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Three-body Coulomb systems using generalized angular-momentum S states
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An expansion of the three-body Coulomb potential in generalized ani~lar-momentum eigen-
functions developed earlier by one of the authors is used to compute energy eigenvalues and
eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H,
e e'e, and p p p are compared with the results of other computational approaches.

I. INTRODUCTION

The problem of three particles interacting via
the Coulomb force has been the subject of rather
intensive investigation in recent years. ' " The
earliest mathematical treatments were based on
the assumption that one or two of the particles
have considerably larger masses than the others
and can be considered infinitely heavy; the effect
of finite masses is then introduced as a perturba-
tion. Thus for the helium atom and its isoelectron-
ic series, the most accurate results have been ob-
tained by applying variational methods to wave
functions of the type

q = const~ exp(-ar, —ar, )P(r„r„r„),
where P represents a polynomial in the interpar-
ticle distances or any equivalent polynomial ex-
pansion. This method was introduced by Hylleraas'
and has been used by a large number of workers,
culminating in the recent work of Pekeris' and co-
workers. ' '

The approach mentioned does not serve as a sat-
isfactory starting point when the masses of all
three particles are of the same order of magnitude,
as in the case of the p. -mesonic molecules pp. p,
d LLi, d, and p p. d and the positronium ion e e'e
To treat these systems without the assumption of
infinite mass, Kolos et al. ' and Cartere generalized
the Hylleraas procedure and Frost et cE.' used a
Pekeris-series solution of equivalent length. %hile
these variational procedures have been shown to
lead to very accurate ground-state energies, they
lead to long and complex analytical expressions,
unlike other procedures which deal with symmetric
representations of three bodies interacting Cou-
lombically. Smith, ' %bitten and Smith, and other
authors, ""have explored the possibility of con-
structing a symmetrical representation of the
quantum mechanics of three bodies. The coordinate
system originally proposed by Smith' appears to
be particularly well suited for some systems. In
his approach, which we follow, the elements of the

group SU(2) are exploited to simplify the mathe-
matical manipulations. The purpose of the present
paper is to report on applications of the coordinate
system of Smith to specific problems and to show
that it is capable of leading to simple analytical
wave functions" of good accuracy in a variational
treatment.

II. GENERALIZED ANGULAR MOMENTUM

fGAM} METHOD

Because the 0AM approach to the three-body
problem has been thoroughly discussed else-
where' "we shall merely outline the general
scheme, referring to an earlier paper" for details
concerning the coordinate systems, the 0AM op-
erators, etc.

The Hamiltonian for the system is written in
terms of the coordinates (p, 8, 4) as

h2 1 &, A'
If =-——,—p' ———.~ &(p, e, ~), (2)

2p zp ~p ep p

where A' is the QAM scalar operator
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Here L' is the scalar-orbital angular-momentum
operator and L„are the familiar ladder operators
of orbital angular momentum. The eigenvalue
equation satisfied by L' is L'd' (a, P, y) = I(l +1)
&d' „,(a, P, a), where a, P, A are the usual Euler
angles of a body-fixed coordinate system with re-
spect to a space-fixed system and the d' are the
elements of the (2l+1)-dimensional representation
of the rotation group 0 (3). In the following analy-
sis„we will consider only 8 states, where L2g, =0
and A' simplifies to
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for which the solutions are the diagonal elements
of the (2)(+1)-dimensional representation of the
SU(2}group 'D( /4) /4{44, 48, 0), with g =0, 2, 4, B,

0' «A, , and

A'(( =)(()(+4)y.
In Sec. III me shall look for solutions to the three-
body Coulomb problem in which the eigenfunctions
are expansions in the D&~ ~~), /4,

with

d2 ~ l 2

PP2 +2K +PB 3

)22 =m, m ~ 2/ (m, + m 2 +m 2);

the phase angles 5, are related to the particle
masses by

tan5, =—

rn, +rn,
tan5 =-—

PP1 ~

y, = ~ a„,f„,(p)D(.„).„.0 X,/g

n, X2a
(6)

tan5, =0.

We call the approach used in Sec. III "exact"
with the understanding that a series truncation is
involved just as the evaluation of sinx requires a
series truncation. We shall show that

f e-2/2~x L 2k+4(~)
n, X. ff

{where I.„'~" is a Laguerre polynomial) is a natu-
ral form to use from the standpoint of simplicity.

III. "EXACT" METHOD FOR THE THREE-BODY

SYSTEM KITH COULOMB INTERACTION

In an earlier paper it was shown that the Cou-
lomb interaction for three particles can be writ-
ten"

Note that the phases 5,. are not determined unique-
ly; for example, me can equally mell take 5, to be
0 or m. We have resolved this problem by choos-
ing 0-5, --,'m, 0-5, - --,'m, |),=n. These choices
for the 5's are similar to those employed by Zick-
endraht" and lead to the lowest-lying energy states.

Thus the potential for any three-body system
mith tmo identical particles is

e' Bv 2 ~ ~ (r+1)(-1)"
p (( ~2 „~„(2r+1)(2r +3)

x [0,cos(2() p. ) -Q, (-1}"j

XD~//2)„/2(4@, 48, 0),

V= g V, (r/ —r, ) (i,j, 0 cyclical)

1 Bv 2 " {r+1)(-1)"
p 2(, ' ~' ~2{2r+1)(2r+3)

r
X Q D~//22)„/2[4(4 +5, ), 46, 0],

C, = Wr/d,

(.2 =v 2d sin6„

C, =v 2d sin6, ,

(B)

where e&, e, are the charges of the jth and 4th par-
ticles, and

mith the values of the parameters Q„Q„5 given
in Table I for the helium atom, the negative hydro-
gen ion, the positronium negative ion, and muon-
ium (p(2 p). Since the potential is of the form p ',
we are led to look for hydrogenic radial functions

e 2/2x~ L2)'+4(x)

where x=ep with a=2k (k is related to the energy
E by & = -0252/2)2), n is a positive integer or zero
(required in order to satisfy boundary conditions
at p=~), and the L'„~"are Laguerre polynomials.

Before proceeding further we must ensure that
the wave function is antisymmetric under inter-
change of the two identical particles in order to
satisfy the Pauli exclusion principle. It is easy to

homz' that the angular part is of the form

TABLE I. Values of parameters used in Eq. (ll).
) jc S

ajar

D(~/4)o/4+ { ~ D(0/4)a /4 ~

where 8 is the spin of the system. Hence we have

H~
8

e e'e
pt p

F2
~2

2
0.842 68

].
1
1

0.480 51
8

sin26 = 0.438 42

e -2/2 ~xL2x+4 (~)n, X, n
0

x X/4
[D(o/4)o/4+ ( 1}D(a/4) a/41 '

~ Nucleus is assumed to be infinitely heavy.
The eigenvalue problem to be solved is thus {for
ee'e)



1588 H. C. %'HITTEN AND J. S. SINS

8'k' d' 5 d A' 1 8(12)~' " (r+1)
(H E-) (!)= 0 = —2 +~~~~+ (-1)" 2 cos —p —(- 1)" D" /

dx~ x dx x' 4 exv 0 (2r +1)(2r +3), 3

a„',e "'x~I.'„"'(x}[D&",//', ),/, + (- I )'D(",//, ),/4],
n, g, a

{13)

where e = jf'k/(ge'}. Multiplying by

e /'x L„' (x}[D( // ) / +(-1) D("// ) / ]

and integrating over space coordinates (with the weight function x') yields

a ~ gg' a'
~~n X ~ ~aa' ~n'

n' X' a'

with

(14)

(n+)(+ ', )[F-(n +2k +5)]'
n, X, s!(-, )(+I )

1 a n, X. ~

- r//2 () ( t

[(..~.—,')(."~"-,')F8 .2~.5)F( "u'5)]- /

2

F (I + X' + A. + 5)
l!(s-I)!()I'—I)![I"(I+X—A.'+I n')/-F(X-)('+1)]F(I+)(' —A+1-n) /F(iV —)(+I)

8(12)'/'(- 1)" ] x, o —e' (~4 (~,/, )(„/,)
(2 1)(2 3) j

2 cos
6

( ) ( 1) (~(g/qI-(g /g)[(g-g )/g])

+ 2 cos — & + 0' —(- 1 C(a 4)(giy@)~)~( +~ai)y4) (1 5)

where

8 ( )
2 if(rg0,

if o=0,

2 if 0' and o' 40,
e, ((7, &7') = 1 if (F or 0' 4 0,

if a and o' =0,
(16)

and the C„" ', , & are the Clebsch-Gordan coefficients
of SU(2) in an obvious notation.

Since y is a symmetric matrix, it can, after
truncation, be diagonalized by standard techniques
using a high-speed digital computer. " The result
for e e'e of a truncation at n =2, A, =6 is
-E =0.20948 a.u. ,"which is to be compared with a
much more precise value of 0.2620 obtained by
variational methods ~

' The energy eigenvalues for
various truncations and the eigenfunction expansion
coefficients for truncation at n =2, A, = 6 (the corre-
sponding normalization constant is Q!/8v')' ' for
all basis functions reported in this paper) are
given in Table II for e e'e and pp p.

A similar approach was tried for the helium

atom, muonium (p)( p), and the hydrogen mole-
cule ion (pe p). The computed energies for He
and p p, p(-2.7922 and -62.928, respectively, with 39
and 37 terms in the expansion) are also much too
small [the accurate values are -2.9033 a.u.
(252-term wave function)' and -102.21 a.u. {55-
term wave function)]. ' We attribute the error to
very slow convergence of the series expansion
which is reminiscent of the slow convergence ob-
tained using a configuration-interaction treatment
with hydrogenic wave functions. " Convergence did
not occur for pe p. The truncation for finite n and
A. is not, of course, unique since A. and n are inde-
pendent parameters. In addition to the ground-state
energy eigenvalues and eigenfunctions, those of
excited states are also obtained during the diago-
nalization process; one eigenfunction is obtained
for each term in the expansion. However, the ex-
cited-state energies obtained in this manner are
even poorer than the ground-state values and so
we do not present them here.

Obviously, these values for the energies of the
various systems considered are not satisfactory.
Because of the great success experienced with the
use of variational methods, it is profitable to see
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TABLE II. Energy values and coefficients for e e'e by the method of Sec. III.

Term
No.

Energy E(n) of n-term
wave function (a.u. )

(~ = -2~'V)
Coefficient 5 ~~ for

28-term wave function

8
9

10

8
4
0

10

-0.11528
-0.168 85
—0.16902
-0.175 50
—0.177 40

-0.178 55
-0.178 95
-0.17S04
-0.179 57
—0.179 59

0.731 220 5
-0.500 815
—0.972438x10 '

0.219 562
0.125 515

—0.739 908x 10
—0.354438x10 '
-0.257 319x 10

0.422 006x 10
-0.115527 x 10 ~

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28

10
10
12
12
12

12
0
2
4

6
2

12
8

-0.17988
-0.179S9
-0.180 10
-0.180 16
—0.180 18

-0.180 25
-0.197 04
—0.19899
-0.198 99
-0.201 23

—0.203 10
-0,204 27
—0.204 74
-0.205 66
-0.205 69

-0.206 92
-0.208 56
—0.209 48

0.309674x 10
-0.162 713x 10 ~

0.169977x 10 '
—0.100467x 10 ~

—0.813436x 10 ~

0.123 049x 10 ~

-0.274 591
-0.101297
—0.438 095 x 10

0.103236

0.792090x10 '
-0.514 650x 10-'

0.428111x10 '
-0.609 569x 10 ~

-0.289145x 10 '

0.774 687 x 10 ~

0.854825x10 ~

-0.557 822x 10

TABLE III. Variational. energy values and coefficients for the ground state of helium;
~ =yp$~, p, = 0.9997.'4

Term
No. E(n) (a,u. )

Coefficient b~~ of 28-term
wave function

—2.4996
-2.5294
-2.7044
—2.7823

-2.7823
-2.7829
-2.8034
-2.8312
-2.8443

0.965 406 7
—0.709454 3x 10
-0.19032S 4

0.115739 4

-0.290 549 6 x 10 ~

-0.5914318x10 2

0.4775212x10 ~

-0.516926 6x 10 ~

0.331187 8x 10 ~

See NAPS document No. 02309 for 8 pages of supplementary material. Order from ASIS/
NAPS c/o Microfiche Publications, 305 E. 46th St., New York, N.Y. 10017. Remit in advance
for each NAPS accession number $1.50 for microfiche or $5.00 for photocopies. Make checks
payable to Microfiche Publications.
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whether or not we can so improve on the results
obtained in this section. Variational approaches
using 6AM are the subject of Sec. IV.

IV. VARIATIONAL MODIFICATION

For the cases (e.g. , e e'e, He, ]()u p) in which
the expansion of the wave function in the 0AM
quantum numbers (A., o) is a convergent one, ener-
gy computed in Sec. III is still at least 15% great-
er than the true energy. As we shall see, a varia-
tional approach can be employed to substantially
improve the results.

%'e begin our development by modifying our wave
function as follows:

a„ze "a '(ep)"L„'"+ (ap)
n, X. , a

+[D(a/4) o/c+ ( 1}Dail, -o/e] .

Here both v, which is a function of A. , and n as
well as the a~ are free parameters which can be
used to minimize the energy; recall that in Sec.
III we set o. =2k. We first compute (((!,H)!!) and

()}!,((!) and vary the ao
~ such that the energy E,

E= (-2p/8'n')(q H)j))/()! y)

is a minimum (BE/8„' „=0). After symmetrizing
the resultant set of linear equations, we get

(19)

with

( (I +2v+2)! (n I+1)!(—n' —I+1)!, (I +2v +3)!(a) &n)

P ~„7 = A (A. + 4) —v v + 4)

//2 1
X

(2 4 ) t!2 ~ 4 ~ '!!) (-,'Z ~ 1!"*'

n!n'!(21+1)(-,'z'+I) '/' ~ (v+v'+5+I)!
('n+2v+5)!(n+2v'+5)! ~ I!(n —I)!(n' —I)!

8, (cr, o')
[r(l+v -v' -n'+1)/r(v —v'+l)]r(l+v' —v -n+1)/r(v' —v+1)

X
t () /&q& &t /]1/)a ~ / +1) [& a-o'/a( (a/4)(a'/4)[(a-a)'/4]) +b o+ a'/2( (a/c)(a'/4)[(a+ a)/4]) ] ~

(20)

[ (n + 2v + 5)!]'
a, x. n)(~g+I) a a, x. .

Here

8v 2 (-1}"(~+1)
(2 1 }(2 3} [0,cos (25 p, ) —0,(- 1 ) "]

We now seek the combination of v(A. ) and a which
yield the best energy. Unfortunately, we could
find no practical method of minimizing the energy
analytically; instead we had to resort to trial and
error to find a "best" combination of v(X) and o.',

taking care that the series still converged.
The results for He, H, e e e, and py p are

shown in Table III. The computed energy for He
(-2.90107 a.u. ) is about 0.0'I5/p less than the value
(-2.9033 a.u. ) of Pekeris' while the energies for
H, pp, p, and e e'e (-0.52727, —102.16, and

—0.2612 a.u. , respectively} are about 0.03, 0.05,
and 0.3% less than the values of Pekeris' (-0.52743
a.u. for H ), Carter (-102.21 a.u. for pp p), and
Frost' (-0.2620 a.u. for e e'e ). The agreement
with previous results is thus excellent, and we
have the additional advantage that we do not use
directly interelectronic coordinates. All integrals
are evaluated analytically so that the only large
computational task is diagonalization of the Hamil-
tonian matrix which is quite straight forward. It
is quite possible that the energies reported here
could be improved somewhat by trying other com-
binations of n and v and different truncations of
the triple series.

One may wonder why so much better energies
result from the variational approach. It is appar-
ent that by letting v differ from A. , we are bringing
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in higher-order Laguerre polynomials without the
necessity of using expansions which are hundreds
of terms long. This improvement occurs at the
expense of the beauty of the method of Sec. III.

V. CONCLUSION

The foregoing presents a new approach to the
computation of wave functions and energy eigen-
va]ues of three-body bound 8 states. The computed
energies of Sec. IV are in fact nearly as good as
those found with the configuration-interaction

Hylleraas methods. Qur method is conceptually
a very simple one which does contain correlation
effects, and which yields results within, at most,
a few tenths of a percent of the true energies;
hopefully, it is susceptible to considerable im-
provement. For the ease of two heavy particles
and a light particle (e.g., pe p), the choice of
basis functions employed in the present treatment
is undoubtedly inappropriate; probably some gen-
eralization of the elliptic coordinates used in the
usual treatments is required.
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