally, on the basis of PY II equation cal-
culations, Verlet and co-workers have estimated
the critical constants to be T," (Verlet) = 1.36+ 0.04,
p» (Verlet) =0.36+0.03, and p,* (Verlet) =0.15
+ 0.015 '4

The coexistence curve obtained from the HTA
is also shown in Fig. 2. This simple perturba-
tion theory does not describe the phase diagram
accurately because the HTA neglects entirely the
effects of the attractive forces on the fluid struc-
ture. It is seen that the OCT makes an important
improvement on the HTA.

The representation of the coexistence curves in
the pressure-density plane is shown in Fig. 3.

The pressure calculated from the OCT at several
thermodynamic states near the coexistence curve
are tabulated in Table III. Also given are the ex-
perimental values for argon. " The differences
between experiment and theory are sufficiently
small that they can be attributed entirely to the
inaccuracies of the LJ potential model for the
interactions in liquid argon.

It is well known that an analytic free energy
supplemented with the Maxwell construction yields
a "classical" theory of phase transitions. " Thus,
the OCT is a classical theory, and it should be no
surprise that an examination of our calculations
very close to the critical point yields the following
classical values for the critical exponents: P = 2,
y=y'=1, 5=3, @=a'=0. Here, the Greek letters
stand for the usual critical indices defined in Ref.
19. For example, the exponent P describes the
curvature of the liquid-gas phase diagram asymp-
totically close to the critical point; i.e.,

0.12

0,10

TABLE III. Comparison of pressures calculated from
the optimized cluster theory (OCT) with the correspond-
ing experimental argon values of Ref. 16 (expt). It is
assumed here that argon is a Lennard-Jones fluid with
the Lennard-Jones parameters discussed in the text.

006
OCT expt

002

0.00
0.0 0.1 02 03 0.4 0.5 0.6 07 0.8 0.9

P

FIG. 3. Liquid-gas coexistence curve of the Lennard-
Jones fluid in the pressure-density plane. The solid
curve is obtained from the optimized cluster theory
I.Eq. (2.2) t, the dashed curve from the high-temperature
approximation (Ref. 3), and the dotted curve from the
experimental results for argon (Ref. 16) assuming that
argon is a Lennard-Jones fluid with the parameters
equal to those described in the text.

1.269
1.269
1.356
1.356
1.356
1.356
1.356
1.356
1,425
1.425
1.425
1.425
1.425
1.425

0.662
0.757
0.166
0.313
0.433
0,477
0.571
0.674
0.351
0.447
0.546
0.603
0.716
0.780

0.55
1.51
0.13
0.15
0.16
0.18
0.34
0.88
0.20
0.24
0.39
0,60
1,51
2.51

0.55
1.50
0.12
0.15
0.17
0.20
0.35
0.87
0.20
0.25
0.40
0.60
1.50
2.49
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P = lim [ln(p,*—p~~)/In(T, *—T~)] .
C

The plot of In(p*, -p,") vs ln(T,*—I') that is ob-
tained from the OCT is shown in Fig. 4.

While the OCT is a classical theory, it can yield
quantitative results provided one is not too close
to the critical point. It is seen that for tempera-
tures 20% away from T,*, the plot in Fig. 4 can
be accurately represented by a line with a slope
of approximately -', . Since the experimental value
for P is near —,', Fig. 4 suggests that the OCT pre-
dictions outside of the critical region can be used
to extrapolate to the critical point.

We assume that for states significantly far away
from the critical point, the coexistence curve can
be represented by the following equation:

(3.1)

Here, "ext" is used to denote "extrapolated value. "
It is emphasized that P(ext) is rigorously not the
critical exponent P because P is defined in the
limit asymptotically close to the critical point.
The constants A, T,*(ext}, and P(ext) are deter-
mined by fitting Eg. (3.1) to the coexistence curve
at three temperatures in the region for which the
OCT is accurate (T*s1.15). Depending on which
three temperatures are used, slightly different
values for the constants are obtained. However,
the numbers are stable enough that we can. make

for T™I;*(expt} and p*=p,*(expt). To determine
the constants, the OCT values for K~ were found
for T*z 1.45. The procedure gives y(ext) =1.2'I

+ 0.07. The value agrees mell with the experi-
mentally measured critical exponent y(expt)

For completeness, the OCT prediction of the
heat capacity C~ along the critical isochore is
shown in Fig. 5.

10.0—
p =pc

fairly specific predictions. These are: p(ext}
=0.33+0.03 and T*(ext}=1.31+.Ol. The value for
the extrapolated critical temperature T~(ext) com-
pares favorably with the experimental value (stated
above) of 1.303. Further, P(ext) compares well
with the experimental value of P(expt) =0.36.20

We have also used the extrapolation procedure
to study the critical exponent y which describes
the divergence of the isothermal compressibility,
g~, for temperatures above T~ and for densities
on the critical isochore. The extrapolation for-
mula we used is
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FIG. 4. Optimized cluster theory coexistence curve:
ln(pf -p*) vs ln(T~ —T~).

l l I ( }

1.30 132 j'34 Tc 136 1.38 1-40

T

FIG. 5. Constant-volume heat capacity Cz calculated
from the optimized cluster theory along the theoretical
critical isochore p,*=0.349.
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8. Structural properties

%e now discuss the results obtained from the
EXP approximation for the pair correlation func-
tion [Eq. (2.1)] .

Two representative calculations have already
been presented in Ref. V. These were at the ther-
modynamic states T*=1.36, p~=0.50 a,nd T~
=0.88, p~ =0.85. In both ca,ses, it was shown that
the g(r) calculated from the EXP approximation
agrees with the molecular dynamics g(r) within
the possible error of the computer experiment.

In Fig. 6, we show the pair correlation func-
tion at the state which is the critical point ob-
tained from the QCT free energy. An integration
over g(r) —1 shows that the OCT g(r) approaches
the asymptotic value of unity in a finite range.
Thus, an important physical feature of the criti-
cal point (long-ranged correlations) is not con-
tained in the QCT. Further, because the range
is finite, the compressibility predicted from the
EXP approximation for g(r) is finite. The ORPA
+ 8, free energy, of course, predicts an infinite
compressibility. Thus, the QCT is inconsistent
at the critical point. This should be expected
since we have already pointed out that the OCT
provides a classical (and thus incorrect) theory
of the critical point.

In Fig. 7, we show the EXP approximation for
g(r) at three different densities on the T* = 1.249
isotherm. The states are sufficiently far from
the critical point that we believe the curves are
quantitative representations of the exact g(r).
Qur results shown in Fig. 7 support the conjec-
ture of Fisher a,nd Widom2' that there is a. bound-
ary in the temperature-density plane such that the
asymptotic decay of the pair correlation function
is monotonic on the low-density side and oscilla-
tory on the high-density side (see Fig. t of Ref.
22). The same remarks apply to Fig. 8, which
shows g(r) calculated from the EXP approxima-
tion for a low- and a high-density state on the
isotherm T*= 1.351.

The structure factor, S(k), is defined as

S(k) =1+p [g(r) —lje '"' dr.

By Fourier transforming the pair correlation
function in the EXP approximation, we have cal-
culated S(k). ln Fig. 9 we show S(k) so obtained
on the QCT critical isochore, p~ =p, *, at the
temperatures T*=T, *, T~=1.45, and T*=1.55.
The fact that S(0) is not infinite at the critical
point was discussed above and it is an indication
of the inconsistencies of the QCT near the criti-
cal point. It is significant that the EXP approxi-
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FIG. 6. Radial distribution function calculated from
the optimized cluster theory at the theoretical critical
point (p,*=0.349 and T,*=1.348).
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FIG. 7. Radial distribution function for states Un the
T~ =1.249 isotherm. The three densities are p* =0.107,
p* =0.558, and p* =0.757.
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