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The inelastic collisions of a heavy fast particle of charge Z,e, incident at an impact parameter b,
with an electron bound in an atom isotropically and harmonically is considered. The "atom" is treated

by quantum mechanics, extending an earlier classical calculation by Ashley, Ritchie, and Srandt. A

multipole expansion of the Coulomb interaction for distanct collisions is used. Two methods are

employed to calculate Z', contributions to the mean energy loss and the excitation probabilities due to

dipole and quadrupole terms in the multipole expansion. In one method the dipole interaction is taken

into account exactly by applying the quantum formalism of the forced harmonic oscillator, and the

quadrupole interaction is treated as a first-order perturbation. The second method of calculation

employs both dipole and quadrupole interactions as timeependent perturbations to second order on the

free harmonic oscillator. The energy loss calculated for a particle incident on a straight-line trajectory

agrees with the classical calculation. Reasons for this agreement are given. Simplifications of the

calculation owmg to time-reversal symmetry considerations and selection rules for the harmonic

oscillator are discussed. Comments are made concerning the relative importance of distant and close

collisions at high and low impact velocities,

I. INTRODUCTION

According to first-order perturbation theory,
the probability that a fast heavy particle of charge
Z,e will excite or ionize an atom in a coQision is
proportional to Z', . Recent measurements of the
mean energy loss' ' and of inelastic-collision
cross sections' ' have shown appreciable depar-
tures from this simple relationship and have led
to an examination of the theoretical corrections to
the Z', law. An instructive classical calculation'
of the Z', contribution to the energy loss (stopping
power) has been made, using an isotropic harmon-
ic oscillator as a model for an electron bound in
an atom.

This paper treats the same problem but gives a
fully quantal rather than classical account of the
"atom", i.e., the isotropic harmonic oscillator.
Since the incident charged particle is described
by impact-parameter methods, the present calcu-
lation is appropriately characterized as semi-
classical ~ Like its predecessor, ' this calculation
deals only with the so-called distant collisions,
corresponding to large impact parameters and

permitting a multipole expansion in inverse powers
of the projectile-target distance. Both calcula-
tions involve an exact evaluation of the dipole (El)
contribution to the energy loss and a perturbation
treatment of the quadrupole (E2) contribution.
All higher multipole terms are neglected. In many
ways, the theory resembles that of multiple
nuclear Coulomb excitation, but there are signifi-
cant distinctions attributable to the difference
between the collective model of the nucleus and
the single-particle model of the atom. '

Section II provides the theoretical formalism
leading to an expression for the energy loss which
is identical with the classical result, but the same
methods also permit the evaluation of excitation
probabilities and inelastic -collision cross sections,
which have no place in a wholly classical approach.
The general formulas are specialized in Sec. III
to the particular case of an incident charged par-
ticle moving uniformly on a straight-line trajec-
tory. The theory of Secs. II and III, which treats
the dipole interaction exactly, is compared with

straightforward perturbation theory in Sec. IV.
A discussion of the model and its possible exten-
sion concludes the paper (Sec. V).

II. GENERAL THEORY

The Coulomb interaction between a classical
particle of charge Z,e at position R(t) with co-
ordinates X(t), 1'(t), Z(t), and an electron located
at position r(x, y, z), measured from the atomic
nucleus as the origin, is given by

for tt (t)»r. The monopole, dipole, and quadru-
pole terms are of order 1/R, y/p~, r'/tt', re-
spectively.

Assuming that the charged particle remains out-
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side the "atom" during the course of its motion,
the dipole potential may be regarded as giving rise
to a spatially uniform force which varies in time
in a specified manner. The Hamiltonian of the
system is conveniently expressed as the sum

H =H, (t)+ V, (t)

of an "unperturbed" part,

H, (t) =H, +F(t) a+f*(t) ~ ai'

with

H, =k&o(ai ~ a+ —,')

and

(5)

H, (t) =H, + V, (t) = "" ' +-,'g~'(x'+y'+z')

(3)

and a "perturbation",

(4)

The unitary time-development operator in the
SchrMinger picture corresponding to the Hamilto-
nian (5) and accounting for the evolution of the sys-
tem from an arbitrary time t, to an arbitrary
time t, can be shown to be

T(t„ t, ) =e'(('~'R 'T) exp(-iu)a at, )

x exp[-ig((u; t„t,} ~ a —igR(u); t„ t,) a~l

The monopole term has been omitted from the
Hamiltonian, since it does not affect the transition
probabilities as long as ft (t)»r is valid for all t
and all pertinent values of r. The Hamiltonian
H, (t} is that of a forced isotropic harmonic oscil-
lator. The equation of motion of such an unper-
turbed, albeit time dependent, quantum system
may be solved exactly by separation of variables
in the Cartesian coordinates x =x„y =x„z =x, .

The lowering and raising operators,

where

x exp(is)a~ it, ),

and (t) (t„ t, ) is a real phase function.
The perturbation V, (t) modifies the time develop-

ment of the system. To first order in the pertur-
bation, the state develops from 4d(t, ) to 4(t, ) ac-
cording to the formula

a&= " x, -s P'
V (t ) (T(t„ t l —=T(t„t)V (t)T(t, t ldt (t )tt

t

for the three independent linear oscillators satis-
fy the commutation relations

a/aa -ak, af =6~0

The Hamiltonian operator (3) may be compactly
expressed as

The expectation value of an observable A. in the
final state is, again to first order in V„

(6)

Central to the theory are thus operator trans-
forms of the type

V, (t, t, ) = T(t„ t) V, (t)T(t, t, ) .

Since V, (t) is a quadratic form of the operators
az and az, it is useful to note that standard opera-
tor identities give the results

T(t„ t)a&T(t, t, ) =aie '"t' 'T) ig*((d); t, t, )-e

and the conjugate relation

T(t„ t)a~~T(t, t, ) =a&~e' &' 'T)+ig&(~; t, t, )e' '

(12)
The transform of an operator which can be ex-
pressed as a polynomial of the a~ and az is sim-
ply obtained by replacing the lowering and raising
operators by their transforms.

As a first application, we see that the energy
operator for the free isotropic harmonic oscillator



K. %. HILL AND E. MERZBACHER

undergoes the transformation

T(t„ t, )HOT(t„ t, ) =H, +P[(()g(((); t„ t, ) ~ g~(((); t„ t, )

+tg(da ' g(((); t2, t&}e (

V, (t) = Q q»(t}(ajta~t+gqa, y2eq~e~)

where the coefficients q»(t) are the elements of a
real symmetric matrix:

tl-(dit. g+((u t t )e ' '(

(13)

The quadrupole perturbation operator V, (t) may
be written in the form

q»(t) =q»{t) =q~», (t)

with a vanishing trace:

g q„{t)=o.

The transform of V, (t) is then found to be

(15)

V, (t, t, ) = Q q»(t}[aq~a~te2(~(' '(]+aqa~e " &' '&]+2a~ta,

+2t[a~te' &' '(]+up-(~&'-4&][g, (~; t, t, )e'"'-g*((o; t, t, )e ' '])+E(t, t, )1, (16)

where I' {t, t, ) is a c-number function, whose detailed form is not relevant.
If we wish to calculalate the energy transfer and related quantities for the over-all collision, we must

choose t, - -~ and t, -+~ in Eq. (9). We shall also assume as an initial condition that the oscillator is
in the ground state lo) before the collision, i.e., 4 (-~) = l0) . The expectation value of the oscillator
energy is then readily obtained from Eqs. (9), (13), and {16}.Only the linear terms in V, contribute to the
expectation value of the commutator, and we find

i((~ ")IH.I~(~ -)&=la ~I I(( )I' 2 I Qq„(0]g, ( )~"'+z,'( )~-"']
j, k

x[g, ((d; t, ~)e( '-g~+{(d;-t, ~}e ' -']dt,

where the quantity g((d) is defined by

+ ao

g(&u) =g(ru;+~, -~) =- e ' '/f(s)ds. (18)

The evaluation of formula (17),
q»(t), will be given in Sec. Dl.
tion value (17) of the oscillator
state.

The probability of finding the
ly in the ground state, is given

based on detailed assumptions about the time dependence of the coefficients
Before proceeding to these calculations, it is useful to relate the expecta-

energy to the total probability of exciting the oscillator from its ground

oscillator at t =+~ still in the ground state denoted by lo}, if it was initial-
by the expectation value (9) for the operator

~=lo){ol.
The operator transform needed is

T (t„ t, ) l o) (ol T (t„ t, ) = exp[-lg(~; t„ t, ) l'] exp[-t ~at at, ]exp[-]'g*(~; t„ t, ) a. '] lo}

&& (0l exp[-ig(ur; t„ t, ) a] exp[i~it ~ it, ] .

Substituting Eqs. (16), (19}, and (20) into Eq. (9), and noting that

g((u; t„ t, ) =-g(u&; t„ t, ),
we arrive, after some simple but lengthy manipulations, at

(20)

l(ol('( ~ )&I'=e )&'~'{)-—' J g ()„())Ig(~&~' ' g'( le ' '][);.(;&, — )e' '-g"(; -)") '8']dt,
jk

+ CO

+ Qq„(t)[-g,(a) g((d) e" '
gy (~)g,*((d)e ""']-dt-

~&e
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The probability of finding the oscillator at t =+~
in the eigenstate in,n2n3), if it was initially in the
ground state, is obtained by letting A = in1n2n3)

x(n, n2n3i in Eq. (9). The resulting formula is
given in the Appendix.

The second term in expression (22) arises from
the terms which are linear in a and a~ in the ex-
pansion of the exponential operators in Eq. (20).
The last term, which originates from the quadratic
terms in the expansion of the exponentials, van-
ishes if

III. STRAIGHT- LINE TRAJECTORY MOTION

%e are now prepared to calculate the energy
transfer to the isotropic oscillator from a charged
particle moving on a prescribed orbit. For sim-
plicity we assume that the particle moves with

constant velocity v, on a straight-line trajectory
at an impact parameter b. In conformity with

Ref. 6, we choose the coordinate system such that

the particle moves in the positive y direction on

the line X = -b. Hence,

Q Q,„( t) gf-(1d)g 54( 1)d= Q Q/5(t)g/(Od) g, (2/).
X(t) = b, -y(t) =v, t, Z(t) =0, (28)

fk fk and consequently,
(23)

For most applications of interest, this time-re-
versal symmetry condition can be satisfied by an

appropriate choice of coordinate axes and time
scale. The physical requirements that ensure the

validity of Eq. (23) will be discussed in Sec. V. If
condition (23) holds, a remarkably simple relation
is established between the total excitation proba-
bility and the mean energy transfer. By compar-
ing Eqs. (22), without the last term, and (17) we

obtain

Z,e'b X/2

fl ( } [b2 + (v t)2]3/2

( Z,e'v, t a
&2( [b2 + (V t)2]3/2(t) 1 1

f, (t) =0,

, 2(d
g1(~)=Z1e I 2 2 A1

1( oslo (~ )1 I' =o -
(
s—

SM

where ~ is the energy transfer,

t3E = (4'(+ ~) IHoi%'(+ )) —2 )22/

and ~o is the dipole approximation to M,

~.=~lg(~)l'.

Obviously, to lowest nonvanishing order, (24)
becomes

(24)

(25)

(26)

, 2~
g ( 2}rv=iZ,e'

Wvz 2 p. (d

g (&3)v= 0 .

The functions Ko and K, are modified Bessel
functions. For the quadrupole interaction we ob-
tain from Eq. (4) the following nonvanishing co-
efficients for expression (14):

)3 2b' —(v, t)'
11 1 4t1(d [b2 + (v t)2]5/2 I

i(oi4 (+-})i'= 1 -mia~, (2V)

indicating that even when the quadrupole perturba-
tion is included to first order, only transitions to
the first excited state are important. Thus, if
ig(511)i2«1, the transition probability to first order
in V, is simply computed from the energy transfer
given by Eq. (17).

ti 2 (v, t)2 —b2
22 le 4t1% [b2 + (v t)2]5/2 t

li -[b' + (v,t)']
33 1 4t11v [b2 i (v t)2]5/2 t

k -3b v, t
12 I 4t12/ [b2 + (v t)2]5/2 '

Applying these results to Eq. (17), we obtain

, , 2(d' ~b ' ~bm=(Ze')' tc — + ff
QV4 O

2(Z1e2)3 {' '" dvcosuv
2v4b3 1 (u)

Ji 1 +)5/2 [(v 2)E1 (u, v) —3VE2(u, v)]

dv snub
+K, (u) ),/, [3VE,(u, v) —(1 —2v')E, (u, v)] (32)
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where u = ~b/v, and'

sin[u (v -y)I1,2)3&2( +Y
y sin[u(v -y)]

2 & y
(1 +y2)312

Remarkably, Eq. (32) is in exact agreement with

the fully classical result. ' From Eqs. (30) and

(31) it is seen that the symmetry condition (23) is
satisfied. It follows that the total excitation prob-
ability, according to equation (27), is to the same
order of accuracy

1- i(0iC (+ )) i' =LE/k~. (33)

The underlying reasons for the agreement between
the quantal and classical AE to this order will be
discussed in Sec. V.

IV. PERTURBATION THEORY

It is instructive to rederive Eq. (32} in conven-
tional perturbation theory, using the free oscillator
(Hamiltonian H, ) as the unperturbed system and
the interaction V, (t)+ V, (t) as the time-dependent
perturbation. The calculation is worth repeating
in standard perturbation theory because the
method employed in Sec. II is peculiar to the iso-
tropic oscillator and not capable of generalization
to other, and more realistic, models of the atom.
The customary difficulties associated with second-
order perturbation theory stand in the way of per-
forming a reliable calculation of the Z,' term for
most systems, ' since such a term arises from the
interference of first- and second-order transition
amplitudes. However, for the isotropic oscillator
considerable simplifications occur due to the
effect of strong selection rules, and the calcula-
tion becomes manageable and transparent. One

may even hope that certain features of such a

model calculation survive the generalization to
more complex systems, perhaps in the form of
sum rules.

The perturbation calculation is most suitably
carried out by the use of spherical polar coordi-
nates and angular momentum eigenfunctions.
Hence, we now phrase the same problem as before
in a new form:

p' 1 22Ho= —+- p. ~ r
2p, 2

V, (t) = —Z,e' —,P, (r tt)

3 Z,e' —,Q (-1}"1',"(A)F,"(r"), (34)

=-Z,e' ——,g (-1) V,
- (Jt}r, (r). (35)

E„, = k(uc2n+ l + 2) (3'I)

for the isotropic harmonic oscillator, the perti-
nent second-order transition amplitude from the
oscillator ground state to a final state n, l, m, is

The effective perturbation is taken to be

V'(l) = V, (t)+ V2(t),

and time-dependent perturbation theory is carried
out to second order. Using the quantum numbers
n, l, m, corresponding to an unperturbed energy,

~ p +OO + 00

c„, (+ ) = —— dt (nlm~ V'(t}~000)e' ~'dt ——, dt dt' g (nlm~ V'(t)~ 'I'n)m
tn l'nt

(n'l' m~V'(t')~000) exp(iu„, „, i+i&a„,, oot'),

where

nl n l nl hatt

The selection rules for the dipole and quadruple
perturbations, defined by Eqs. (34) and (35), are
very simple:

E1 selection rules:

nl = +1 and nn = s—,
' ——,

' nt (but I =0- I =0 forbidden);

E2 selection rules:

6 l = 0, +2 and An = —2 6 l or An = +1 ——,
'- b l

(but 1=0—l'=0 forbidden). (40)

In addition, the usual selection rules for the mag-
netic quantum number must, of course, be satis-
fied.

Evidently, the only states that can be reached in
first order from the ground state (nt) = (00) are
(nl) = (0, 1), by an El transition, and (0, 2), by an
E2 transition. Ne shall consider only those con-
tributions to the second-order transition amplitude
which lead to final states that are also accessible
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X( t) =X-(t), Y(-t) = —Y(t). (41)

If these conditions hold, the Coulomb interaction
between the charged particle and the electron as
well as each term in the multipole expansion are
seen to be invariant under the simultaneous trans-
formation

t- —t y'- —y .

by first-order transitions, because our primary
interest is in calculating the cross terms between
first- and second-order transitions that arise from
taking the square of the absolute value of expres-
sion (38).

It may be assumed that the orbit of the charged
particle lies in the XY plane, so that Z(t) =0 for
all t. This choice of coordinates implies that
Y,"(tt) =0 for I —m =odd. Hence, in the dipole in-
teraction (34) only the terms with m = +I, and in
the quadrupole interaction (35}only the terms with
m =0, ~2 survive.

Usually it is a good approximation to assume
that the orbit of the charged particle is symmetric
with respect to a line which bisects the angle be-
tween the directions of incidence and scattering,
and this line may be chosen as the X axis of the
coordinate system. If the reaction of the inelastic
collision on the incident particle is entirely ne-
glected, the motion satisfies the further symmetry
conditions

P, ~lm& =e (-1) ~l, -m) =e)tm&, (44)

where the real phase 5 may depend on l, but not
on m. From Eqs. (43) and (44) and from the anti-
unitarity of 6, it follows that

( n'l'm') V(-t) (nlm& = ( n'l'm') V( t)P-,'( nlm&

=(n' '
Im~ P, V()tP~ntm&

= (n'I'm'[8 'V(t)e [ntm& *

= (n'I'm'( V(t)(nlm) *. (45)

The time-reversal symmetry condition, 8 'V(t)e
= V(t), has been used in the last step of Eq. (45}.

This symmetry relation has important conse-
quences for the reality properties of the various
terms in the perturbation expansion (38}. It ob-
viously follows from (45} that the first-order term
in Eq. (38) must always be imaginary.

For the second-order term we can infer from
condition (45} only that

Hence, for all perturbations considered here

V( t)P-„=P,V(t)

if I', is the unitary and Hermitian operator which
effects a reflection of the electron coordinates in
the xz plane. It is easy to see" that in its effect
on orbital-angular-momentum eigenstates I', may
be chosen to act just like the time-reversal opera-
tor e:

Im
+ cc t

dt dt' g (ntm~ V'(t)[n'I'm'& (n'I'm'~ V'(t')~000& exp(t&u„, „, t+ico„, „t'),
OO oo I ~ I Ini nt

+ OG

=-Im dt dt' g (ntm~ V'(t')~n'l'm'&(n't'm'~ V'(t)~000& exp(t~„, „, t'+ice„, , „t), (48)~oo ~ oo nintI I I

with t and t' interchanged in the integrand. This relation can be used to show that the second-order tran-
sition amplitudes leading to the second excited state and mediated by two successive E1 transitions are
real quantities and hence, in the evaluation of transition probabilities, cannot give rise to contributions to
cross terms with the imaginary E2 transition amplitudes.

Taking all applicable selection rules into account, the only relevant second-order matrix elements are
then

[(01+ I~ V, (t)[01+ 1& (01+ I( V,(t')[000&+ ', 01+ I( V, (t))01+ 1) (01 v I( V, (t')[000& ] e' ' (47}

[(01+ I
(
V(t)(02 + 2) (02 s 2( V2(t')/000& + (01+ 1) V(t)/020& (020/ V (t')[000& J e (48)

The transition amplitudes (47) and (48) can be illustrated diagrammatically in Fig. 1.
The evaluation of the needed matrix elements between the eigenstates of the isotropic harmonic oscilla-

tor is straightforward and gives the result:

&Ol+ I~ V, (t)~OOO& =Z,e'
't' +X(t) —i Y(t)

(01+ 1~ V, (t}~02 + 2) = Z,e
"m(t)+i Y(t)



K. %'. HILL AND E. MERZBACHER

It "~X(t)+i I (t)(oI+ II Vz(t)l020) =Zle ~12[+(t)]3

(01 s 1
i V2(t)F01+ 1) =Z,e' -[X(t)]'- [V(t}]'

(01+Ii V, (t)[0lv 1) =Z,e'—

(02 x2~ V2(t)~000) = —Z, e~ 8 3 [X(t)+ i Y'(t)]'

( 2 )= ie „4 ~5020~V(t)~000 =Z, " ' [ (t}]'+[V(t}]'

(51)

(52)

(54)

(55)

If the calculation is now specialized to a straight-line trajectory motion for the charged particle, as
assumed in Sec. III, the transition probability can be evaluated by choosing the representation (28) for
X(t} and F(t) and working out the transition probability to order (Z,e)' from Eq. (38) with the use of (4V)
and (48), and with the matrix elements (49)-(55). The first-order El transition amplitude becomes, as
usual,

z 2'

2(Ap, (d)

cu 1 (ub cob

The cross terms arising from the product of this expression with the much more complicated second-
order amplitudes may be combined and transformed by some straightforward but lengthy algebra. In
agreement with Eqs. (32) and (33), the final transition probability up to order (Z,e)' is

Q ~c„(+ )~' = (Z,e')', [[K,(u)]'+ [K,(u}]') + (Z,e')', ), ,
SP.V I 1

x —K, (u) l, ,~ [(v' —2)P, (u, v) —3vt;(u, v) J
6v cosQP
(g + V2)5@

+K,(u) (,,~, [3vE,(u, v) —(1 —2v')E, (u, v)]vm)s/2

where u = ~5/v, ,
The quadrupole interaction causes transitions from the ground state of the isotropic harmonic oscillator

to the states (02 +2) and (020}, permitted by the selection rules (40). It may be useful to record the first-
order E2 transition amplitudes to these states:

2k ~t 2 2&2(d 2605 2(d5
(02 +2~ V2(t)~000)e ' 'dt=iZ, e 3 K,' +K, (58)

@VI Vl

z &3 2 (d6
(020(V2(t}~000)e" 'dt =-iZ, e'

2 K,
5LLt, Vg Vl

Owing to the proportionality of the linear dimensions of the oscillator to v A, the quadrupole transition
amplitude is independent of Planck's constant.

(59)

V. MSCUSSION

The analysis of "distant" collisions between a
charged particle and an "atom" (i.e., isotropic
harmonic oscillator}, carried through in the pre-
vious sections, relies on a double expansion. The
multipole expansion of the electrostatic potential
and the perturbation expansion of the transition

amplitude together produce a hierarchy of higher-
order terms whose relative magnitudes must be
assessed with care. If the selection rules (40) are
taken into account but time-reversal symmetry
conditions disregarded, leading contributions to
the terms of order Z', in the transition probability
may be expected to arise from the interference
of {1)a first-order quadrupole transition with a
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02 +2
02 0 (65)

Ol + I

Yp Vp
If relation (64) holds, this cross section can be
expressed in terms of the contribution of the dis-
tant collisions to the stopping power:

000
n pm

dE
=2mn AEb db = nkruo, ,dx (66)

FIG. 1. Diagram representation of the effective sec-
ond-order electric dipole and quadrupole transitions from
the ground state of the isotropic harmonic oscillator.

f ( ~) =f (f}, f (-f) =-f(t), f, ( t)-=f (t). (-62)

Similarly, applied to Eqs. (14) and (15), the time-
reversal symmetry conditions require that

Q,.(-f) = —0, (f), 0„(-f)= —Q„(f), 0„(-f)= Q„(f),

Q„.(-t)=Q;(f) (&=1,2, 3). (63)

All of these properties of f (t) and Q„(t) taken to-
gether ensure that relation (23) is satisfied. It is
thus quite understandable that, up to terms of
order 2'„ the energy transfer may be calculated
from the transition probability to the first excited
state only:

~ = I(u(1 —
~
(0~4'(+~)) ~') . (64)

Such a simple relation cannot be expected to hold
if the calculation is carried to higher order, or if
the incident particle is appreciably decelerated by
the inelastic colli.sion.

The integrals appearing in Eq. (32) have been
evaluated numerically. " The over-all role of the
"distant" collisions can be estimated from the ex-
citation probability for impact parameter b by
integrating from a minimum impact parameter a
to infinity, thereby defining a total excitation cross
section for distant collisions:

second-order double dipole transition, and (2) a
first-order dipole transition with a second-order
dipole-quadrupol. e or quadrupole-dipole transition.
Evidently, as was shown in Sec. IV, if the motion
of the particle is assumed to be unaffected by the
interaction with the electron, time-reversal sym-
metry eliminates case (1) and permits only contri-
butions from case (2), as depicted in Fig. l. The
time- reversal symmetry conditions,

V(-t)P, =P, V(t} and 8 'V(t)6 =V(t),

of Sec. IV may be easily shown to imply the sym-
metry condition (23}of Sec. II. Applied to the
dipole interaction,

V (t)=F(t) a+F+(t) a' (61)

the conditions (60) show that f(t} must be real, and

dE 4RZ)g 2p l'
=n 2

—In + &(I}
X PUa

. Zie—Rey I+~
hv, J

(67}

contains in the last term corrections to the Z',

law, which are important if Z,e /kU, is not very
small. However, it should be noted that these
corrections, when expanded in powers of Z„give
rise only to even powers, and no Z', term appears.
(In the early, fully classical, theory of energy
loss, " the delicate process of joining together the
distant and close collision regimes also led to a
more complicated Z, dependence, although the
close collisions were treated as pure Rutherford
scattering. }

Since the unimportance of close collisions cannot
be taken for granted, it would be desirable to have
available the results of a second-order perturba-
tion calculation —either in a semiclassical or
Born approximation —using the full Coulomb inter-
action between incident particle and atomic elec-

where n is the number of target atoms per unit
volume.

Since at high impact velocities, transition prob-
abilities, cross sections, and energy losses de-
pend on the parameter t = a&a/v, only logarithmi-
eally, when E «1, the choice of the minimum im-
pact parameter does not affect the results of the
calculations strongly. At such high velocities, it
appears reasonable to suppose that the close
collisions, with impact parameter less than a,
make comparatively small contributions to the Zl
correction term. Such a behavior is said to be
expected, since, at high velocities, close colli-
sions may be regarded as impulsive binary colli-
sions between the incident particle and the atomic
electron, whose binding to the nucleus is neglected.
The strict Z', proportionality of the Rutherford
scattering cross section, appropriate to such a
"binary encounter, " is then invoked to suggest that
close collisions make negligible contributions to
the Z', corrections. '

It is not clear that at all but the very highest
impact velocities the close collisions can be safe-
ly ignored. Thus, for instance, Bloch's version
of the stopping power formula, "



tron, at least for close collisions with large mo-
mentum transfer. The usual difficulties with the
summation over intermediate states have pre-
cluded reliable calculations of this kind except
for very special cases, and then only with the use
of additional approximations whose accuracy is
difficult to establish. '

Leaving the close collisions aside the present
semiclassical calculation, like its classical

predecessor, ' shows the details of a full second-
order perturbation calculation for the distant
collisions with an oscillator model of the atom.
The relation between the semiclassical and the
entirely classical theory is best analyzed by con-
sidering the equations of motion in the Heisenberg
picture, rather than the Schrodinger picture,
which was used in Secs. II-IV.

The Hamiltonian

gives the equation of motion:

3

ih ' = [a,(t), H] =t(uta, (t) f+;(t) 2++ Q„(t)[a,(t)+ at(t)].
dt

Using the definition (7), this can also be written as an integral equation:

where a~=lim a~(t}e' ' as t- -~. If the quadrupole perturbation is small, this equation may be solved by
iteration. The solution, correct to first order in Q, is

S

a (t)e' '=a —ig*((u t -~) ——~ tI) (t')e' '[a e ' "+ate' '
O'

g
~GO

+ig, (cu; t', ~)e'"'-—ig,*()d; t, -~)e ' ']dt'. (71)

Since the operators a~(t) and a~~(t) are linearly re-
lated to their initial values, a„and a~~, the ex-
pectation values of the lowering and raising opera-
tors, as well as of the Cartesian dynamical vari-
ables x„and P„, which are linear combinations of
the a, and &~~, must agree with the solutions of
the classical equations of motion. %hen expecta-
tion values of quadratic forms of 0 and a~ opera-
tors are calculated, the classical and quantal re-
sults generally differ. " The energy transfer is
the expectation value of the operator,

(72)

When expression (71) is substituted into (72), to
first order in Q only quadratic terms of the form
a~fa~~ and a, a, occur. Hence, the expectation value
of (72) in the ground state of the oscillator must
be the same as the classical energy transfer to an
oscillator, initially at rest, evaluated to first
order in the quadrupole, and arbitrarily high order
in the dipole, interaction. Quantum corrections
are expected when the calculation is carried to
second order in Q.

The relative importance of higher perturbations
can be judged by noting that the E1 interaction is

approximately measured by the strength param-
eter

z 2 h 1/2

whereas the E2 interaction has the strength

g,e'
O'UI P. (d 0

It is evident that the multipole expansion converges
rapidly only if a is substantially larger than the
linear dimensions of the atom.
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APPENDlX

The excitation probability from the ground state
of the oscillator to the state ~n, nmn, } has been
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~orked out by methods described in Sec. II. If n„n„n, are the Cartesian quantum numbers, correspond-
ing to an energy spectrum

E =I&a(n, +n +n, +&)

the excitation probability from the initial state ~000) is, in analogy with Eq. (22), given by

l(n, ~», [4'(+~)) [' =e l~' 'I II + ' ~t &»Ie' 'gq(&u) g~(&) —e "~gj~gr) ga(&u)l
1=1

p&
dt g Q»Lg&(&u)e'

' +g&'(u)e ' '][g~(u; t, -~)e' '-g~(&u; t, -~)e ' ']
$, A

)=1 1=1

where it is understood that terms having denominators such as (n, -6»). are zero if (n, —5») is a nega-
tive integer.
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