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Method of successive approximations for many-electron wave functions
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Assuming that there exists a correspondence between the methods of the superposition of
configurations and linked-cluster perturbation-theory expansions, a method of successive
approximations was used to generate the coefficients of the superposition-of-configurations
expansion and the correlation energy of a many-electron wave function. The algorithm was
applied to the ground state of Be. Using an excited s,p,d orbital basis set calculated in the
V~ potential, and estimating the truncation error of the remaining pair-correlation energies
of the partial-wave expansion, a correlation energy of -0.09312 a.u. was obtained.

I. INTRODUCTION

The methods of superposition-of -configurations
(SC) expansion and the linked-cluster perturba-
tion-theory (LCPT) expansion, which was devel-
oped by Brueckner' and Goldstone, ' have been two
approaches to the many-electron problem.

Recently, successful SC calculations have been
performed on atoms such as (a) Be by Watson, '
Bungs, ' and Sims and Hagstrom'; (b) C by Bunge
and Bungs'; (c) Ne by Barr and Davidson, ' Bunge
and Pelxeto, ' and Viers and co-workers. ' Nesbet'
has developed a generalized Bethe-Goldstone
approach in which a pair SC calculation is per-
formed rather than the traditional sum-of-pairs
SC calculation. Sinanoglu" had developed a power-
ful semiempirical approach to electron correla-
tion which was based on SC and perturbation theo-
ries.

Pu, Chang, and Das,"and Kelly and co-
workers"'" have performed successful I.CPT
calculations on a variety of atoms and molecules.
Among the techniques developed by Kelly are
(a) geometric summation of certain classes of
terms by energy denominator shifts and ratios,
(b) the choice of a V" ' potential which enables
the excited states to resemble physical one-par-
ticle excitations, (c) summations over bound states
by discrete sums and the e ' rule and the numer-
ical integratxon over the continuous states, and
(d) the explicit numerical calculation of a com-
plete set of radial wave functions for the signifi-
cant / values.

Nesbet, "Kelly and Sessler, "and Kelly" have
demonstrated that there exists a correspondence
between the pair-excitation terms of the SC and
I.CPT expansions of the exact wave function. This
paper mill extend this correspondence for all
possible n-tuple excitations, and develop a method
of successive approximations of an iterative-per-
turbative nature. In addition, it mill be argued

that the pair and pair-product excitations are the
dominant corrections for closed-shell systems,
while the non-pair-excitation terms are much less
significant oming to a considerable cancellation of
terms.

II. REVIEW OF THE SRUECKNER-GOLDSTONE

LINKED-CLUSTER PERTURBATION THEORY

Consider a system of N identical fermions
moving in some central-field potential and inter-
acting through the tmo-body potential U„. . For
atoms, the Hamiltonian is given by

H =Ho+H„

where

(2)

H. =Pa„
h; = Ti+Vi,

and where

There exists an infinite number of single-particle
solutions of the single-particle Schrodinger equa-
tion

where

T, = =.'V, '-Z/r, .

(Atomic units will be used throughout, e = m =a = l.)
To simplify the problem, it is assumed that an

effective potential V can be constructed to rep-
resent the average interaction potential on the
ith particle due to the other N —I interacting
particles.

The Hamiltonian can be separated into tmo parts
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AgQ ~ =&)Q] ~

For a closed-shell system, the N lowest-lying
solutions are used in the construction of the refer-
ence antisymmetrized product wave function I!(!):

I
y&=I/(¹!)'~'det[u, (x, ) ~ ~ u„(x„)]. (6)

The unoccupied states of
I P& denoted by a, P, y, . . .

are called holes and the occupied states of
I Q&

denoted by a, b, c, . . .are called particles.
In the second-quantization notation, the Hamil-

tonian is written as

and

I ly &~.'n.'n.n, Q—& II't &n.'n. ,
tf&XQS

where the summations are over distinct matrix
elements. The operators q~ and q„are the crea-
tion and destruction operators of u„which satisfy
the usual Fermi-Dirac anticommutation relations.

Goldstone' assumed that the exact solution of the
many-body system I4'& could be adiabatically
generated from

I Q& by the perturbation H, . It is
assumed that there exists an operator U (f) such
that

I+&=e '""U.(t)I 0&

Goldstone' used Nick's theorem to represent the
series expansion for U I P& by Feynman diagrams.
The ith particle a, is represented by a line di-
rected upwards, and the ith hole n, is represented
by a line directed downward. The direction of
time is increasing,

Two classes of diagrams arise from the use of
Wick's theorem in the expansion of U (t)l P&:
linked and unlinked. Further, diagrams may be
connected or disconnected. A connected diagram
cannot be decomposed into two or more diagrams
of lower order without breaking any hole or par-
ticle lines. A connected unlinked diagram has no

external free lines and it diverges as o. -O, A

linked diagram is nondivergent and it has no dis-
connected unlinked components.

Disconnected diagrams may differ from one
another only by having the interactions of the com-
ponents in different positions relative to each
other. Sums over the relative time orderings are
equivalent to carrying out the time integrations
with only the time-ordering restrictions in each
component separately. The result is a factoriza-
tion into a product of the separate disconnected
components of the diagram. It can be shown that
the sum of all the unlinked diagrams is given by

III. LINKED-CLUSTER AND SUPERPOSITION -OF-
CONFIGURATIONS EXPANSION

It seems intuitively obvious that the SC and
LCPT expansions are related. However, in con-
sidering the iterative expressions for the coeffi-
cients of the superposition of configurations as a
means of generating the LCPT expansion, one
must ensure that only linked connected or dis-
connected terms are generated and that the sym-
metry restrictions of a closed-shell Fermi s s-' sys-
tern are satisfied.

This section relies heavily on the previous works

b a b

W

b c

FIG. l. Illustrative expansion of the correlated wave
function which contains a pair excitation, a disconnected
quadruple excitation, a single excitation, and a connected
triple excitation.

& QIU„(0)l!I!&. Choosing the intermediate normaliza-
tion &Ql+& =1, one can then show that

1 n~" (E -H) (10)

where I. restricts the summations to linked terms
only. It is convenient to define lx& to be the corre-
lated part of I4&,

Ix& = l~) -
I p&

Then the correlation energy is given by

E.= &ylff, lx&

-n
=Q&ylff, (E &, ly&. (12)

It is possible to regroup the series expansion of
y} according to the number of open loops or
q, ,q~ q pairs which will be called excitations.

Both connected and disconnected linked diagrams
are allowed in the expansion

I x) to all orders of
perturbation theory, whereas only linked connected
diagrams are allowed to all orders in the expan-
sion of the correlation energy. Figure 1 illustrates
the expansion of lx) according to excitation num-
ber.
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of Nesbet, "Kelly and Sessler, "and Kelly" in
order to generalize their results for the connected
pair-excitation part of I 4& to all excitation num-
bers. Using the correspondence between the SC
and LCPT expansions, an algorithm is proposed
and numerically tested on the beryllium atom.

It is convenient to work in the notation of second
quantization. The 4th configuration of the space
of j excitations can be written in terms of j-par-
ticle and hole creation operators chosen in such
a manner that the symmetry restrictions are pre-
served:

] ~ ~ ~ [~t ~. ]l y&,k(i) k(1) k(j)
where 1 &j&¹

The exact wave function can be expanded in terms
of a complete set of symmetry-adapted configura-
tions:

j=o k=1

where A ranges over all the allowed configurations
and j ranges from zero to N excitations, and
where

0 ]1

vanishes if the symmetry is not preserved in a
closed-shell system.

The first few SC coefficients written in terms
of products of distinct sums are given by

k

f2 ER ++[El El. ]»

f» =E»»+Q[E' E'„]+»Q[E'„E„'E', ]».

6&~I(H-&)l~&=0, &41~&=1. (18)

Following Nesbet, " it is convenient to impose
the Hartree-Fock Brillouin condition upon the
variations. En addition, for all unitary transfor-
mations which do not mix particle and hole states,
one has for the SC matrix element between the
Hartree-Fock reference configuration and all
single -excitation configurations:

Following closely the procedures of Nesbet, "
Kelly and Sessler, "and Kelly" the coefficients
of the SC expansion are generated by considering
those variations in l+& which make the total ener-
gy a minimum, subject to the intermediate nor-
malization constraint:

g) g~ 0 ~ 0 (16}

In order to take into account that the correlated
wave function can be written in terms of linked
connected or linked disconnected diagrams, de-
fine the SC coefficient f,' to be written as a sum of
products of connected SC coefficients F' such
that the product

In addition, it shall be assumed that both the
hole and particle states are calculated using the
Hartree-Fock potential constructed from the N
occupied fermions, although this assumption may
be relaxed. Then the variations upon I4& which
minimize the total energy subject to the above
conditions yield the following expression for the
connected SC coefficient:

&f1,'IIf, l y&6(i, 2)+ Q f'.«»'Iff, If1'.&+ Qf'."«,'I ffl f"l') 0(i, &-2)
k

m ssk

+ Qf'."&ftllH Ift'."&((i,&-1)+Qf'. '(fl.'IH Ift'. '&~(i -1,1)+Qf'. '&ft»IH Ift'. '&~(i -2, 1),
c c c

where Qc restricts the summations to only dis-
tinct connected linked terms and where

&o(m, s) =1 if m&s

=0 if m~s

(20)
t

the results reported by Kelly and Sessler, "and
Kelly, "where

d»'=g(s„—s, )+g &a„n, Ivlo. , a, &„

and

$(m, s)=1 if m ~s,

=0 if e&s.
The energy denominator is a generalization of

Sgg 8 ~ S t

+(a, a, lvla, a, &,]co(j, 1)

+&c- Z f'&f1'.Iffilk&&(i, &-2),
n ¹'k
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where the notation (wxIuIyz}„represents the sum
of the direct and exchange v-matrix elements.

The numerator of Eq. (20) contains three classes
of SC matrix elements which can be decomposed
into sums of v-matrix elements. Define a class-A
SC matrix element which involves a change of two

excitation numbers and which has the following
decomposition:

lF

Figure 2 illustrates a class-A v -matrix element
which creates two excitations. Define a class-B
SC matrix element which involves a change of one
excitation number and which has the following
decomposition:

(O', IH, IQ"'&= Q [(a, a IvIa, a ),
st ng, 8 P n

—(a. a., lul a, a. &„). (»)

Figure 3 illustrates the class-B v -matrix ele-
ments which involve one excitation. Note that the
three-hole one-particle v-matrix element tends
to cancel the contribution from the three-particle
one-hole v -matrix element. Define a, class-C SC
matrix element which involves no change of ex-
citation number and which has the following de-
composition:

+g [(a„a Iu)a, a, )„

+(a„a„IuIa~ a~ ),]&@(j,1}.
(24)

Figure 4 illustrates the class-C v-matrix ele-
ments which involve no change in excitation num-
ber. The class-C v-matrix elements include the
particle-particle, the hole-hole, and the particle-
hole ladder diagrams, and the ring diagrams which
are the exchange diagrams of the particle-hole
ladder diagra, ms.

The expression, Eq. (20), for the connected SC
coefficients represents a set of coupled nonlinear

FIG. 3. Two class-B v-matrix diagrams which create
an excitation.

equations. Under specific circumstances, the
solutions may be generated by iteration as de-
scribed by Nesbet, "Kelly and Sessler, "and
Kelly. " For a closed-shell system in which the
Hartree-Fock wave function is used as the refer-
ence vector, only the connected pair coefficient
has a first-order contribution, whereas all other
SC coefficients begin to have their contributions
appearing from the second order or higher. It
is also noted the second-order pair-excitation
contributions arising from the class-C v-matrix
elements are much more important than the cor-
responding second-order contributions to the
single and connected triple excitations formed
from class-8 v -matrix elements, indicating
that a considerable amount of cancellation of terms
may take place. Kelly" has observed that the in-
clusion of all orders of class-C v-matrix elements
is needed to obtain accurate LCPT results for
closed-shell systems. Bunge4 has also reported
in his SC calculation of Be that the nonpair SC
contributions amount to about 1/p of the total cal-
culated correlation energy, perhaps supporting
the conjecture that there is a cancellation of terms
in the formation of nonpair SC coefficients. Kel-
ly'3'4 appears to be justified in neglecting the
nonpair SC contributions in his calculations for

FIG. 2. Class-A e-matrix diagram which creates a
pair of excitations.

FIG. 4. Four class-C v-matrix diagrams which create
no new excitations and which are solely internal modifi-
cations to a diagram.
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closed-shell atoms and molecules, but he does
include the single-excitation corrections in his
treatment of open-shell atoms.

As pointed out previously, the expression for
the connected SC coefficient was obtained by using
the same procedures used by Nesbet, "Kelly and
Sessler, "and Kelly" except that the decomposition
of the SC matrix elements were done in more de-
tail. Kelly" has pointed out in his paper that his
energy denominator could be obtained from either
the consideration of the exclusion-principle-violat-
ing (EPV)"" terms of the LCPT expansion, or
from SC theory by restricting the summations in
the numerator to exclude the diagonal terms and
the factorization of a certain subset of disconnected
SC contributions and its inclusion into the energy
denominator. The numerator of Eq. (20) for F„'
restricts the summations over the decompositions
of the SC matrix elements to include only distinct,
linked, connected contributions to F,'.

In the same manner as Nesbet, "Kelly and Sess-
ler, "and Kelly, "one assumes that the successive
iterations of the sets of coupled SC coefficients
converge. The result for a particular SC coeffi-
cient, I', , will be a series expansion of linked
distinct diagrams with modified" energy denomi-
nators. Again following the method of Kelly, "
the energy denominators may be again expanded
to yield the original Brueckner-Goldstone LCPT
expansion. From another point of view, Nesbet'
has shown that the net increments in the Bethe-
Goldstone hierarchy are related to sums to in-
finite order of subsets of linked diagrams. Since
the Bethe-Goldstone and SC methods are related,
Nesbet also establishes the correspondence be-
tween the LCPT and SC methods.

Since Nesbet, "Kelly and Sessler, "and Kelly"
have established the correspondence between the
LCPT and SC theories, this correspondence will
be utilized in order to propose an algorithm using
successive approximations. Using the insight from
the LCPT expansion, it is possible to neglect on
the first approximation the contribution of the
nonpair SC coefficients in the expression for the
connected-pair SC coefficients, thereby decou-
pling and linearizing Eq. (20) for the pair SC coef-

I
0"s' .&

= n.'n ' ' ' n n. I 0), (25)

where [an] corresponds to the first excitation,
q. q„, etc. , and where

Cabc ~ ~ 0
n8). .~ K

is the corresponding connected SC coefficient,
and

abc' ~ 'k
C aS)' ~ ~ ~ K

(26)

(27)

is the corresponding SC coefficient composed of
sums of products of disconnected SC coefficients.

Given. the Hermitian operators 0, and O„rep-
resenting some one- and two-electron operators,
respectively, their expectation values in terms
of the exact SC wave function are given approxi-
mately by

ficients. One can then solve either a system of
linear equations or else solve the system of pair
SC coefficients iteratively if the system of equa-
tions requires an excessive amount of computer
storage. In the latter case, making use of the
correspondence between the LCPT and SC ex-
pansions may provide a means of obtaining rapid
convergence by a good initialization, such as the
method of "coefficients of enhancement" pro-
posed by Kelly. " Having a good approximation
to the pair SC coefficients, one can then construct
the nonpair SC coefficients from the pair-connected
SC coefficients. The procedure can then be re-
peated successively using the entire set of non-
linear coupled SC coefficients. This algorithm
is based on the assumption that the pair SC coeffi-
cients are the dominant corrections, and that the
nonpair SC coefficients are only small corrections.

The exact energy or the correlation energy is
not the only interesting property obtainable from
the exact wave function. Bethe and Salpeter" have
pointed out that the accuracy of the wave function
also affects the accuracy of the expectation values
of the relativistic corrections, since the relativis-
tic corrections are quite sensitive to the accuracy
of the wave function in the vicinity of the atomic
nucleus. It is convenient now to modify the nota-
tion somewhat.

Let

(~lo, l~&
(4[4)

(ylo, l y)+2ZC'„(y:Io, l y)+&ZC sC, (y slo, l4, )
i ++)C"sj' ~ ~ ~

(o )
(+Io.I@)
(4[4)

(4 ~O, ~ y)+2+C, (y".s~O, ~ y)
l ~+[Cab [2. . .
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In the expression for (0,&, both the single ex-
citation and the product of two pair SC coeffi-
cients were included since they would be expected
to have the same magnitude. That is, a single-
excitation coefficient first appears in the second-
order LCPT, whereas the pair-connected SC
coefficient appears for the first time in first-
order LCPT. The use of the correspondence be-
tween the two theories has many applications.

IV. OUTLINE OF THE COMPUTATIONAL METHODS

The spectrum of virtual states of Be was cal-
culated jn the field of ~ electrons. Kelly'~ has
shown that for the eases he considered the V" po-
tential is too weak to support any bound excited
states. The virtual states were calculated for
1=0, 1, and 2, ranging from a momentum value
of k =0.0 a.u. to A =126 a.u. The atom was en-
closed in a large sphere of radius 50 a.u. , where
the radial wave function was forced to vanish.
The V~ potential is effectively quite small beyond
10 a.u. , where the radial wave function behaves
as a phase-shifted spherical Bessel function of
orbital angular momentum /. In the region where
the V" potential is not negligible, the radial wave
functions were calculated numerically using a
modification of the algorithm developed by Robert-
son. " The analytical and numerical solutions
were required to match at r =10 a.u.

The expressions for the SC coefficients are
coupled sets of nonlinear integral equations w'hich

are transformed into a large number of coupled
nonlinear equations when finite difference methods
are used. On the first approximation, these equa-
tions were decoupled and linearized.

The nonpair SC coefficients, to a good approxi-
mation, can be formed from the unknown pair SC
coefficients. One could estimate the pair SC co-
efficients by the first-order contribution or by
means of Ke1.1y's" method of the coefficients of

enhancement Ce(o'p, L), which account for an
infinite number of EPV hole-particle, higher-
order EPV terms, and the I-constant particle-
particle ladder diagrams.

Using Kelly's" coefficients of enhancement,
the approximate pair SC coefficient can be esti-
mated from the first-order perturbation contri-
bution by

C"s(L) =Ce(nP, L)(ab, Live aP&, /d'„'~. (29)

Using the approximate expression for the con-
nected-pair SC coefficient given by Eq. (29), the
connected single- and trip1e-excitation terms
were calculated by the following approximations:

C' =QC, (y'„)H, [ y".,&/d'„,

c'„';, =QC".,& y'„",) IH, I y. ,&/d„8

(30)

where the higher-order corrections were neglect-
ed.

The contribution of the si, ngle, triple, and dis-
connected triple excitations first appears in sec-
ond-order perturbation theory, and third order
in their contributions to the pair SC coefficient,
or fourth order in the correlation energy. The
single- and triple-excitation contributions to
C'„'z(L} appear to exhibit a considerable amount
of cancellation, in addition to being small in mag-
nitude. The contributions from the quadrup1. e
excitations are small from the results of Kelly"
since the disconnected terms have been factored
out and included in the energy denominator.

Kelly" has shown in his calculations for Be that
the three-body terms are small corrections to the
total correlation energy. For this reason, it was
sufficient to calculate the three-body corrections
once.

It was found to be convenient to lump the small
corrections which were only iterated once, such
as the three-body, single, triple, and quadruple
contributions to C'~s(L}, by the sum NP~8(L),

NP'„', (I) = „„qgC'„'&w&lv) oLL&. + 2 k"~(L)&dL}lvlf'h&. +C'68(L&&dolvl«&. ~

des S,d

+ Q c;(0"slHil 0'.&+ 2 c~.&e~'slff, l @~"&+ Q c'"p". &e~'slHil 0".~ (31)

where the energy denominator is given by Kelly's" prescription when the virtual states are in the con-
tinuum.

The contribution of the set of coefficients [NP'~~(L)] to the pair-correlation energy of Be is -0.00029
a.u. for the 1s-1s pair and -0.00052 a.u. for the 2s-2s pair, which is in good agreement with the results
of Bunge' and Kelly. " Since these corrections are small, they were iterated only once.

The "exact" pair SC coefficients are given by

C'„', (L}=(aL, L~v
~ op&./d, +~P'„', (I)+L,'„', (L)+ & (L)DI.'„', (L), (32)
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where

L'~q ( l, ) =,~ q
— dk (c ~ ( l, ) [(k&, l, ( u [ oa, l,.), + (kp, l, (u.

( pa, l, )„]+ c"~ ( l, )[(k. n, I,. ( v( lib, l, )„

2'
+ (kP, l, ~v~ Pb, l, ),]}+ — dk, dk, c'i'2(l, )(k, k„ l, [v~ab, l, ),

and where

2

DL 8 (l, ) =,~ dk„dk, c x 2(l&)(k, k, , l, ~utab, I,), ,
n8 f~f lr ~ a8

(24)

where A(l, ) is a parameter between zero and one,
which is chosen to accelerate convergence in the
iterative cycling of Eg. (32). X(l, ) is brought up

slowly from zero to unity as the iteration number
increases. The methods of analytic continuation
and invariant imbedding are discussed by I aas-
onen' and by Ortega and Hheinboldt. "

The coefficients (L"8(I,)] are the contributions
from the l-constant particle-particle and hole-
particle EPV interactions, and the coefficients
ILDL' 8 ( l, ) ) are the contributions from the l -chang-
ing particle-particle interactions. The set of SC
coefficients converged rapidly in the iterative
scheme except for that of the Be 2s-2s pair. Be-
cause the l-changing corrections are large in the
Be 2s-2s pair, it was required to introduce the
acceleration parameter ~ and iterate longer.

Bunge' used the first three partial waves to
obtain his set of virtual orbitals, and used the
Slater-type s, p, d orbitals to finally generate
his set of natural orbitals. A comparison of the
results obtained by Bunge using natural orbitals
and by this work are presented in Table I.

Table II presents the results of the Be calcula-
tions using the approximate SC scheme. In this
calculation, the total correlation energy of Be
(using an S, I', D basis) is -0.09092 a.u. with

respect to Clementi's" HHF wave function,
&„»(&e)= -14.573020 a.u. The total energy of
Be using the spd basis as determined by this cal-
culation is -14.66394 a.u.

Byron and Joachain" have estimated the con-
tributions to the pair-correlation energies of Be
for the partial waves l» 3. Their pair-correlation
energies are accurate to second order in per-
turbation. (See Table III.)

Byron and Joachain" obtained their second-order
pair energies without considering the shifted ener-
gy denominators. Kelly" has shown that the use
of shifted energy denominators affects the second-
order pair energies. Further, the inclusion of
the EPV hole-particle and l-constant particle-
particle interactions tends to lower the pair en-
ergies, whereas the l-changing particle-particle
interactions have a pronounced effect on increas-
ing the Be 2s-2s pair energies, but are only of
minor importance with the Be 1s-1s and 1s-2s
pair -correlation energies.

It is observed that the S and P waves account
for most of the 1s-1s pair-correlation energy.
However, only the I' waves are significant in the
considerations of the Be 2s-2s pair energy. The
D-wave contributions may be considered to be the
first term in the asymptotic expansion of the re-
maining / partial waves, and one may speculate
on the behavior of the remaining partial-wave
correlation energies. It is noticed that the sec-
ond-order D-wave pair energy for the 1s-1s cor-
relation is approximately the same as the so-
called exact terms of Kelly and of this work. But
the so-called D-wave contribution to the 2s-2s
pair energy is roughly one-third that of the sec-
ond-order result.

Bunge4 used the results of Ahlrichs and Kutzel-
nigg'4 to estimate the f and g-orbital c—ontribu-
tions to the 2s-2s pair energy; the sum of these
energies is -0.0040 a.u. This result is likely
to be too high since the L-changing diagrams have
not been accounted for. It is assumed that the
1s-1s and 1s-2s asymptotic /-pair energies are
essentially correct, and that -0.0018 a.u. is a
reasonable estimate for the remaining l-corre-

TABLE I. spd limits of the pair-correlation energies
of Be.

TABLE II. Pair-correlation energies of Be (SC for-
malism of this work}.

&~ (1s-ls) E~ {2s-2s) E~ {1s-2s) Total 8 wave I' wave Tota, l

Bunge -0.041 21 -0.045 10 -0.005 24 -0.091 55

This wo» -0.040 72 -0.044 60 -0.005 1 -0.090 92

'Reference 4.

1s-1s
28-2s
1s-2s

-0.013 11 -0.023 65
-0.002 40 -0.040 97
-0.000 9 -0.003 9

-0.003 96 -0.040 72
-0.001 21 -0.044 6
-0.000 3 -0.005 1
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1s-1s
2s-2s
1s-2s (triplet3
ls-28 (singlet3

-0.001 78
-0;002 20
-0.000 006
-0.000 034

lation energy of the is-1s pair. However, a con-
servative estimate of the Be 2s-2s pair energy
for /~ 3 would be -0.0008 a.u. Table IV lists the
sum of the spd-limit pair-correlation energies
and the estimated corrections to the remaining
partial waves.

V. CONCLUSIONS

The algorithm presented in this paper was based
on the assumption that the reference wave func-
tion is a symmetry-adapted closed-shell Hartree-
Fock wave function and that the Hartree-Fock
potential V" was used to generate the spectrum of
virtual states. Kelly"'" has shown that the V" '
potential is more physically realistic and that the
LCPT expansion will converge much more quickly
with virtual states calculated from this potential.
Silverstone and Yin26 and Huzinaga and Arnau"
have discussed the arbitrariness of the virtual
states in Hartree-Pock theory. There is a great
deal of arbitrariness in the choice of these orbitals
with the restriction that they be orthogonal to the
ground-state orbitals and to themselves. It ap-
pears that the optimal choice of these orbitals
has not been settled.

A point of concern is the slow convergence of
the l expansion of the Be 2s-2s pair-correlation
energies. Although the s, p, and d virtual orbitals
do account for most of the Be 2s-2s pair-correla-
tion energy, the asymptotic l series is quite im-
portant. The remaining correlation energy is
most likely a poor estimate of the higher /-value
corrections and the effect of the l-changing dia-
grams upon these corrections, rather than a poor
estimate of the nonpair SC terms to the pair cor-

TABLE III. Second-order pair correlations of Be for
l ~ 3, taken from Byron and Joachain. (The estimated Ec
from Tables II and III is -0.09442 a.u. , vrhich is an
overestimate. 3

E&(mg, ng, l 3

TABLE IV. Comparison of the numerical Be corre-
lation energy.

Author (Ref.)

Kel. ly (13)
Byron and

Joachain (23)
Bunge (4)
Nesbet (10)
Sims and

Hagstrom (5)

This work'
Reference (253

E~ (1s, 1s) E~ (2s, 2s) Eg (1s, 2s) Ec

-0.042 12 -0.044 88 -0.0050 -0.092 0

-0.042 47 -0.044 82 -0.005 24 -0.092 5
-0.042 61 -0.045 50 -0.005 30 -0.093 4
-0.04183 -0.04183 -0.00586 —0.09205

-0.093 52

-0.042 52 -0.045 40 -0.005 20 -0.093 12
-0.094 4

relation energy. Perhaps the method of Sims
and Hagstrom, ' which directly used the x~ term,
should be incorporated in further LCPT and SC
calculations to speed up the slow convergence of
the partial-wave correlation energies.

The amount of cancellation exhibited in the con-
struction of' the nonpair SC terms would depend
upon the physics of the many-body system. It
would be advisable to study this on a larger atom
such as Ne. (See Fig. 5 and Fig. 6 for examples
of singly and triply excited diagrams. ) It was
pointed out by Kelly" that although the three-body
diagrams are small in Be, they become increas-
ingly more important in larger atoms. Micha"
also reached the same conclusion as Kelly in his
study of Ne. Since the single- and triple-excita-
tion terms contribute to the self-energy correc-
tions of the hole and particle states, it would be
safe to assume that for atomic Hartree-Fock
closed-shell wave functions, such corrections
mould most likely be small corrections.

Bethe and Salpeter" pointed out that the accuracy

i
Q

i

Q

The results include estimates of the calculated &d and

l ~ 3 correlation effects.

FIG. 5. Taro diagrams which illustrate the "self-en-
ergy" corrections to a particle line.

FIG. 6. Single-excitation SC diagram which is approxi-
mated by four Feynman diagrams of second-order per-
turbation theory.
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of the relativistic energy corrections obtained from
a nonrelativistic wave function depends strongly
on the amount of correlation included. This mould

suggest that the relativistic corrections should be
calculated using correlated wave functions, thereby
yielding better estimates of the correlation ener-
gy.
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