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A theory, which exhibits the characteristic features of scatterings initiated by two coherent
beams, is discussed in the present paper. Mfe show that the imaginary part of the scattering
amplitude is an experimentally measurable quantity. To know the imaginary part of the am-
plitude is quite important for certain aspects of quantum mechanics, for example, the dis-
persion relation for a fixed momentum transfer. This relation has not yet been experimen-
tally verified.

I. }NTRODUCTtON

The subject of this paper is scattering initiated
by two coherent beams. We are quite familiar
with coherent beams of light. They are formed
through the division of the light from a source by
a suitable apparatus, i.e., two pinholes in Young's
experiment, Fresnel's mirrors and biprism, '
etc. When they are superposed, the intensity
in the region of superposition is found to vary
from point to point between maxima which ex-
ceed the sum of the intensities in the beams, and
minima which may be zero. This phenomenon
is called interference. From the interference
pattern we can obtain the wavelength of the beams.
Coherent beams for electrons are obtained in
much the same way. The primary electron beam
is split by an apparatus such as the Marton-type
interferometer (a rough equivalent of the Mach-
Zehnder-type optical interferometer), or a
Mollenstedt-Duker interferometer' (the elec-
tron-optical analog of Fresnel's biprism). Elec-
tron interferences up to an order of 300 wave-
length differences have been observed. The in-
terference fringes are very luminous, show
strong contrast, and are steady. 4

Historically, real-interference phenomena have

played a key role in establishing the wave na-
ture of light, and today are of great practical
importance, in spectroscopy and metrology, for
example. The same is not true for the electron.
The wave nature of the electron was established
through electron diffraction experiments, in
which only one beam is observed at any point of
the receptor, and interference is between the
elementary wavelets. Why the electron-inter-
ference experiments have played such a minor
role lies in the associated experimental diffi-
culties. To obtain reasonable penetration into
the diffractor, one has to work at electron en-
ergies of the order of 50 keV.4 At this energy,
the electron wavelength is only about 0.05 A.

This short wavelength means that the apparatus
of slits, point source, etc. , must be scaled down

by a factor of almost 100 from those of light op-
tics. It also means that the observed fringe
spacing is considerably less than + of a light
optical one. Thus, the difficulty of electron real-
interference experiments is several orders of
magnitude beyond those of light.

Interference between the primary and scatter-
ed beams is a real interference of a different
type. ' It enables us to determine the phase of
the scattered beam, by comparison with a co-
herent background. The resultant diffraction
pattern is called a hologram. ' With the introduc-
tion of laser beams, the hologram technique has
attained wide usage in light optics. Due to the
small cross-sectional area of primary incident
beams in the electron scattering, the primary
and scattered beams extinguish one another out-
side a very small angle. Except in the forward
direction, the interference between them is not
present. The primary beam is much stronger
than the scattered one. If there exists a mech-
anism to make the interference possible, the pri-
mary beam has to attenuate first. This would
complicate the issue. In practice, the amplitude
(not the phase) is the only measurable quantity
in electron scattering.

The scattering initiated by two coherent beams
is an interesting one. Such beams, as we have
seen, are obtainable for both light and electrons.
The beams intersect at the target with a finite
intersection angle. The two scattered outgoing
waves interfere with one another along the same
radial direction. The resultant effects are re-
corded by the receptor. Insofar as the inter-
ference is concerned, it differs from the above-
mentioned real interferences, in which the beams
are in different directions.

We will show that from the experimentally ob-
served coherent cross section one is able to de-
termine the phase (in addition to the magnitude)
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of the scattering amplitude. This is the intended
result in the direct interference of the primary
and scattered beams, but in electron scattering
has not been obtained experimentally.

We will show that from the experimentally ob-
served coherent differential cross section one
is able to obtain the relative phase between the
initial coherent beams. The scatterer here plays
the role of the analyzer. Since the electron-beam
wavelength can be determined by the accelerating
voltage, the scattering may be treated as an elec-
tron interference experiment. An interesting point
should be mentioned. In these experiments, mea-
surements of interference effects are obtained
from differential cross sections and not from the
observation of fringe effects. This eases the rnono-
energetic restrictions and size limitations on the
incident electron beams.

In Sec. II, we discuss the general theory of co-
herent scattering. We study the scattering by a
spherical potential in Sec, III. The measurement
of the "relative factor" between the initial coher-
ent beams is also given there. In Sec. IV, sphe-
roidal potentials, which have important applica-
tions in scattering by molecules and deformed
nuclei are discussed. The coherent scattering
by a spin-dependent potential is worked out in
Sec. V. Some comments are contained in Sec.
VI.

of these two waves. In the collision process the
coherent waves are changed and satisfy the
Schrodinger equation

(2.3)

and the asymptotic condition

%(r) „~„e'"&'+as'"2' +E(k„k2; n}e' "/r „

(2.4)

where V(r) is the potential of a fixed center. For
simplicity, it is taken as a short-range potential.
n is the direction of the scattered wave, which
comes from the disturbance of the incident waves
by the scattered potential. F(k„k„n) is the scat-
tering amplitude and is related to the experimen-
tally observed differential cross section

dZ (k„k„s)= (1 +
~
a

~

'} '
~
F(k„k„n) ~

' dn

(2.5)

where dQ„- is the solid angle. Equation (2.3)-(2.5)
form the theoretical foundation of-the coherent
scattering.

We shall begin to solve the coherent-scattering
problem. It is observed that the Schr5dinger
equation (2.3) and the incident wave in Eq. (2.4)
are both linear; therefore, the wave function 4(r)
can be expressed as

II. COHERENT SCATTERING
4(r) =4,(r)+ay, (r), (2.8)

k, =k2 = 2tnE/5 (2.1)

where E is the energy of the beams and m is the
mass of the particles. The incident beams can
be described by the wave function'

~4k~' I +g~fk2
f (2.2)

where a denotes the relative phase and amplitude

In the coherent scattering we use two incident
coherent beams. In the conventional scattering
only one incident beam is used. What do we mean
by coherent beams' It means that when these
two beams are reunited at the photographic plate
or other type of receptor, one observes inter-
ference phenomena. The coherent light rays,
which are the coherent beams of photon particles,
are well known. The coherent electron beams ean
also be obtained through the splitting of a primary
beam as in electron interferometers by Marton
and by Mollenstedt and Duker. The coherent
beams for other elementary particles, although
difficult, in pr inciple still can be constructed.
The two coherent beams may be different in di-
rection, but must have the same ener~ Let
these two beams have the momenta k, and k„ then

where wave functions g, (r) and y, (r) satisfy the
Schrddinger equations

and the asymptotic conditions

(2.3')

Equation (2.3') and (2.4') are actually the Schro-
dinger equation and asymptotic conditions of the
conventional non-coherent-scattering problem,
in which the incident beam has momentum k; and
yields a scattering amplitude f(k;;n). The coher-
ent-scattering amplitude may be expressed as

E(k„k,;n) =f(k, ;n)+af(k„n) . (2.7)

The conventional differential cross section has the
form

do(k, ;n}=[f(R, ;n))'dA„-. (2.8)

From Eqs. (2.5), (2.7), and (2.8) we obtain the
relationship between the coherent and conventional
differential cross sections:
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dZ(k„k, ;n)

=(I+~a~')-'(der(k„n)+[a~'do(k n)

+ 2 Re[af *(k„n)f(k, ;n) J dQ „-}.

coherent and conventional scatterings. Before
scattering, the coherent beams extinguish one
another, the total incident flux is the independent
sum

(2.9)
(I +[a (') nf /2m. (2.17}

where

k=kn, n; =k;/k.

(2.10)

(2.11)

The relation in Eq. (2.10) is also called the uni-

tarity relation of the scattering amplitude. From
Eqs. (2.9) and (2.10}the total coherent cross sec-
tion has the form

where

(2.12)

Equation (2.9) indicates that in the coherent scat-
tering the observed differential cross section in
Eq. (2.5) contains the interference effect of the
conventional scattering amplitude. This effect
provides us a direct way to measure the real and
imaginary parts of the scattering amplitude. How-
ever, in the conventional scattering only its mag-
nitude is measured. For elastic scattering the
conservation of the number of the particles leads
to a restriction on the scattering amplitude'

If two coherent beams reduce to a single beam, the
above flux definition is not appropriate and the
corrected one should be

( I + a ['lk/2m. (2.18)

Ipi&+u lp. & (2.19)

But other particles are in the pure single-momen-
tum states. The momentum conservation, which
does not appear in the fixed potential scattering,
eliminates the cross term of the coherent cross
section. Then the experimentally observed quan-
tity does not contain any information of the co-
herent effects in the two-body reaction.

ill. SPHERICAL POTENTlAL

These differences have not been reflected in Eq.
(2.16). Nevertheless when the correct incident
flux is used, Eq. (2.16) gives the expected result.
%e may say that the conventional scattering is a
special case of the coherent scattering.

%'e have studied the general feature of coherent
scattering by a fixed potential. %e may ask wheth-
er the same scattering is also useful in a two-
body scattering problem. A careful study reveals
that the coherent incident beams do not give rise
to a coherent scattering in this problem. The
main reason is not difficult to explain. In the
coherent beams, the incident particle can be in
one of the two momenta p, and p, state,

v(k) = f kr(k„5) = f I f (I-„-)( d(): (2.13)

is the conventional total cross section. For k,
=k„ the two coherent beams reduce to a single
beam, and Eq. (2.12) becomes

Z(k„k, ) =cr(k, ) +(8()/}t) (1+~a )~} 'Re@ Imf(k„n) .

In Sec. II, a general theory of the coherent po-
tential scattering was studied. In further study
we will be more specific on the form of the po-
tential. At the present the spherical potential
is considered. In this case the amplitude f(k, ;n)
and differential cross section do(K, ;n) in Eq. (2.8)
depend only on the angle between n; and n:

(2.14)

The scattering amplitude satisfies the optical
theorem

f(k; n) =f, (n; n)

dc(k; ~ n) =do„(n; ~ n) .

(3.1)

Im f(k„n,) = (0/4)))o(k, ) .

Then we have

(2.15} Then the coherent cross section in Eq. (2.12}may
be rewritten

Z(k„~,}=c(k)+(8)(/){.) (1+~aP) '

xReaImf, (n, ~ n ) . (3.3}

The factor in the above equation comes from the
difference between the incident beam fluxes in the

Equation (3.3) expresses the fact that the coher-
ent cross section is related to the imaginary part
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of the scattering amplitude. The dependence on
the factor a in Eq. (3.3) can be evaluated through
a simple consideration. The spherical differential
cross section in Eq. (2.9) at n, ~ n =n, n has the
form

P, (n, n2) =2& 1 g 1', (n, )Y',*„(n,),2~+y 7m ], (3.9)

the total elastic cross section of the coherent scat-
tering might be written

dZ(k„k„n) = 1+, , da, (n, n).I+ja ' Z, (k„k,) =(I+Iajm) ' IP(k„k, ;n) I'dO-„

In arriving at Eq. (3.4), we have utilized Eqs.
(2.8), (3.1), and (3.2). The imaginary part of the
scattering amplitude in Eq. (3.3) can be expressed
finally in terms of experimentally measured quan-
tities

Imf, (n, n, ) =—[Z(k„k,) —v(}t)J

x[(1+la l')+2P~ (n~ 'n ) Rea]. (3.10)

The absorption cross section, which describes
the existence of inelastic processes, has the form'

dZ (k„k„n)
do, Pn, n)

(3.5)
Z„,(k„k,) =-—(I+Iaj') '

In the conventional sense, this is not a directly
measurable quantity. Hence the coherent scat-
tering has opened a new chapter in the experi-
mental determination of the scattering amplitude.

In reaching Eq. (3.5) we have assumed that only
the elastic process is occurring in the scattering.
However, in the elastic scattering some inelastic
processes might be present. To be more general
we shall study the effect of these processes. This
effect can be understood through a consideration
of the partial-wave representation of the scat-
tering amplitude:

x lim tc,
~ r & g r -(&g r ) ~g r} ~ dA,

(3.11)

where the surface 2 is a large sphere of radius
r. In terms of complex phase shifts, the asymp-
totic form of the coherent wave function (((r) in

Eq. (2.4) may be expressed as

(I(r) g g 4vi'(kr) 'e' '("
y -+so 7 =p nt=-7

f„(n, ~ n) = . g g [S, (k) —1]y, (n, )y,* (n),
7=p m=-7

xsin[kr —il((+(),(k)J 1',* (n)

x [yf„(n,) +a&, (n, )] . (3.12)

where

(g) 2i bg (0)

(3.6)

(3.1)

gubstituting this into Eq. (3.11) and carrying the
integration one obtains

Z„,($„%,) =, (1+Iaj2) 'Q Q sinh2p, (k)
8m'

7 =p m=-7

and Y, (n) is a spherical harmonic. In the pres-
ence of the inelastic process, the phase shift
6, (}t) is complex. From Eq. (2.7), the coherent-
scattering amplitude is a linear superposition of
the conventional scattering amplitudes, then its
pertial wave expansion has the form

where

x e 'si"'I F, (n, )+al', (n, ) I'

x[(1+ I e I') + 2P, (n, n, ) Res], (3.13)

(3.14)

x y,*„(n)[Y, (n, ) +a Y, (n, )]. (3.8)

With the help of the orthogonality relations be-
tween the spherical harmonics and the addition
theorem

In arriving at the final form of Eq. (3.13) the addi-
tion theorem in Eq. (3.9) is also used. From Eqs.
(3.10) and (3.13) the total cross section, which is
the sum of the total elastic and absorption cross
sections, can be expressed as
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Z „,(k„k2) = Z, (k „k2) + Z,b, (Rq, k2)

x[(l+)(2[')+2P, (n, n, )Recz]. (3.15)

If a=0, we obtain the total cross section for con-
ventional scattering

o„,(0) = —,g(2I +1)[I -ReS, (k) J .
1=0

(3.16)

Im f, (n, n) =—g (2 I + 1) [1 —ReS, (0)]P, (n; ~ n) .

(3.17)

From Eqs. (3.15)-(3.17) we find a relation

The imaginary part of the scattering amplitude in
Eq. (3.6) is

spheroidal potential which is spheroidally sym-
metric. Furthermore, the chosen potential has
practical importance in molecular and nuclear
physics. A large number of nuclei and molecules
are not spherical, but rather spheroidal. These
are deformed nuclei and polar molecules. ' The
potential associated with them is clearly spheroi-
dal. ' The coherent scattering of such systems
should have considerable interest.

The spheroidal system has a characteristic
direction. %e shall call this direction the orienta-
tion of the system and denote it by y. For ex-
ample this might be the direction of the dipole
moment for the polar molecules. It is clear that
the spheroidal elastic scattering amplitude de-
pends on the orientation g. Meanwhile the ampli-
tude is a function of the incident momentum k»,
the scattered direction n. To express more fully
we write the amplitude f(k;;n} in Eq. (2.7) as
f(k„n;y) in the case of spheroidal scattering. The
corresponding coherent scattering amplitude has
the form

Z „,(k„k,) = c„,(k) +—(I + i a i
') '

x Rea Im f~ (n, n, ) . (3.18)

F (k„k„n;y ) =f(k, ;n;y) +af (k„n;y) . (4.1)

The coherent cross section in Eq. (2.12) is written

This relation is similar to the one in Eq. (3.3),
which holds in the absence of the inelastic pro-
cesses. Following the same steps for deriving
Eq. (3.5), a very similar equation might be ob-
tained:

Z(k„k~;y) =

xRe —. ;n„g -f*k„n„y

Imf, (n, *n2) =—[Z„,(k„k,) -o„((k)J where

+(I+iaP) '[cr(k„y)+o(k„y)J, (4.2)

(3.19}

where dZ'(k„k„n} and do) (n, n) are the coherent
and conventional differential cross sections for
the elastic process. Now me have achieved our
goal of expressing the imaginary part of the scat-
tering amplitude in the presence of inelastic pro-
cesses in terms of experimentally measurable
quantities.

(4.3)

is the conventional spheroidal cross section. In
practice, the cross sections in Eq. (4.2) are not
experimentally observed quantities. For com-
parison with experiment we have to take the aver-
age over the orientation y and obtain the mean
total cross sections

Z(k„k2) =(y(g) +(1+]g~'}-'

IV. SPHEROIDAL POTENTIAL xRe— f( (xx f*(&x;xx&l&(&;),

In this section the coherent scattering by a, fixed
single nonspherical potential is studied. In general
the scattering by a nonspherical potential is a
complicated subject. It is associated with non-
conservation of angular momentum. This con-
servation is an essential tool for the reduction of
the scattering amplitude and a lack of it will lead
to a troublesome description of the scattering
processes. Here we will take a simple non-

where

Z(k„k~) =— Z $„k2;}()dQ„

and

ff(k) =— c(k, ;y)dD „.

(4.4)

(4.5)
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After the average, the mean scattering ampli-
tude and the mean differential cross section de-
pend simply on the relative angle between the
incident and scattered directions,

is similar to that of spherical phase shifts 6, (k),
The spheroidal angle function S „(c,q) has a nor-
malization constant Ã „(c),

(n, ~'n) =— f(k;;n;!t) dQ-„ (4.6)
S „(c,q)S „,(e, q)dq =6„„,fV „(c), (4.11)

and ean be expanded in terms of the a.ssociated
I.egendre functions

d!y, (n, ~ n) =—dQ-„ l f (k;;n;)(} l'd 0-„. (4.7) S (c, q) = Q d„P „(q).
f'=0, 1

(4.12)

This dependence comes from the requirement
that the average mean physical quantities are
independent of the choice of the describing co-
ordinate systems. From Eq. (4.6), we may re-
write Eq. (4.4) as

Z(k„k, ) =o(k)+ —(1+la l2) '

Q' denotes the summation in an even or odd val-
ue of r, depending upon whether n -m is even or
odd. The expansion coefficient d„" can be found
in Flammer's book." The mean scattering ampli-
tude ha, s the form

f.(; j=—ff(k;Ij l;lk

x Rea Imp „(n, ~ n, ) . (4.8)

Equation (3.3) and (4.8) are similar. To determine
the beam-dependent factor a in Eq. (4.8), we re-
place the spheroidal scatterer by a spherical scat-
terer, and measure the spherical differential
cross sections. From Eq. (3.4) one obtains

imp, (n, n, ) =—[Z(k„k,}—r(k)j

kk(k„k„kj
)dok (nl ' n)

(4.9)

n

f(k, ;n;!!)= —, g p l!„'-„l( }Sc„-(c,q, )
n=0 nt= n

xS.„-(c,q) (e"'- "' —1}e' "-'(',
{4.1O)

where q, = n, y and q = n ~ y. The spheroidal co-
ordinate system is chosen such that the z axis
coincides with the orientation vector y. P and

(II; are the azimuthal angles of vectors n and n; .
The constant c(c = ~kd) is related to the interfoca, l

distance d of the spheroidal coordinates. The
physical meaning of spheroidal phase shifts 6 „(k}

where n, ~ n=n, ~ n. The equation expresses the
fact that the mean imaginary part of the spheroidal
scattering amplitude can be experimentally mea-
sured. In theory this is more easy to handle than
the mean differential cross section. %'e shall
proceed further.

For scattering by a, spheroidal potential, ' the
spheroidal analysis is used and the scattering
amplitude is expressed as

Q Q S „(c,n; n) (e"'~~(" —1),
i}t' „0

where

S;t, , j=, , f k„„-( k, k; jk„„-(, kj4m' -„(c)

y e
X

(4.14)

The integration in Eq. (4.14) is rotationally in-
variant and depends on the relative angle between
vectors n and n;. To evaluate the integration, "
we use the expansion

S —„(c,n, n) = g b("" P, (n, ~ n},
„„-2l +1

l =0
(4.15)

where

b("= S —„(e,n, n}P,(n; n)dg-„

S „-(c,n; ~ n)P, (n; n)dQ-„dQ-„.

) (dmn )2 (~ + lIII I )!
(2l +1)' " ' "

(& —lIIIl)!
(4.17)

The function S„„(e,nI ~ n) is real, which follows

(4.16)

Through the utilization of the addition theorem
Eq. (3.9) and the orthogonality relations between
the spherical harmonies, we might carry out the
above integration with the help of Eqs. (4.12) and

(4.14):
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directly from Eqs. (4.15) and (4.17). The experi-
mentally measurable quantity in Eq. (4.9), which
is the imaginary part of the mean scattering am-
plitude in Eq. (4.15), has the expression

Im f ~ (n, ~ n) = —g g»» —(c, n, ~ n) sin'5 -„(0) .
n=o nt=-n

(4.18}

We may express the conventional mean differential
cross section in terms of the spheroidal phase
shifts. This expression contains at least four
summations and is more tedious than Eq. (4.18}.
Hence the observed mean imaginary part of the
scattering amplitude is related to the spheroidal
phase shifts in a more straightforward manner
than the conventional mean differential cross sec-
tion. In a coherent scattering we may observe
the coherent differential cross section. This
cross section contains a term

orbital angular momentum. In the case of elec-
trons, V, (r) and V,(r) are related, but we shall
not make this assumption. The two coherent
beams are different in directions but the same in
energy. For the spin polarizations, we do not
know whether they are the same or different in
the coherent beams. To be general, we consider
they might be different. Now the incident beams
are described by a pure-state vector

c' "
I x)) +«' ' 'lxl& . (5.2)

x %(rex»» X' }=E»'»'(r'Xt X» } (5 2)

and the asymptotic condition

The spinors IX', & and I x', ) denote the spin polarisa-
tions. The scattered wave with the final spin
polarization Xf satisfies the Schrodinger equation

h-~ &'C(r;X„X»).K&X, I V, (~)+(o T)V.(r) IX.&

Re a f nx, niX ~ n ~niX (4.19)
0(r;x~, x; } e'"' '( XIIXI& + «' "

& XII X»&

which denotes the correlation of the scattering
amplitude at different angles. Now it should be
clear to us that the coherent scattering provides
experimentally more-measurable quantities, and
yields more direct information than the conven-
tional scattering.

V. SPIN-DEPENDENT POTENTIAL

Hitherto we have considered only the coherent
scattering of particles by a fixed potential, which
does not depend on their spins. Under this con-
dition the spins do not affect the scattering process
at all. I.et us now examine the coherent scat-
tering, where the potential depend: significantly
on their spins. I.et us restrict ourselves to the
simplest case, where the particles in the incident
beams have spin-~ and the potential has the form

V(r) =V,(r)+(c L)V, (r) . (5.1)

The potentials V, (r) and V, (y} are spherically sym-
metric. o is the Pauli spin operator and L the

xg, (n,. ~ n} I x, ) .
From the above two equations we rewrite the
coherent-scattering amplitude as

(5.8)

+ F$», 4'n X~,X», X» }e""f~,(5 4)

The Schr5dinger equation (5.3) and the incident
wave in Eq. (5.4) are linear. By the same token,
as we have discussed in Sec. II for the spin-in-
dependent case, the coherent-scattering ampli-
tude F(k„k,;n;X»;X», X'») in Eq. (5.4) can be express-
ed as the sum of the two conventional scattering
amplitudes,

F(k„k.,n;X~, X';;X') =f (k;n;X~,.X» )

+af(k„n;X~;X'») . (5.5)

This relation is equivalent to the one in Eq. (2.7).
It is customary' to write the scattering amplitude
in the form

f(k„n;Xz
.,X, ) = ( Xz I f, (n» n) + H ~ (n» x n)

E(k„k;n;xf, x';;x'») =(x&l f, (n, ~ n) +ia (n, xn}g (n, n) Ix';&+a(x~l f»(nm. n»}+io (~xn)g» (n2 n) I x»& .
(5.7)

The coherent differential cross section is

dZ(k„k, ;n X~;X»,X';) = (1+Ia I') '
I &(k„k2;n;Xg, x», x» )I'd0-„= (1+ I a I') '(l f$„n;x»,.x»}l'+I af (k&;n;Xf »x» )I'

+2Re[af (R„n;X~;Xm»)f *(k„n;X~;X'» })}dO-„.
(5.8)

If the final spin polarization is not observed, the coherent cross section has the form
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K(k„k„k', ;X*, )=I 22(k„k,;nk, ;2,';Xl)=() ~ )a(*) '+2»e(faf(k, nk, ;2',.)f (k, nk„k,'))an-.
f

+o(&, x()+lni'(f(~, x(), (5 8)

where

&(&, x(}=Q
f

f(ki, ilke, ki)(l'an-„= J(lf (; )I' ~ I;x I IX, (n, )(' ~ 2 Re(X";Ilk (nxn)X (n, )

xf»»(n, ~ n) l x";)]dQ-„ (5.10}

is the conventional elastic cross section. For
elastic scattering the conservation of the number
of the particles leads to a similar restriction'
as in Eq. (2.10):

are the same, ( X', l X', }=1, then in terms of the
customary notation in Eq. (5.6) we obtain

Imf(k„n;Xf;Xf }=Imf„(n, n )

f(kf, n;Xf,Xl}-f (k;nf, Xf, X(}

ik f(k, ;n';X»;X', )f»(k;n';X»;Xf )dQ-Re n

(5.11)

where k =An is the momentum of the beam in the
direction of detection. With the help of the above
equation we may rewrite Eq. (5.9} as

E(k, k;Xt;X'(}=(I+l s I'} '

x [ (8w/k) Rea Im f(k„n, ;X', ;X',. )

+o(~ x')+le l'r(&, x()].
(5.12)

This expression is similar to the one in Eq. (3.3),
which expresses the coherent-cross-section de-
pendence on the imaginary part of the scattering
amplitude in the absence of spin. By measuring
the coherent and conventional cross sections along
with the relative factor a of the coherent beams,
this imaginary part can be experimentally de-
termined. We would like to discuss the struc-
ture of this imaginary part. After that, the mea, -
surement of the relative factor a is outlined.

If in the coherent beams the spin polarizations

-(-)'ln, xn lReg, (n, n, ).
(5.13)

Here we have supposed that the axis of spin quan-
tization is parallel to n,x n„and j = 1, 2 means
spin up and down, respectively. Furthermore
if the initial beams are not polarized, the second
term will drop out. Then through the use of the
coherent polarized beam the imaginary part
f, (n, n, ) and real partg, (n, n, ) are determined
directly and separately. On the other hand, the
nonpolarized coherent beam determines only the
imaginary part f» (n, K).

If in the coherent beams the spin polarization
are opposite, ( x', l x', )=0. These beams do not
create any direct-interference phenomenon. In

a, sense, they are actually incoherent. Through
a direct verification, we get

lmf(k» n. 'x('x]) =0 f» (x(lx'()=0 (5.14)

The measurement of the relative factor a can
be accomplished much in the same way as we have
done in the spin-independent case. If the spin
polarizations are not observed before and after
scattering, the coherent differential cross sec-
tion in Eq. (5.8) in terms of the customary nota-
tion as in Eq. (5.6) can be written

dZ(k„k»n) =2 Y dZ(k, ,k„n;Xf,x(;Xf() =(I+lal') 2(do»(n, n)+lal»d&x»(n, ~ n)+2Re[a(f $(n, n) f, (n, ~ n)2&
+(n, xn) (n, xn)g„(n, n) g (n ~ n))]dQ-„j,

where

d(y» (n, n) =
I f„(n, ~ n) [' +

l n, xn I' Ig (n, ' n) l'

is the unpolarized differential cross section in the conventional scattering. Let us take n, ~ n =n n,

(5.15}

(5.16)
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then

+,[(n, a, ) —1]~g, (n, n) P dtl -„.

(5.17}

The factor ~g, (n„n))' can be measured in the
conventional scattering of a polarized beam and

is related to the spin-flip differential cross sec-
tion. Hence in the coherent scattering as a rule,
we are not only able to measure the imaginary
part of the scattering amplitude, but also the rela-
tive strength and phase of the coherent beams.

VI. COMMENTS

We have presented a theory, which exhibits the
characteristic features of scatterings initiated by
two coherent beams. It reveals that the imag-
inary part of the scattering amplitude is an ex-
perimentally measurable quantity. To know the

imaginary part of the amplitude is quite impor-
tant for certain aspects of quantum mechanics,
for example, the dispersion relation for fixed
momentum transfer. This relation has not yet
been experimentally verified. Near the resonance
region the scattering amplitude takes a certain
form, which is usually described by a Breit-Wig-
ner formula. Knowledge of the imaginary part of
the amplitude would yield a detailed knowledge of

resonances. For the phase shifts, it will do much
the same. In this way, the scattering initiated
by coherent beams provides us new tools for the
understanding of molecular and nuclear physics.

The proposed scattering is also important for
the experimental study of diatomic molecules and
deformed nuclei. In low-energy electron-molecule
scattering differential cross sections are difficult
to obtain and their measurements are still frag-
mentary. ' On the other hand, the total cross sec-
tion is easy to measure. To determine the mean
imaginary part of the spheroidal scattering ampli-
tude we only need to measure the coherent and
conventional total cross sections, as in Eq. (4.8}.
The factor a describes the coherent beams. It
can be measured in other ways, not necessarily
through the method proposed in Eq. (4.9), which
we will discuss in a later publication.

At present, experimentally obtained coherent
electron beams are used for direct-interference
experiments, in which interference fringes are
observed. The proposed scattering method yields
a new usage for coherent electron beams and will
stimulate experimental work in a field which has
been inactive in the past decades. "
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