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Elastic scattering of very slow electrons by molecules
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The modified effective-range theory, which has enjoyed great success in its application
to electron-atom scattering, is hereby extended to electron scattering from molecules. An

analytic expression for the diffusion cross section for molecules in any rotational state is
obtained. It is utilized to analyze the detailed results of recent swarm experiments on H2,
and to comment on the lessdetailed experimental results on D2, N&, and 02.

I. INTRODUCTION

Much elegant theoretical work on low-energy
electron scattering from atoms has been accom-
plished by Spruch and co-workers' by taking ad-
vantage of the analytic long-range potentials. In
particular, they have obtained expressions for the
partial-wave phase shifts as power series of the
magnitude of the wave vector k (and ink) for the
induced polarization potentials, the dipole -er
and the quadrupole yr ' (w-here n is the dipole
and y the quadrupole polarizabilities). ' The re-
sults known as modified effective-range theory
(MERT) have been confirmed by experiments on
the rare gases. ""Best results are obtained by
comparison of the diffusion or momentum-trans-
fer cross sections, "b' where experimental values
are available for energies as lom as the meV
range.

The primary purpose of this paper is to show'

that MERT can readily be extended to electron-
molecule scattering. In the present work me will
restrict the molecules to homonuclear diatomics
in the 'Z, state. Thus we exclude the extremely-
long-range dipole potential, and avoid very com-
plicated coupling coefficients in a more general
case. Thus in addition to the potentials present
in the atom case, we now encounter a quadrupole
potential given by -egr 'P, (cos8), where Q is the
molecule's quadrupole moment in units of ea,' and
8 is the angle between the electron and the molec-
ular axis. It should be noted that this potential is
also present in electron-atom scattering if the
atom is not in anS state. In fact, the present work
applies to that case as mell, and one only needs to
replace the molecular rotational state j by the
atomic fine-structure state.

Actually, the effective-range theory for a poten-
tial of the form r ' has been derived by Shake-
shaft. 4 He concluded that the s-wave phase shift
mas infinite, and hence the scattering length did

not exist, and that for all non-s-waves the phase
shifts were all linear in k. Fortunately, the situa-
tion of interest here is not the isotropic r poten-
tial but the quadrupole potential, which conta, ins
a factor P2. This factor eliminates the pure s-
wave contribution through group-theoretical con-
sidera. tions, and therefore the MEET s-wave
phase shift for molecules is the same as for
atoms. However, for non-s waves, this factor
introduces a coupling coefficient which does not
vanish. Therefore, the non-s-wave phase shifts
are now linear in k rather than quadratic, as in
the atom case. This fact might lead one to expect
the diffusion cross section for molecules to be
substantially different from the case for atoms.

Experimentally, many data on diffusion cross
sections are available. ' We shall focus our atten-
tion on the recent data of Crompton and co-mork-
ers,"which are believed to be accurate to 5%.
These are obtained from swarm experiments con-
ducted at 77'K, including three cases of particular
interest: (i) parahydrogen H, (99.5cjo in the j =0
state); (ii) normal hydrogen H, (24.9@ in the j =0
state and 75.0/p in the j = l state); and (iii) normal
deuterium D, . These results should agree well
with the predictions of MEHT when properly modi-
fied, as in this work at sufficiently lom energies-
say, less than 0.1 eV, safely below the vibrational-
excitation threshold. At these low' energies, only
elastic and rotational excitation and deexcitation
processes are energetically possible.

The reader is reminded that in the swarm ex-
periment cross sections are inferred from mea-
surements of transport properties of the gas (par-
ticularly the electron drift velocity and the ratio
of diffusion coefficient to mobility), fitted to solu-
tions of the Boltzmann equation. Details of this
procedure are given by Crompton et al. ' and else-
mhere, ""' and mill not be repeated here. We only
wish to emphasize that cross sections so obtained
are absolute, and that errors in one cross section
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will affect the accuracy of the other cross sec-
tions. Clearly, the fewer cross sections there are
(i.e. , energetically allowed}, the more reliable
they are. In fact, in experiment i on parahydrogen,
there are essentially only two possible processes:
elastic scattering (j=0-0) and rotational excita-
tion (j =0-2). Other allowed processes are gener-
ally negligible either because of a very small
cross section, e.g. , (j =0-4), or because of the
small population of the initial state, e.g. , 0.5%
for j =2. Under these simple conditions, cross
sections for these two processes can be deter-
mined uniquely and accurately from the swarm
data. The excitation cross section has already
been studied theoretically, ' and is found to be in
good agreement with experiment. In Sec. II we
will show that the MERT diffusion cross section
for j =0 is identical to the expression for atoms,
and comparison will be made between theory and
experiment.

In experiment ii on normal hydrogen, there are
now four cross sections to consider: the diffusion
cross sections for j =0 and for j =1 and the ex-
citation cross sections (j =0-2}and (j =1- 3).
As pointed out by Crompton et al. ,

' these cross
sections are now no longer uniquely determined.
To facilitate their analysis, they have assumed
that the two diffusion cross sections are equal,
based on the results of a close-coupling calcula-
tion. By obtaining the MERT diffusion cross
section for any rotational state a, (j}, we will be
able to investigate the validity of their assumption
and hence the reliability of the entire procedure
used to determine the other cross sections.

In Sec. IV we will discuss the experiment-iii
results on D, in light of the new theory. Analysis
will also be made on other homonuclear diatomic
gases for which swarm data are available. ""' In
particular, we will consider nitrogen and oxygen.
Finally, in Sec ~ V we present the conclusion.

II. GENERAL FORMULATION AND RESULTS FOR
PARAHYDROGEN

Recently the general theory of electron-molecule
scattering has been explicated in two alternative
frames of coordinates, the molecular frame and
the laboratory frame. " In the energy range of
interest, E & 0.1 eV and hence 0 & 0.08ao', cor-
responding to a wavelength of ~12ao. This implies
that the electron-molecule interaction takes place
primarily at large distances and that therefore
the laboratory frame is the appropriate frame to
use. Furthermore, we need not know the compli-
cated short-range potentials, because they are
not probed by electrons with long wavelengths.
Our task then is to evaluate laboratory-frame
phase shifts from the long-range potentials in
a.u. (m = e =g =a, = 1), given by

1 o.,V(r) = ——;——;P, (cose}—,P, (cos6';. (1)

The first term is the familiar induced-polarization
potential, except that the polarizability tensor
is expressed as an isotropic part a, and an aniso-
tropic part &„which appears in the second term.
The third term is the quadrupole potential. Other
potentials may be neglected, since our primary
interest is to determine the momentum cross
section at very low energies. To be precise,
we will evaluate only the two leading terms for
a, (j), i.e. , the constant and the linear term in k.
It can be shown that potentials which fall off as
r ' or faster and short-range potentials can only
contribute to the higher-order terms neglected here. '

The diffusion cross section is related to the
differential cross section by

o, = (1 —cos8)dQ.
d0'

(2)

A more explicit form in terms of laboratory-frame
T matrices has been obtained by Arthurs and Dal-
garno f

21~ l ~r l2l2r

x[(21,+1)(2l,'+1)(212+1)(2/'+I)]'»(2 J, +1)(2j,+I) I'r}' 1'r2&

x(l, 0l 0~10)(l,'Ol'0~10) 'I

The index E represents the orbital angular momen-
tum of the electron and J the invariant total angu-
lar momentum of the electron-molecule system.
The (.. . .

~
. . ) are Clebsch-Gordan coefficients;{:::Iare Gj symbols.

Clearly, conservation of angular momentum
requires S=T+ j„which is reflected in the 6-j
symbols. In Eq. (3) the T matrices are not neces-
sarily diagonal in /, since the scattering potential
V contains terms that are not isotropic. However,
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the nondiagonal T matrices are expected to be
small, since I is an approximate good quantum
number. This phenomenon, known as l uncou-
pling, is what makes the laboratory frame appro-
priate. Note that for the special case of j =0
these nondiagonal T matrices are identically zero,
due to angular-momentum considerations. The

(4)

Now if we neglect terms involving nondiagonal T
matrices, Eq. (3) simplifies considerably:

diagonal T matrices are related to phase shifts
q~, in the usual manner,

J'
T~',

' =2ie'" ji sing&~, .

I L, L, 1 I
&sing i sing a cos(q~~ —q~2 )(L,OL20~10)' ) .

I ) .J j

Since L, and L, can only differ by 1, Eq. (5) can
be further simplified. After some manipulation,
we obtain

o, (j) = . , ~ (L+1)(2J, +l)(2J, +1)
4v

2

IL L+1 j)
This form now resembles the expression for the
diffusion cross sections in atoms. In fact, for
the ground rotational state (j =0), o, reduces to
the familiar expression

o„(0}= ~, Q (L+1)sin'(q,', —q,",.",).

o, (0) =4vA'[1+(4w/5A) o.',k+ ]. (10)

0.0l 0.02 0.05 0.04 005 0.06
I I I I

Note that only 8 and p waves contribute to this
expression through the term L =0 in Eq. (L). High-
er partial waves affect only terms of order k or
higher, and therefore do not appear in Eq. (10).

In Fig. 1 we show the experimental diffusion
cross section plotted versus the wave vector k,
It is observed that a straight line fits the data
very well (except at the point k =0)." From the

Indeed, the anisotropic parts of V do not contrib-
ute to this case at all, since in the j =0 state the
molecule appears to the electron as an isotropic
charge distribution. Therefore the MERT results
without any modification can be applied to the
results' of experiment i. For the sake of com-
pleteness and for future reference, we reproduce
the MERT results here':

tang, = -A L.'—-', vaP' ——', o,A&' inh(&, )'~'&1 +0 (&')

(8)

ceo

IO

5 ~

4 ~

pa, k'
(2L —1)(2L + 1)(2L + 3}

(9)

i ~ ~ EXPERIMENT~g
THEORY

Here A is the scattering length, which is a param-
eter containing all our ignorance of the short-
range potentials. Note that in Eq. (L) the super-
script is redundant, since 4 =/. Substituting Eqs.
(8) and (9) into ('7), we obtain the familiar ex-
pression

0 I I I I I

0 O.OI 0.02 0.03 0.04 0.05 0.06 0.07

k (a. )

FIG. 1. Diffusion cross section in parahydrogen at
77 'K, as a function of the wave vector k (bottom scaIe)
and as a function of the energy E I'top scale).
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intercept, we determine that A =1.26a„while
from the slope we obtain &, =5.5a,'. This value of
the polarizability is in good agreement with the
elaborately calculated value" of 5.41a03 and an
independent experimental value" of 5.44ao.

It is worthwhile to comment on the point at k =0.
According to the principle of detail balance, the
superelastic cross section o(j =2-0) can be ob-
tained from the known excitation cross section"
o(j =0-2). Thus we have

68 ii2 1 16c(j =2-o) =
k, 6 46

Q'(«,'), (ll)

where 8 is the rotational constant =2.8&10 'a.u.
and Q =0.48 for H, . Ordinarily, we may ignore
this cross section, as it is small in comparison
with the elastic cross section, and furthermore
it is weighted by the initial population of 0.5/(;.
However, at k =0, it is seen from Eq. (11) that, this
cross section becomes infinite, which complicates
the analysis of the swarm data. Furthermore, as
there are so few electrons with energy approach-
ing zero in a thermal swarm at VV'K, sr~ at zero
energy cannot be reliably determined.

Perhaps it should be emphasized that, in the
energy range of Fig. 1 corresponding to 0=0.03-
0 0'700 the first correction te rm in the bracket
of Eq. (10), —', aok'ln(-,'no~'k), is not entirely neg-
ligible. Typically ln(-,'a,"~'k) = —3 and the correc-
tion term (= —44k') may introduce an error of
around 10~/g in the cross section. More signifi-
cantly, this correction term does account for the
down-turning of the experimental points at the
higher-energy side of Fig. 1.

III. RESULTS IN GENERAL CASE AND NORMAL

HYDROGEN

Next we turn our attention to experiment ii,
where the molecule is not necessariLy in the ground
rotational state. It is therefore desirable to eval-
uate the general diffusion cross section o„(j)given
by Eq. (3). However, following our earlier argu-
ments, we expect the dominant contribution to
come from diagonal T matrices. Therefore it is
convenient to break up Eq. (3) into terms con-
taining only diagonal T matrices, as given by Eq.
(6), and terms involving nondiagonal T matrices.
%'e will first evaluate these diagonal terms, then
the nondiagonal T-matrix contributions, and
finally the cross terms between diagonal and non-
diagonal T matrices.

A. Diagonal T matrices, 1 = 0

For the diagonal T matrices, we merely need
to evaluate the phase shifts in Eq. (6), given the
potentials in Eq. (1). According to the two-po-

tential formula, ' to the accuracy in which we are
interested the effect of each term in the potential
on the phase shifts is additive, and furthermore,
the Born results are adequate. Of course, the
first term gives the well-known results of Eqs.
(6) and (9). The second and the third can be writ-
ten as the product of a radial function and an
angular function P, . The effect of the factor P,
on the phase shift q~, may be evaluated by Racah
algebra":

(jl, 4 ~P, ~jl, &) = (-1)~-,' (2j + 1)(2l + 1)

x (/0/0(20)(joj 0(20).I

I/ j
(12}

-2k Qkj'(kr) r'dr =, for /~1.r' l(/+1) '

(13)

Thus the net effect of the anisotropic potential
is to modify the non-s phase shifts by the follow-
ing:

tang~, =tang, +(-1)~-', (2j+1)(2/+1)

&& (/0/0~ 20)(jojo[20) j I,

j/ j 2I

Qk pa, k'
l(l + 1) (2/ —l)(2/+ l)(2l + 3)

Note that the additional contribution due to the
quadrupole moment results in a term that is one
power in k lower than in the atomic case. This
can be expected, since the new potential falls off
as r ', in comparison with the old atomic r '.
Hence all partiaL waves now contribute to the
lowest-order term in o, (j). Still, the dominance
of the centrifugal barrier at low energies dictates
that the cross section be determined by the few
lowest partial waves. To see this clearly and to
facilitate comparison with Eq. (10), we will eval-
uate the cross section as given by Eq. (6) first
for l =0, then for all terms l&1, and the summed
results.

Accordingly, the term / =0 in Eq. (6) gives

Clearly, it vanishes whenever j =0 or )=0. This
substantiates our earlier physical argument that
for the ground rotational state (j=0) the MERT re-
sults for molecules reduce to those for atoms.
However, for other rotational states (je0), Eq.
(12) will not vanish except for the s wave. Fol-
lowing Shakeshaft4 the radiaL integrals can be
evaluated analytically, "
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o, (j), , = (,, Q(2&+1}(2j+1)

(15}

q~ -q =-Ak--', we k' — n k'j0 fl 3 0

—(-1) —,
'

(2j + 1)3(1010~20)(j0jOi 20)

We may replace the sine function by its argument
since the phase shifts are all small (~ k} and we
will neglect terms of order k'. From Eqs. (9)
and (14}we obtain

''I qk
1 j 2 2 15 (16)

Substituting Eq. (16) into Eq. (15) and simplifying,
we have

j(j+1) I j 1 ZI Qk wu, k'
(2j -1)(2j+1)(2j+3)

I
.

I
2 15

It is understood that J runs from j —1 to j +1,
owing to the usual triangular restriction. In multi-
plying out the squares in Eq. (1'l), we obtain three
terms. The first term is simply the familiar ex-
pression, as for atoms given by Eq. (10). The
second term contains the factor

3(2j+1)j(j+1)j 1 Z

I 1 j 2 I (2j —1)(2j+1)(2j +3)

go.,k
2 15

Applying the sum rule [Eq. (19)] we obtain

Ii j 2I)i j OI'
(18) 3j(j+1) Q2 vo.,@k

5(2j -1)(2j+3) 4 i5 (20)

where we have introduced the second 6-j symbol,
which is simply (-1)~'&"[3(2j+1)j '. Owing to
the orthonormality property of the 6-j symbols
given below, "
Q (24+1)(2L+1)'&, , ( 1

(19)

the expression given by (18) is zero and the cross
term in Eq. (17) is seen to vanish. Finally, the
third term in Eq. (1V) may be written as

Recalling Eq. (10), we see that the presence of
the quadrupole moment introduces a small correc-
tion to the bracket equaling

3j(j +i)Q
0 06

20(2j —1)(2j + 3)A'

For H„Q/A =0.48/1. 26, and the correction is
about 10$ at 0 =0.

B. Diagonal I matrices, l ~~l

The remaining terms in Eq. (6) are

2

4v J Ji
o,(j)= . „,Q Q (1+1)(2&,+1)(24, +1)j+ l=l J'Z + j

1 2

j 1

(-l)~i ~ (2j + 1)(2l + 1)(1010(20)(jO jO~ 20)
l j 2

Qk n ~,k'
l(l+1) (2l —1)(2l+1)(2l+3)

j l+1
—(-1)~2-,'(2j + l)(2l + 3)(l + 1 0 l + 1 0~ 20) (jO jO( 20)

g &2k g&ok gn, k'
(2l +1)(2l + 3)(2l + 5) (2l —1)(2l + 1)(2l + 3) (2l +1)(2l + 3)(2l + 5)

(21)
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Combining the last two terms, squaring, and dropping terms of order k', we have

J2 J, 1

o,(j)2, =4w P g (/+I){24, +1)(24, +1) . —„(2j+l)(2/+I}'(/0/0)20)'(j0j0~20)'
l=l 1

j / J, Q2 2mo.,qax
/

.
2 l2/ 12 +

l l 1 2/ 1 2/ 1 2l 3
+ 25 2j+1 2/+3'/+10/+10 20

/+1 ~,]'
x(jOj020)', , +

2ga, @k
1 ~ 1 1 2 (t ~ 1) (1+2)' (1 l)(t ~ 2)(21 ~ l)(2t 3)(2t 5) )

—2 {-1)~2'~~—„(2j + 1)(2l + 1)(2l + 3)(/0/0~ 20}(l+ 1 0 l + 1 0[20)(j0jO~ 20)'

j l J',

l j 2

j l+1J, -
ge,Qk 1 1

1+1 1 2 l(l ~ 1) (1 2) (t+l)(21 ~ l)(2l ~ 3) l(21 ~ 5) (1 1)(21 —1))

j L J2

5 L(l+1) L j 2 (2/ —1)(2l+1)(2l+3)(2l+5)

j /+1 J2
—2 (-1)~2— (l + 1 0 l + 1 0~ 20) (j0jO~ 20)

l+1 j 2

12po.o@k
(2/ —1)(2l +1)(2/+ 3)(2/+ 5) (22)

This expression can be greatly simplified by applying Eq. (19) and the following sum rules":

~1 ~2 ~12

Q (-I)'23"22 "»(2j„+1)
'23 23 2 223

and

22 )3 223

~l ~ ~12

5

~3 ~1 ~31
(23)

23 22 223
(-I}'2"2+'2+'~ "»'"»+'« "2»+'225(2 j +1)

124

~2 ~1 ~12 ) ~3 ~12 ~123

~1 ~2 ~12 ~23 ~1 ~123

~3 ~123 ~23 ~4 ~ ~14
(24)

In particular, for the first term of (22), the sum over J, can be carried out by (19), and then the sum over
J, can be done again by (19); the second term is treated in a similar manner. For the third term, we first
apply (24) and then (23). For the fourth term, we sum over &, by (19), and then the sum over J) can be
shown to vanish by a construction similar to expression (18}. In a similar manner, the fifth term also
vanishes. Thus it can be seen that the interference term between the isotropic polarization potential and
the quadrupole potential always vanishes. Thus Eq. (22) becomes
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4)( (2j+1),~ Q' 2ra, (2/k(/+1) 2

25 5 ~(2 l(2/ —1)(2l + 3) (2/ —1)'(2l + 1)(2l + 3)' (l + 2)(2l +1)(2l + 5)

2vngk(/+ 1) 4/(l + 1 )2 (l + 2)
(2l +1}'(2/+ 3)(2/+ 5)' [(2l +1)(2l + 2)(2l + 3}l[(21 —1)(2l )(2l +4)(2/+ 5}l ' "
I 2 l+1 /+1]

I 1 1 1 ) l(l ~ 1)'(1+2) (1 ~ 1)(21 2)(21 2) (l(21 2) (1 ~ 2)(21 —1)}

(25)

Simplifying further, Eq. (25} becomes

4vj(j+1) 2 1 2 1

5(2j —1)(2j +3), , l(2/ —1}(2/+3) (l +1)(2l +1)(2l + 3) (/ + 2)(2l +1)(2l + 5)

L+1 L+1 2(2/'+4/ —1}
(2/ —1)2(2/+1)(2/+3)2 (2l+1) (2l+3)(2l+5) (2l -1)(2l+1)2(2l+3) (2l+5)

(26)

As the whole contribution is very small, we will drop the second term in large parentheses, i.e., the
linear term in k. Applying the method of partial fraction, the sum in the first large parentheses becomes

1/3 1/2 1/6 2 2 2 1/3 1/6 1/2
2L+3 l+1 2L+1 2l+3 L+2 2L+1 2L+5

These terms may be rearranged to form alternating harmonic series (which sum to ln2), i.eri

1 1 1 1 1 1 1
+ ~ ~ +2, , 21; —1 2l 6, , 2l 2L+1, , 2l+1

1

2l + 2
1 1

2l + 2 2l + 3

1 1 1 ~ 1 1

2l+3 2l+4 2, , 2L+4 2l+ 5
(26)

Completing the series by adding (and subtracting)
terms as required, we obtain

—,'1n2+ —', (ln2 —1) —2(1n2 —1+—,') —2(1n2 —1+— —-', )

+ —, (in2 —1+-, ——, +-, )+-, (in2 -1+-, ——, +4 ——,).1 1 1 I 1 1 l I 1

(29)
Finally we have

4A'J'(J'+1) s
g(((j)2 2 ( )( )

(2 2 in2 + 9O)

C. Nondialonal T matrices

To evaluate the nondiagonal contributions, we
must return to Eq. (3). Note that the nondiagonai
T matrices are given by"

T Jji 2 ~ e $ ( f)
g )+ f)

~ ) i ) p
Jjr't'

where

2", = (22&)(l I P, )-)(f21„(2r)l,(2 )( /»())r 2»

(31)
4)TQ J(J + 1 )

(0 16)
5(2j -1)(2j+3) (30) The angular factor is a slight generalization of Eq.

(12), i.e.»,

It is interesting to note that about 75 of the con-
tribution to Eq. (30) comes from the term l =1
(P and d waves). Comparing Eq. (30) with Eq. (20),
we find that higher partial waves contribute only
a further correction of 0.16/Q. V5 = 20% to a, (j),=,.

(j/' J~P
~ j/2 J) = (2j+1)[(2/'~1)(2/~1)j)~'(-1)'

5

Ij
x (l '0/0~20}(jojo~2o) ), (32}
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The radial integral containing Bessel functions J can be evaluated analytically:

-21) 4 r J 4( I})I2()'—))

(1 —l + l ')(1 + l —l ')(l + l '+ 2)(l + l ')

4@k
3(l+l'+2)(l+l') '

since I'=l s2 is the only case of interest. Now in Eq. (3) we note that

T ) T 2 +(c.c.)=4p) p o [2cos(')l ) +7/ '( —I/& —)I 2 )]—4x2ll \ )3 o

1!1 l2l2 /111 $2l2 1r1 l2l2

since we consistently neglect terms of order k in comparison with 1. With this point in mind, we may
write the pure nondiagonal contributions to Eq. (3) as

4~ 1

k 2&+1 3 J g ~ ~t~ gt 1111 l2l2
1 21122

x (-I)"I'( '). ")2 )(+)o) [(2l, +1)(2l,'+1)(2l, +1)(21,'+I)]'I'(2&, +I)(2&, +1)

Il, l, 1t Il,' I,' 1I
x (l,01,(10){l,'Ol,'0(10)

I

(34)

(35)

Substituting P for Eqs. (31)-(33), and applying sum rules [Eqs. (19}, (23), and (24)], we obtain

o,(j}„.„„«=4m Q (2j+1)(2l+1)(2l'+l)(l'010~20)'(jOj0~20)'
ggt

+ —Q 2(2j+ l)(2l, +1)(2,'+1)(2l, +1)(2l,'+ l)(1,01,0(10)(l,'01,'0/10)
l1E112g2

16@2x(i,oi,'oloo)(i, oi,'oloo)()oioloo)*, ,(,)(,)(, )(, )},
Because of the restrictions imposed by the Sj symbol, all summations reduce to a single sum
as follows:

Q'j(j+1) 1 8 1
o«'(«(2j —1)(2j+3) 15 ~), {2l+2)(2l+3}(2l+4) 15, , (2l+ 3)(2l+4)(2l+5)

As before, we obtain by partial fractions

4sQ'j(j+I) ~ 1 2 1 o), 1 2 1
o«d(oo 15(2j —1)(2j+3) ~), 2l+2 2l+3 2l+4 ~)-, 2l+3 2l+4 2l+5

and by the alternating harmonic series

«0'j(j+1) o 16g (j), = (, )(, )
(
——2ln2+8ln2- —, ).

(37)

(38}

(39)

D. Nondiagonal T matrices, cross term

Finally, we consider the cross term between diagonal and nondiagonal T matrices. In Eq. (3) the first
term contains no cross terms; the second contributes

o (j) = . P 2 sing~~ P~~' (-I)"o"o) ' ') [(2l +1)(2l'+1}]' '4m
a ' 3g (2j+1) 2

2 2

x (2l, +1)(2J, +1)(2So+1)(1,0120i10)(l,OI,'Oi10)
I

(40)

where we have used the same approximations as in Sec. IIIC. Substituting for g and P, we can again apply
sum rule (24) and then (23), simplifying Eq. (40) to
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o, (j), „=4m Q 2(2j+1)(2l, +1)'(21, +1)(21,'+1)(1,01,0110)(l 20~, 0110)(1,01,01 20)
l1JQl

(-)"-' e""""~")""'~")'(l,l )(l .1;,2) 3*5 (21,)(21„2) I,
',

,
', "

2 2

As before, this becomes

Qm j(j +1) 8 1
0 mom (2j —1)(2&+3) 15 5 2 (2l +1)(2l + 2)(2l + 3)(2l + 4)(21+ 5)

Again by partial fractions, Eq. (42) can be written as

4)jQ'j(j+1) ~ 1/3 4/3 2 4/3 1/3
15(2j -1)(2j+3) ~g, 2l+1 2l+2 2I+3 2l+4 2l+5

(41)

(42)

(43)

which sums to

4wQ'j(j+1) 8 16
15(2j —1)(2j + 3) 3 9

E. Final results, a„(j)

shows that the latter is roughly 10/(; larger than the
former, which was shown in Fig. 1, and has the
same shape. This slight difference is not siginifi-
cant enough to cast doubt on the analysis of the
swarm data in experiment ii.

To obtain the general diffusion cross section, we
collect these partial results and sum them up.
Adding up Eqs. (10), (20), (30), (39), and (44),
we obtain

Q' j(j+1) 481 2

(2j —1)(2j ~ 2) 2700 55 }
4m&, wu, Q j(j+1)
5A 254' (2j —1)(2j ~ 2)).

&V. RESULTS FOR 02, N2, AND 02

For molecules heavier than H„ it is usually
impractical to perform the experiment at a low
enough temperature that substantially all mole-
cules are in one or even two rotational states.
In these cases, the measured diffusion cross sec-
tion represents a value averaged over all rota-
tional states weighted by their population number
at the experimental temperature. Results for each
of the cases D„N„and 0, are discussed sepa-
rately below.

Note that Eq. (45) is completely general. For the
ground state j =0, we recover Eq. (10). For other
values of j, the new term is only mildly dependent
on j, since the first term in large parentheses
only varies from 0.4 for j =1 to 0.25 as j-~.
In any case, this term is usually small, stemming
from the small value of the second term in large
parentheses, 0.21. Specifically, for H, in the j =1
state, this term has a value of 0.012. This means
that at zero energy the diffusion cross section is
larger by 1.2% for orthohydrogen than for para-
hydrogen. At other energies, the above statement
is essentially also true, since the change in the
coefficient of the linear term in h (though incom-
pletely calculated) is only =0.2%).

In experiment ii on normal hydrogen, which is
composed of 25% of the molecules in the j =0 and
75% in the j= 1 state, Gibson' found that, to within
the error limits (~5%), the diffusion cross sections
for these respective states are equal. Calculations
based on the close-coupling approximation indi-
cate that they are about equal. Our present work

A. Results for 02

The experimental data on D, at VV 'K were
analyzed by Gibson, ' who gave the population
distribution as 56.6@ in the j =0, 33.0 Q in the
j =1, 10.1Q in the j =2, and 0.3%) in the j =3,
state. No experimental values of the diffusion
cross sections were given, since the various diffu-
sion cross sections could no longer be uniquely
determined. Nevertheless, in analyzing the power-
loss data it was again assumed that the diffusion
cross sections for each value of j were all equal,
and that this cross section for D, had to be smaller
than the one for 8, in order to get good fits for the
rotation-excitation cross sections. Since the quad-
rupole moment" of D, differs from that of H, by
only 2%, the assumption made by Gibson is quite
valid, as for the case of H, . The polarizability
o.', of D, is about 1.2%) lower" than the one for H, .
So this fact is consistent with a lower o„ for D„
provided that the scattering length for D, is not
larger. Vfithout further experimental data, we are
unable to shed light on the scattering length of D, .
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In Gibson's analysis, the diffusion cross section
for 0, was found to fall below that of H, at the
rate of 3% per eV starting with the same value
at zero energy. Theoretically this difference is
expected to be proportional to k rather than A,".
In any case it is less than 1% in the energy range
of interest, and the diffusion cross section for 0,
and H, may be taken as the same.

B. Results for N,

Experimental results for the diffusion cross
section in N, are available from the work of Engel-
hardt, Phelps, and Risk. '9 The expeximent was
conducted at '7'7'K, while the rotational constant of
N, is only 0.24 meV, corresponding to a rotational
temperature of 2.9'K. Therefore the measured
values of the cross section represent an average
over a good number of rotational states. Specifi-
cally, the measured diffusion cross section is
given by

cr~ =4vA'+[(4v) /5I noAk+4v

x (0.21)q'f + (4v'/25)a, qkf,

where

(47)

where p~ is a statistical weight arising from nu-
clear-spin considerations and has the value 2 when

j is even, 1 when j is odd.
Figure 2 shows the experimental values of o~

plotted against the wave vector k. Again, as in
Fig. 1, we find that a straight line fits very well.
If we make a naive assumption that the effect of
averaging over a large number of rotational states
is equivalent to averaging over all orientations
of the molecule and use the j-independent Eq. (10),
we obtain A =0.52 and ao =9.8. The experimental
values'0 for the polarizabilities of N, are +0=11.9
and &, =4.2. Therefore we see that the above
assumption is far from satisfactory. Now let
us turn to Eq. (45), which properly accounts for
the dependence of o~ on the rotational state j. Sub-
stituting into Eq. (46), we obtain

Ego. (&)p~(2j+I)e ""'""'
p (2j +1}e O.Q$83(J+lk (46) 2, (j (j+I)/(2j —1)(2j+3)lp,(2j+I) e """'"'

(2j + 1)e-0 0385(j+1)
f

(48)

5.0-

E (ev)
0.0004 0.0025 0.0049 O.OOS I O.OI44

s I

2.0

Cv0

I.O

EXPFRINENT
THKORY

0 l I I I I

0 0.005 O.OIO 0.0l5 0.020 0.025 0.030

k{a. }
I IG. 2. Diffusion cross section in N2 at 77'K, as a

function of the ~ave vector k (bottom scale) and as a
function of the energy E (top scale).

From the discussion at the end of Sec. II, we can
easily surmise that f should be between 0.25 and
0.40, and if the molecule's rotational temperature
is much less than the actual temperature, f should
have a value a 0.25. Actual evaluation of Eq. (48)
yields f = 0.30. In Eq. (4'I) we have one unknown
A and three parameters &0, n„and Q known from
other experiments. For N, both &, and a, are
accurately known and have already been given.
Q is less accurately known; we will use the recom-
mended value of Stogryn and Stogryn, "which is
-1.13ea20. Clearly, to fit Eq. (4V) to the straight
line in Fig. 2, we cannot assume all four param-
eters to be unknown. Instead, we can only deter-
mine A and perform a consistency test on the
other three parameters. Our procedure is to use
at k =0 the known value of Q to determine A, which
turns out to be 0.44a, . This value in turn can now

be used to evaluate e„assuming the value of a,
to be correct. It should be recognized, however,
that the accuracy of a, is of no concern, since
the term involving &~ is only of the order of 1 gp

of the one involving 0, The value of e, so ob-
tained is 11.6a,', which compares quite favorably
with the experimental value of 11 9ao.

The excellent agreement between theory and
experiment in Fig. 2 at all energies including zero
can be attributed, in part, to the careful analysis
of the experimental data. " In particular, the
superelastic cross sections were explicitly in-
cluded in deducing the diffusion cross section
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from the raw data. These cross sections are much

more important in N, than in H, because of the
much lower rotational temperature and the larger
quadrupole moment.

C. Results for 0&

The experimental results for 0, conducted at
room temperature by Hake and Phelps" are shown
in Fig. 3. Unlike the results for 8, and N„ it is
not at all clear that the experimental points here
fall on a straight line, even if we ignore the point
at k =0. Fortunately, it is easy to understand why
MERT may not apply to low-energy e-O, scat-
tering at all, since the joint system forms a bound
state 0, . If the electron is captured into the
bound state, it will interact repeatedly with the
potential V(r), so that the Born which is a first-
order approximation is no longer valid. Further-
more, being captured will enable the electron to
sample the unknown short-range potential in spite
of its long wavelength. Therefore it is not at all
surprising that MERT as developed in this paper
ma. y not apply to e-Q, scattering at all. Neverthe-
less, it is of interest to ask whether the data could

E(ev)
0.5 0.4 0.5 0.6 0.8

I I I

be empirically fitted to MERT in a meaningful
way. Ne proceed to attempt such a fit.

From Stogryn and Stogryn, "we obtain Q
= -0.29ea,' for O„and from Hirschfelder et gI ."
we have GO=10.8 and &, =5.1a,'. Note that in Eq.
(4't) only the squares of A. and Q contribute at
0 =0, and therefore they both have to be small in
magnitude in order to fit the data in Fig. 3. As
we have seen, ~Q~ is indeed small; A, has to be
determined by a fitting procedure. Ne will ignore
the point at 0 =0 as before, since its precision
is marred by superelastic processes. Hence A
has to be evaluated from the intercept of the fitted
straight line; however, we can see from Fig. 3
that the large scatter in the data will not yield a
meaningful value of A. Instead we will try to
determine A. from the slope of the graph using the
known values of the polarizabilities. Using a value
of 50 for the slope, we obtain A =0.46a, . Sub-
stituting this and all other values of the parameters
into Eq. (4'7), we obtain the dotted line in Fig. 3.
Clearly, the fit so obtained is hardly satisfactory;
however, one cannot completely rule out MERT
empirically, since it is not inconceivable that the
experimental points can have errors of 20 jt;.22

Actually, the cross section for e-O, scattering
should be the incoherent sum of doublet and quartet
partial cross sections in the ratio of 1:2. Our
MERT analysis should apply to quartet scattering,
but not to doublet scattering, owing to the bound
state 'H, . It is desirable to have a theory which
takes the bound state into consideration before
meaningful comparisons can be made with experi-
ment.

0
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bJo

4

Ib

2-

I y

~ + ~ EXPERIMENT
—--THEORV

0 I I I I I

0 0.02 0.04 0.06 0.08 O. IO 0.!2

k (a, ~)

FIG. 3. Diffusion cross section in 02 at 300'K, as a
function of the wave vector k (bottom scale) and as a
function of the energy E (top scale}.

V. CONCLUSION

In this paper we have extended the modified
effective-range theory to electron-molecule scat-
tering —in particular, to homonuclear diatomic
molecules. The correction to the original MERT
for atoms arises in the lowest-order (constant)
term and is proportional to (Q/A)', where Q is the
quadrupole moment and A is the scattering length,
and in addition is dependent on the rotational state
j. For parahydrogen (j =0), this correction is
zero, and the experimental diffusion cross section
agrees with MERT very well. For orthohydrogen,
this correction term is of the order of 1~/('j, owing
to the smallness of (Q/A), and is therefore insig-
nificant. All evidence, theoretical and experi-
mental, "shows that the diffusion cross sections
in 0, and in H, differ by less than 1%. In the case
of N„Q is a factor of 2 larger and A a. factor of
2 smaller than for H„and hence the correction
is a factor of 16 larger than for H, . Therefore
this correction term is essential in obtaining
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agreement between MERT and experiment. In

0„ the existence of a bound state, so far ignored
in the theory, renders comparison, between theory
and experiment inconclusive.
parison between theory and experiment meaning-
less.

Although this work so far leaves little doubt as
to the correctness of this new term proportional
to (Q/A)', it is interesting to seek circumstances
where this term might become the dominant term
in the expression for the diffusion cross section.
First, there exist homonuclear diatomics with
large quadrupole moments; e.g. ,"10.2ea~ for Li,
and 4.5ea', for Cl, . Second, in a sequence of gases
with similar electronic structure, the scattering
length often changes in. a systematic and pre-
dictable manner. For example, in the rare gases,

A decreases as the atomic number increases,
changing sign between neon and argon. Therefore
it is often possible to predict which molecules will
have a small IA~. Experiments in gases with
large (Q/A~ should he encouraged to further con-
firm this theory.

Finally, as most molecules do have a dipole
moment, further theoretical work is necessary to
extend the present work to include those cases.
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