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Series perturbations in atomic spectra: Superposition-

of-configurations calculations on Al I and Al II

A. %. Weiss
Institute for Basic Standards, National Bureau of Standards, H'ashington, D. C. 20234
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Configuration-interaction calculations, using only Hartree-Fock discrete-state configura-
tions, are reported for the two perturbed series, 3snf F of Alii and 3s nd D of Ali. While
good results are obtained for term values and oscillator st;rengths in Alii, this is not the
case for Al i, where the calculations predict the 3s3P perturber to be expelled into the
continuum. To study this case more closely, superposition of configurations (SOC) calcu-
lations, which include all correlation effects, were carried out on the five lowest D states
of Al t. These results indicate that the perturber actually remains in the discrete spectrum,
but loses 'ts identity and is smeared out over the entire series. New Rydberg orbitals are
extracted from the SOC wave functions which are quite different from the Hartree-Fock but

very similar to those of the Coulomb approximation. Various truncations of the SOC func-
tions are also analyzed and the implications for the correlation problem discussed.

I. INTRODUCTION

Ever since the early pioneering work of Shen-
stone and Russell, ' the phenomenon of series per-
turbations has been a well-recognized feature in
the landscape of atomic spectroscopy. ' The per-
turbations here, of course, refer to the irregu-
larities produced in a Rydberg series by configura-
tion interaction with a foreign configuration. The
effect of this configuration interaction in term
splittings and quantum defects is usually suffi-
ciently striking to permit a reasonably unambiguous
assignment of the perturber, although the wave
functions in the vicinity of the perturber may be
strongly mixed. This, however, is only the case
if the matrix elements coupling the perturbing
configuration to the series die out fairly rapidly
along the series away from the perturber.

If, however, the perturber is strongly coupled
to all the series members, it has a far-reaching
and much more global effect on the entire spec-
trum, which can be quite different. "One such
example of a strong perturbation occurs in Al I,
where the 3s'nd'D series is perturbed by the 'D
term of 3s3p', and a detailed calculation and analy-
sis of the lower members of this series will be
the main topic of this paper. This particular
series perturbation has occasioned considerable
comment in the literature, which has been directed
at identifying the 3s3p' term. ' ' As we will see,
this question has no answer, or at least has been
incorrectly phrased, since it turns out that the
3s3p' term is smeared out over the entire discrete
part of the series. Such a "loss of identity" is not
really unknown to spectroscopists, ' although here
it may be spread over a larger number of terms

than is usually the case.
In Sec. II, by way of introduction, we describe

some model calculations, including only the dis-
crete-state configuration interaction, on the per-
turbed 'I' series of Al 0 and the 'D series of Al I.
To avoid confusion, these calculations will be
referred to as configuration interaction (CI), or
series perturbation, calculations as distinct from
the subsequent, and more accurate variational
calculations which will be called superposition
of configurations (SOC).' The basis configurations
for these CI calculations represent realistic, in-
dependent-particle model, approximations to the
discrete spectral terms.

Section IG contains a description of the varia-
tional SOC calculations on the lowest five 'D terms
of Al I. While each of these calculations takes a
Hartree-Foek function as the initial approxima-
tion, all the other correlation configurations are
obtained purely variationally. The aim in such
8OC calculations is to include all the important
correlation effects, to a reasonable degree of
accuracy. Of course, the correlation configura-
tions need not, and usually do not, bear much
resemblance to "spectroscopic" configurations.
In both Secs. II and III, f values are calculated
as well as wave functions and energies. In Sec.
IV, we attempt a detailed analysis of the SOC wave
functions of Al I. The idea here is to extract
from the wave functions as much information as
possible with regard to the nature of the Rydberg
states as well as the important correlation effects.
Since the present calculations should be equivalent
to those of a moderately extensive multiconfigura-
tion self-consistent-field (MCSCF) approximation,
these SOC functions will also be analyzed with an
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eye to suggesting what might be a sufficiently
flexible trial function for the MCSCF procedure.

II. CONFIGURATION INTERACTION CALCULATIONS

FOR Ala AND Alt

20—

a,E(cm-') o

Alit 3s3d D —3snf F

XPE RIMENTAL
PLITTINGS

These configuration-interaction calculations on
the perturbed 'I' series of Al H have been reported
briefly elsewhere, ' and they mill here be described
in somewhat more detail. Expansion method Har-
tree-Pock functions, using Slater-type basis orbi-
tals (STD's}, were computed for the 3sn f 'Il terms
for n =4-8 and for the 3p3d'I' perturber. '0 Since
both energies and matrix elements for this part of
the series were mell described by a n ' a,nd n '~'
behavior, respectively, these quantities mere
extrapolated for the higher terms through 13f. It
mas also assumed that the off-diagonal energy
matrix elements coupling the series members to
each other mere identically zero, "which should
be a reasonable assumption for a nonpenetrating
Rydberg series and which mas borne out by direct
calculation for the lomer members.

The results of the calculation are summarized
in Fig. 1, which shows both the theoretical un-
perturbed and perturbed energies relative to the
(Hartree-Fock} ionization limit, as well as the
oscillator strengths for the series of transitions
originating in 3s3d 'D; no configuration interaction
being allowed for in this state. The experimental
splittings of the 4 components of the 'I terms are
also shown at the top of the figure to illustrate
how clearly the perturber is identified by the spec-
troscopic data. The CI mave functions are given
in Table I. They show strong mixing of the wave
functions in the vicinity of the perturber with
relatively pure states for the rest of the series.
There is approximately 30@ of 3p3d mixed in with
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FIG. 1. Term values and oscillator strengths for the
perturbed 3E series in Al n, computed in both the HF
and configuration-interaction approximation. f values
are for transitions originating in the 3s3d3D state.

the 6f and If levels, with the perturber itself
actually being about 30'rg each of 6f, 7f, and
3P3d. The most obvious feature of the CI calcula-
tion is probably the asymmetric redistribution
of oscillator strength in the vicinity of the per-
turber, which is reminiscent of the asymmetric
autoionization line shapes discussed extensively
by Fano and Cooper. " Since the interaction of a
series perturber with a series is not essentially

The series-perturbation wave functions and oscillator strengths for the 3E series
of Air&. f values are given for transitions originating in 3s3d~D, and energies (in a. u. ) are
given relative to the ionization limit.

Config.

3s4f
5f
6f
3P 3d
3s7f
8f
9f
10f

-E~k
aEexpt

0.1255
0.0803
0.0557
0.0516
0.0407
0.0313
0.0247
0.0200

0.781
0.190
0.083
0.349
0.056
0.039
0.029
0.021

0.982
-0.039

0.020
-0.185
-0.013

0.010
-0.008

0.006

0 ~ 637
0.1281
0.1296

6.097
0.944

-0.085
0.298
0.044

-0.030
0.022

-0.017

0.037
0.0835
0.0839

-0.103
0.251
0,806

-0.489
-0.156

0.087
-0.059

0.045

0.046
0.0606
0.0607

0.099
-0.175

0.547
0.567
0.537

-0.183
0.109

-0 ~ 077

0.251
0.0476
0.0490

-0.063
0.096

-0.178
-0.405

0.807
0.338

-0.137
0.086

0.242
0.0377
0.0391

0.039
-0.055

0.085
0.276

—0.159
0.904
0.240

-0.106

0.166
0.0298
0.0307

aSee C. E. Moore, Atomic Energy Levels, Natl. Bur. Std. Cire. No. 467 (U.S. GPO, Wash-
ington, D. C. , 1949), Vol. 1.



1526 A. W. WE ISS

different from that of an autoionizing state em-
bedded in a continuum, this is not particularly
surprising. Asymmetric distributions of oscil-
lator strength which cut across the continuum and
discrete spectrum have also been observed ex-
perimentally. "

The f values and lifetimes for this series are
given in Table IE. In order to calculate lifetimes,
of course, it is necessary to include all possible
branchings, and we have here included the 4'D
and 5 'D as being the probably most important
branches for the upper-series members. While
the theoretical lifetimes for 4f and 7f may not
be quite as good as desired, there is generally
good agreement between the calculations and
recent measurements. " The over-all asymmetric
pattern of the f values is also reproduced in the
march of the lifetimes.

It should be recalled that this is a model calcula-
tion, using only the Hartree-Fock for the lower
'D states and including only the discrete series
interaction for the 'F states, and the results ap-
pear to indicate that such a model is fairly realis-
tic. That it should be so might be expected a pri-
ori in this case since the system consists of non-
penetrating triplets which ought to have a very
small correlation correction aside from the series
perturbation. Furthermore, this is an example of
a "weak" series perturbation, in the sense that the
dominant effect is confined to the Rydberg states
in the immediate neighborhood of the perturber. '

An example of a strongly perturbed series is
shown in Fig. 2 which summarizes the results of
exactly the same kind of calculations for the
3s'nd'D series of Al I. Here, the perturber is
the 'D term of 3s3P' which, in the Hartree-Fock
approximation, lies between 5d and 6d. The con-
figuration interaction with only the discrete series

members is here strong enough to expel the per-
turber into the continuum with the resulting re-
distribution of oscillator strength as shown. The
perturber composition of the predicted autoion-
izing state is about 50/q. While the f-value pattern
is qualitatively correct, the actual numerical
values are seriously in error. The numerical
results are given in Sec. III in the context of com-
parisons with more accurate calculations.

There are several reasons to believe that, in
this case, the model calculation is seriously de-
ficient. In the first place, since the perturber
interacts strongly with the discrete series, it
should also do so with the continuum, i.e. , in
terms of spectroscopically realistic orbitals,
inclusion of continuum functions appears to be
called for. Alternatively, and equivalently, from
a correlation standpoint one should correct the
Hartree-Fock with a set of correlation orbitals
which span both the single-particle continuum basis
as well as the discrete. Secondly, there are ob-
viously important correlation terms which are
missing, such as (3p''S)3d. Since the d functions
are Rydberg orbitals, fairly well removed from
the 3s' core, one should expect much the same
kind of correlation effects as in the ground state
of A1. 0, where there is a strong configuration
mixing of the type

3s +3p

In order to investigate these various effects,
moderately large scale variational calculations
were done for the five lowest 'D states, and they
will be described next. The idea here is to obtain
a set of reasonably accurate approximations to the
wave functions, which can then be analyzed in
order to learn something of the structure of these
strongly perturbed Rydberg states.

TABLE II. f values and lifetimes for ~D-~Ftransitions in Al g.

Transition

3d'D-4f 'F

3d D-5f ~F

4d-

3d ~D-Gf 3F

4d-
5d-

3d 3D-3P 3d 3F

3d3D-7f F

5d-

3588

2638
8360

2326
5862

17480

2095
4589
9569

HF

0.815

0.197
0.579

0.085
0.157
0.900

0.370

0.059
0.092
0.239

CI

0.678

0.038
0.762

0.048
0.086
0.585

0.267

0.273
0.047
0.156

HF

3 ~ 32

5.71

9.01

2 72b

10.3

7 (nsec)
CI

3.98

12.8

15.7

3.79b

3.16

14.0

15.0

5.0

See Andersen et al. (Ref. 14); experimental uncertainties are quoted as being approxi-
mately 10%.

Due to a mistake in converting from f to A these numbers are erroneously quoted in Ref. 9.
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FIG. 2. Term values and oscillator strengths for the
perturbed D series in Al r, computed in both the HF
and configuration-interaction approximations. f values
are for transitions originating in the 3s 3p P ground
state.

III. SOC CALCULATIONS OF THE 2D STATES

The method used for correlating the wave func-
tions for these states is the same as has already
been used extensively for other atomic excited
states. " Superposition-of-configuration (SOC)
functions were calculated which included all single-
and double-excitation configurations (plus a few
triples) found to be of any importance for minimiz-
ing the energy. Each state is treated completely
independently of the others, with the sole criterion
for choosing configurations and parameters being
to minimize the energy of the appropriate root of

the secular equation. Thus, for example, for the
Ss'5d state the wave function was designed to
minimize the 3rd root of the matrix eigenvalue
problem with no reference to any of the other
states.

The main problem which arises in such a cal-
culation concerns the determination of a suitable
set of virtual orbitals for the SOC expansion, and the
procedure used here was the usual pseudonatural-
orbital (PSNO) technique. "Starting with a conven-
tional expansion method Hartree-Fock function,
based on Slater-type functions, one augments the
basis and does a SOC calculation on just one pair
in the Hartree-Fock field of the remainder of the
atom. The full augmented basis, sequentially
orthonormalized, is used in this initial calculation.
This is followed by a two-particle natural orbital
transformation to generate the PSNO's which form
an optimally ordered set of correlation orbitals
for the three-electron correlation problem —core
correlation effects being neglected. Since each
state is treated independently, these sets of virtual
orbitals are, in principle, different from state to
state.

For the lowest 'D state, 3s'3d, the Hartree-Fock
basis set consisted of V-s, S-P, and 3-d Slater-
type functions. This was augmented to (8s,6P,4d, lf},
the added functions were varied to minimize the
SOC energy of the 33d'D pair, and the PSNO's
were generated by the natural orbital transforma-
tion on this pair. The Ssnd 'D pair was, in fact,
used for the PSNO's of all the D states, for the
obvious reason that it includes the important
SsSp' perturber. Actually the choice of this pair
may not be crucial since one uses the full aug-
mented basis, and the PSNO's from another pair
would simply have the effect of spreading the
Ss3p' perturbation over a number of configuratinns
of the type Supp'.

The end result of this process was a set of SOC
wave functions ranging in length from 46 to 50 con-
figurations for the five lowest states. The com-
puted total energies are shown in Table III, which

TABLE III. SOC calculated energies for the ground ( P} and the lowest five D states of Al r. The numbers in paren-
thesis represent the total number of configurations in the wave functions.

Function Function Function

3$ 3P
3s~3P -" 3P' (2)
SOC (35}

3s 24d

3s nd ~3s3p (5)
{3s~+pp '} 'Snd+ 3s3p2(14)

SOC (48)

241.8766
241.8934
241.9311

241.7067
241.7009
241.7330
241.7402

3s23d
3s nd 3s3p ~ {4)
(3s'-, pp ') 'Snd; 3s3p2{14}
SOC(50)

3s ~5d
3stnd ~ 3s3p2(7)
{3s2-pp '

) 'Snd+3s3p~{19)
SOC(48)

241.7321
241.7476
241.7648
241.7847

241.6948
241.6920
241.7265
241.7313

3s24d
3s~n d + 3s 3P 2 (6}
(3s2+pp ') ~Snd + 3s3p ~(17}
SOC (46)

3s26d
3s nd+ 3s3p2(8)
(3s'+pp '} 'Snd+ 3s3p'(22)
SOC {46)

241.7067
241.7172
241.7484
241.7554

241.6884
241.6864
241.7226
241.7258
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TABLE IV. Theoretical and observed term energies (in a.u. ) for the 2D terms of Al r. The
column labeled SOC refers to the 4th function of Table III. For the first two columns term
values are computed relative to the Hartree-Fock 3S2 ~S limit of A1 g (-241.6741) and for the
last two they are relative to the correlated 3S2 limit (-241.7143) of Ref. 17.

HF 3s nd+3s3p
(3s2 +pp'} Snd

+3s3p SOC Expt,

3$ 7d
6d
5d
4d
3d

3s 3p

-0.0104
-0.0143
-0.0207
-0.0326
-0.0580

-0.2025

-0.0123
-0.0179
-0.0268
-0.0431
-0.0735

-0.0083
-0.0122
-0.0187
-0.0341
-0.0505

-0.0115
-0.0170
-0.0259
-0.0411
-0.0704

-0.2168

-0.0134
-0.0187
-0.0275
-0.0426
-0.0722

-0.2196

'See Eriksson and Isberg (Ref. 5).

also includes the results of a comparable calcula-
tion on the ground state, 3s'3p. The ground state
was also calculated here since we are interested
in f values as well as the energies and wave func-
tions, and in this case the 3s3p 'P pair was used
as the generator of the PSNQ's.

In addition to these variational wave functions,
several sets of smaller SQC functions were also
computed which incorporate only certain specific
effects. The second functions in Table III include
only the 3s3p' perturber and the Rydberg-like
terms, namely the Hartree-Fock 3s'nd and the
variational terms of the same form. This is thus
a kind of "exact,"or complete, series perturba-
tion, since the effect on each state of the remainder
of the Rydberg terms, both discrete and continu-
um, are included in the 3s'nd correlation terms.
The third function, in addition to the series and
the perturber, includes the most important single
correlation correction, namely the 3p' correlation
of the 3s' electrons. Actually, this function in-
cludes a number of configurations of the form
(npnp 'S)nd, the higher np terms and cross terms
being necessary to make up for the fact that the
p-type PSNO's were generated from the sd'D pair
rather than from 3s''S.

It should be noted that both the 2nd and 3rd D
states start with the Hartree-Fock 3s'4d as the
initial approximation. A SOC function was also
computed for the 3rd state starting with the HF
3s'5d, and it ended up as essentially the same
SOC wave function. However, it was found that
the largest HF component for this state was the
4d, as it was also for the 2nd. This indicates
the first novel result of this study, namely that,
in terms of the Hartree-Fock composition, the
D series should be designated 3d, 4d, 4d, 5d, 6d,
etc. , although for the lower states the HF com-
ponent is not particularly large.

The term values predicted by these various
approximations are shown in Table IV and com-

TABLE V. Most important configurations in the 50-
term wave function for the lowest 2D state.

Configurations Coeff.

3s 3d

3s3p

3s d

(3p"S)3d

(3p4p S)3d

3s(3p4f 3D)

(3p2 iS)di

3s d

(3p P) dg

(3p2 ~P)d2

(3p23P)3d

(4p 8)3d

(3p4p 'S)d,

0.7985

0.4605

-0.3022

-0.1602

-0.0893

-0.0650

0.0582

-0.0577

-0 ~ 0567

-0.0535

0.0333

-0.0300

0.0269

pared with the spectroscopic ones. For the Har-
tree-Fock and complete series perturbation, the
energies are computed relative to the HF limit,
i.e., the 3s"S state of Al II. For the third and
fourth functions, the term values are computed
relative to the correlated 3s 'S limit. " The term
values for the final SGC wave functions are ac-
curate to within 300-400 cm ', which appears to
be the range of accuracy generally attainable by
such calculations. ""It is interesting, and per-
haps significant, that the much simpler complete
series perturbation calculation gives term values,
relative to the HF limit, which are equally as
accurate, and sometimes better. The complete



SERIES PERTURBATIONS IN ATOMIC SPECTRA:. . .

series perturbation with the single important
pp' 'S correlation, however, predicts the term
scheme very poorly, somewhat worse in fact than
the Hartree-Fock. Moreover, this is not simply
a matter of shifting the limit, since the shift re-
quired to get the lowest state right would grossly
distort the upper ones, and vice versa.

While there seems to be little point to publishing
the full wave functions for all these states, it is
instructive to display the most important terms
for one state just to get an idea of what kind of
configurations are significant. This is done in
Table V, which gives, for the lowest 'D state, the
configurations with coefficients greater in magni-
tude than 0.025. To avoid confusion with the
Rydberg orbitals the PSNO-correlation d orbitals
are labeled d„d„etc. The 3s3p' perturber is
mixed strongly into the wave function as is the
remainder of the Rydberg series, as exemplified
by the 3s'd type of terms. Also, the pp''S corre-
lation of 3s' is an important part of the wave func-
tion. However, there are additionally significant
contributions from configurations which should
probably be interpreted as correlating the 3s3p'
perturber. The configuration 3s(3p4f 'D), when
referred to 3s'3d, represents a valence-Rydberg
triplet correlation effect which should be very
small. Indeed, when the 3s3P' perturber is omitted
from the wave function, the contribution of this
term diminishes considerably, and terms like
(3P' 'P)d drop out altogether, even though they
may belong to the same complex. "

In addition to the term values, the j' values
provide another check on the accuracy of the wave

functions, and these results are shown in Table VI.
Fortunately, there are reliable experimental
data for the entire series —a lifetime measurement
on the lowest state" and relative values for the
series members. " Table VI also includes, under
the column headed " Series perturbation, " the

f values computed with the wave function discussed
in Sec. II, and which includes only the discrete
series members. Thus, the only difference be-
tween the second and third set of f values is
effectively the addition of 3s'kd continuum func-
tions. It should be noted also that the approxima-
tion to the ground state changes across Table VI,
in order to remain roughly consistent with the
level of approximation of the series-state calcula-
tions. The Hartree-Fock 3s'3p was used for the
first set of f values (HF), the two-configuration
function, 3s'3P+3P', was used for the next three,
and the full 35-configuration ground state was
used with the final SOC 'D functions.

The accuracy of the SOC functions reported
here appears to be satisfactory for calculating
oscillator strengths. Indeed, the level of agree-
ment, judged by past calculations, may well be
fortuitous, particularly for the 3p-4d transition
which appears to involve considerable cancella-
tion. The discrete series perturbation calcula-
tions, except for the lowest state, give poor re-
sults, although the qualitative behavior of the
f values is predicted correctly. The complete
series perturbation calculations also give the
correct qualitative behavior and even approach
quantitative accuracy for the series as a whole.
Adding to the latter wave functions just the domi-

TABLE VI. Oscillator strengths for the transitions 3s23p P-3s nd D of All. In the first
column off values, the ground state is approximated by the Hartree-rock, in the next three
columns by the 2-term function in Table III, and the final calculated values use the full 35-
term approximation. The rows labeled l. and u. refer to the length and velocity forms,
respectively.

Transition
Series

HF perturbation' 3s nd +3s3p
(3s~ +pp') ~Snd

+ 3s3p2 SOC Expt. "

3s'3P'P -3s'3d'D l. 3086
$1 0.346

0.171 0.149
0.052

0.296
0.186

0.179 0.175
0.161

-3s24d

-3s25d

l . 2572 0.139
V. 0.105

l . 2370 0.076
U. 0.048

2266 0 043
U. 0.028

0.008

0 ~ 033

0.029

0.053
0.051

0,084
0,063

0.060
0.042

0.016
0.007

0.000
0.002

0.007
0.007

0,045 0.044
0.042

0.121 0.120
0.111

0.102 0.098
0.092

-3s Vd l . 2208 0.029 0.018 0.040
0.028

0.004
Q. 004

0.073 0.066
0.068

Discrete states only.
See Budick (Ref. 19) and Penkin and Shabanova (Ref. 20).



A. W. WEISS

Cgf

CO

+

O
I

00

CO

CO

I

CD

44

CO

+

+

Cg

Cg

I

CO

+

C0
+

aO
CO

C3

I

CC

nant 3s' correlations, however, proves to be
somewhat disastrous. Except for the lowest-state
transition, which is not too bad, the series is
entirely wrong. This calculation should be quite
similar to a multiconfiguration self-consistent-
field (MCSCF) approximation such as used by
Froese-Fischer in a study of the lowest 'D states
of the Al isoelectronic sequence, ' and the j' value
reported here for that state is actually quite close
to hers. While the approximation appears to be
adequate for the isoelectronic ions, for the neutral
atom it does not properly represent the over-all
effect of the important series interactions.
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IV. ANALYSIS OF THE SOC CALCULATIONS

It is of some interest next to see what other
information about this strongly perturbed series
may be contained in these calculations. While a
variety of things may be done here, the first and
most obvious is simply to examine the composi-
tion of the wave functions for different levels of
approximation. This is done in Table VII, which
shows the dominant configurations for the various
approximations described in Sec. III.

%'e consider first the distribution of the per-
turber components along the series. The final
SOC wave functions, shown in the last column,
indicate that the perturber has actually been
smeared out over the entire series. %'ith no more
than 2I jo of the perturber in any state, but with
the total composition for only the lowest five
adding up to 6V%, it seems clear that no one state
can be singled out as 3s3P'. In other words, the
strong series interaction has essentially wiped
out the 3s3p' perturber, while distributing its
pieces throughout the series.

The model series perturbation calculation
(discrete states only), however, seriously under-
estimates the perturber composition, particularly
for the higher series members. The total for the
five lowest states is 47/g, a figure which is not
changed much by including the higher ones. This
leaves approximately 50~$ of 3s3p' for an autoion-
izing state, and which appears to be an incorrect
prediction.

The relatively simple complete series perturba-
tion functions are essentially in agreement with
the large SOC calculations, spreading about 65~/~

of the perturber over these lowest Rydberg states,
although the distribution seems to be skewed
somewhat towards the lower part of the spectrum.
Adding to this function only the important 3s' cor-
relation terms, as shown in the third column, then
grossly distorts the wave-function composition,
which is also reflected in the term values and
oscillator strengths discussed earlier. The total
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4' =ao3s'3d+a, 3s'd, +a,3s'd, +b, 3s3P'+ ~ ~ ~, (1)

which can be rewritten

4' = b,Ss'd +5,3sSp'+ ~ ~ ~,

with

d, „=(a'+a', +a', ) '~'Ia 3d+a, d, +a,d ]

and

b, = (a'+a'+a')-il2 (3)

This defines in a natural way a new Sd orbital
which represents the Rydberg part of the SOC
function. It should, moreover, be essentially
the same as that calculated from an MCSCF cal-
culation with a trial function of the form Eq. (1'),
including, of course, all the other important
correlation terms in Table V. That is„ it should
be equivalent to a d orbital calculated self-con-
sistently in the field, not only of the 3s' core,
but also in the virtual field of the Ss3p' perturber
and other correlating configurations. For the
case of strong couplings, such as we have here,
it is not surprising that such Rydberg orbitals
be quite different from the Hartree-Fock.

The form of the SOC functions, in, terms of the
SOC orbitals, is shown in Table VIII. Now ea.ch
of the wave functions is predominantly one Ryd-

amount of the perturber is diminished and shifted
higher up in the series. It is as though the strong
Ss' correlation term had pushed the series mem-
bers down away from the SsSp' with a resultant
weakening of the series couplings.

All of these wave functions also show a large
admixture of Rydberg-like correlation terms,
i.e., the 3s'd, terms, accompanied by a significant
dilution of the relevant Hartree-Fock component.
This is brought about primarily, of course, through
the strong coupling with the SsSP~ perturber. Here
too the complete series perturbation calculation
agrees with the full SOC while the other two do

not. The previous comment, that the series states
should be labeled Sd, 4d, 4d, 5d, etc. , according
to the largest HF component, should therefore
not be taken too seriously, although it does reflect
a large change in the Rydberg part of the wave
function.

The fact that there is a strong admixture of
terms such as Ss'd means that one may extract
a kind of natural Rydberg orbital from the SQC
wave function. All such Rydberg-like configura-
tions can be combined into one term simply by
defining a new d orbital as a linear combination
of the old ones, with the same relative weights
as the individual configurations. Thus, for exam-
ple, the lowest state has the structure,

TABLE VGI. Dominant composition of the D wave
functions of Al& in terms of the transformed SOC d
orbitals.

Configurations

Term 3s nd 3spp2 I'3p S)nd {3p4p S)nd

3s 3d
3s 4d
3s~5d
3s 6d

0.8561
0.8543
0.8982
0.9329

0.4605
-0.4609

0.3647
-0.2656

-0.1708
-0.1787
-0.1896
-0.1959

-0.092 9
-0.0947
-0.1028
-0.1071

berg-like configuration, the greatest dilution
being 73@ for 3s'4d. The perturber composition,
of course, remains unchanged. The SOC orbitals
themselves are plotted in Fig. 3 along with the
corresponding Hartree-Fock functions, for com-
parison. The large phase shift is, of course, due
to the ubiquitous SsSp' perturber. Its effect is to
shift the Rydberg orbitals further in towards the
origin as one goes up the series, gradually squeez-
ing the inner loop to almost nothing for the higher
terms. In fact, the SOC ed already resembles
much more closely the Hartree-Fock 5d than 6d.
This is also reflected in the experimental quantum
defects' which approsch 1.0 for the higher mem-
bers.

Another, and very interesting comparison, can
be made with the wave functions of the famous
Coulomb approximation, " This semiempirical
approximation has been widely used, and has
proven eminently successful, as a method for
computing j' values. In brief, the Coulomb ap-
proximation assumes that the electron moves in
the purely Coulombic field of the atom core, and
all departures from this field are taken into ac-
count by inserting the experimental ionization
potential in place of the hydrogenic eigenvalue in
the resulting one-electron Schrodinger equation.
This means that the hydrogenlike series expan-
sion of the orbital now involves a noninteger ef-
fective quantum number n*, and so diverges at
the origin. Some sort of cutoff is then invoked
for this region of space, which is unimportant
for an f value, and this has usually been done in
the expansion formulas of the transition integral.
The method is thus tailor made for transitions
involving Rydberg states. It should be remem-
bered, however, that the Coulomb approximation
also implies a wave function, and this aspect of
the method has been discussed by Friedrich,
Katterbach, and Trefftz. " For purposes of plot-
ting the Coulomb-approximation functions, we
have adopted their procedure, which essentially
cuts off the series expansion for the orbital at
negative powers of r.
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The Coulomb-approximation functions, obtained
in this way for this series, are shown in Fig. 4
and compared with the Rydberg orbitals derived
from these ab initio SOC calculations. Needless
to say, the agreement is quite striking; so much
so that one may be tempted to say that we have
merely found an expensive way of generating the
Coulomb approximation. Vfhile the Rydberg part
of the wave function certainly appears to be Cou-
lombic, it should be remembered that there is
also a large admixture of the 3s3p' perturber in
each state, as well as all the other lesser corre-
lation terms. Looking at this from the standpoint
of the effective potential for the Rydberg orbital,
the primary mechanism for shifting the orbitals
from Hartree-Fock to Coulomb-like is the virtual
field of the 3s3p' perturber, and it seems quite

remarkable that the net effect of the correlation
part of the potential should be so Coulombic.

This technique of extracting a Rydberg orbital
from a multiconfiguration wave function can also
be used to study the truncated SOC calculations
already discussed at some length. Figure 5 shows
such a comparison for the lowest two states, 3S'3d
and 3s'4d. The Rydberg orbitals plotted here are,
the Hartree-Fock, the SOC orbitals derived from
the fully correlated wave functions, and those
obtained from the series perturbation calculation
which also include the important 3s' correlations.
The orbitals derived from simply the complete
series perturbation calculations are very nearly
the same as the final SOC orbitals, and they are
not drawn here so as not to unduly confuse the
picture. As can be seen, the effect of including
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ALUMINUM j D RADIAL FUNCTIONS
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TABLE IX. Correlation energies for the 3s electrons in Ala 3s '$ and Al I 3s23d D. The
notation such as ss'3d means that all configurations of this general form, which were found to
be important energetically, are included. It does not necessarily refer to just one configura-
tion.

Alu

38 3d
(3s2 +ss' }3d
~ ~ ~ + {pp' } '$3d
- ~ ~ +gd'+I } $3d
~ ~ ~ +3s3p

50-term SOC

241.7321
241.7337
241.7703
241,7712
241.7755

0.0016
0,0382
0.0391
0.0434

0.0526

3$
38 +ss

~ ~ ~ +pp
~ ~ . +dd' +f

241.6741
241.6759
241.7127
241,7143

0.0018
0.0386
0.0402

~See Ref, 17.
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only the partial correlation, 3s'+ p', is to shift
the SOC Rydberg orbital back to somewhere in
between the Hartree-Fock and the "full" SOC
calculation.

Just how important the 3s' correlation terms are
is indicated by Table IX. This table compares
the various correlation energy contributions
(s', p', etc.} for the 3s' electrons in 3s'3d with
those of the ground state of Al 0 where tiie 3d
electron has been completely removed. These
correlation effects are quite large and, within
the level of accuracy of the calculations, are
essentially the same for the ion and neutral atom.
These correlation energy considerations would
also seem to imply that the 3s3p' perturber is of
relatively minor importance, which, of course„
is not true. The perturber interaction is by far
the dominant effect determining the basic structure
of the series. Similar calculations have also been
done, including a set of terms such as 3s'nd,
p'nd, pp'nd, etc. , and which give similar corre-
lation energy increments. Comparable results
have also been obtained for the next-excited 'D
state, namely 3s'4d.

It thus appears that if one wants to improve on
the simple complete series perturbation function,
it is not enough to simply add the next most im-
portant correlation effect, i.e., the correlation of
the 3+' core; it is also necessary to correlate the
3s3p' perturber as well. Some calculations have
been done on the lowest state which include these
correlations but omit terms such as (pp''S)nd,
and, not surprisingly, this also grossly distorts
the picture. The 3d orbital derived from such a
calculation is contracted even more than the full
SOC Rydberg function. The effect of the 3s' corre-
lation potential seems to be nearly completely
cancelled by the perturber correlations.
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FIG. 5. 3d- and 4d-orbitals derived from the full SOC
wave functions compared to those derived from the
truncated function of the form (3s +pp') 'Sad+ 3s3p'.

A few final comments can be made about the
3p orbitals appropriate for a multiconfiguration
representation of these Rydberg states. Figure 6
compares the 3p PSNO derived for the 3s'3d state
with the Hartree-Fock 3P of 3s3p''D and with the
optimum correlation orbital of the 3s"S ion.
Although they are computed in a completely in-
dependent manner, the Hartree-Fock 3p and the
variationally derived perturber 3p functions are
remarkably similar. Furthermore, they are both
substantially different from the correlation orbital
of the ion. This suggests that the optimum 3p
orbital for correlating the ion core of 3s'3d should
be somewhat different from that of the series per-
turber.
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-04 l

IO I2



SERIES PERTURBATIONS IN ATOMIC SPECTRA:. . .

+ (c,Sp'+c, 3p4p +c 4p')'S 3d+ ~ ~

can very nearly be rewritten

(4)

4 =a,Ss'Sd+6, 3 Ssp'+ c'(Sp')' '3 3d+, (4')

with

Sp' = (I + X')-'i'(SP + &4P).

%'hile the relative values of the coefficients c, are
not such as to make this contraction exact, they
are close enough that it makes little difference
whether ~ is chosen to fit the coefficient of 4p' or
the 3P4p cross term. The 3P' orbital obtained
from fitting the cross term is compared in Fig. 7
with the correlation 3P orbital of Al II; the two

agree quite closely, except for the very small
outer loop of the 3p', which apparently reflects
the Rydberg tail associated with this state. This
seems to imply that the trial function appropriate
for an MCSCF calculation should have the form of
Eq. (4') with a 3p and 3p' neither orthogonal nor
identical. Alternatively, if the MCSCF is for-
mulated with orthogonal orbitals, the trail func-
tion should then be of the form of (4), using a 4p

orbital with a cross-term configuration to provide
the flexibility to make up for the relaxation of the
correlation orbitals representing different types
of correlation effects. Of course, as is clear from
the preceding discussion, the trial function should
also not end with just the configurations of' Eqs.
(4) or (4'), but should also include at least the

As it happens, one can also extract from the
full SOC wave function a 3p orbital which is ap-
proximately optimal for correlating the 3s' pair.
The coefficients in the wave function of Table V are
such that the wave function, which is of the form

ao3~ 3d + bo33

dominant 3s3P' correlations, which appear to be
terms such as (3p') 'Pnd I.t also happens that
these terms too can be collected together to yield
a d' orbital, and hence a single (Sp') 'P d' configu-
ration. This orbital is quite different from the
Hydberg d functions, being contracted to the point
where its radial dependence closely resembles
that of the 3p.

V. CONCLUSIONS

While our conclusions strictly apply only to the
two Bydberg series which have been discussed,
they clearly have more general impl. ications. In
summary, then, the main points are the following.

(i) In a weakly perturbed series, the perturbing
term remains localized in the series, and a can-
figuration-interaction calculation which includes
only the discrete series members and the per-
turber is probably adequate to represent the main
features of the spectrum. This was exemplified
here by model calculations on the 3snf 'E series
of Al II. In a strongly perturbed series, this does
not appear to be the case, an example of which is
the 3s'nd series of Al I, where the embedded per-
turber is 3s3P''D. The same calculation predicts
the perturber to be expelled into the continuum,
taking along most of the oscillator strength, which
is not correct. This strong coupling case appears
to require a more careful treatment of correla-
tion.

(ii) Correlated wave functions were calculated
for the lower members of the Al I 'D series by the
SOC method. These calculations included, in-
directly, the effects of the 3s'kd continuum, as
well as other correlations. The result was that
most of the perturber was brought back down into
the discrete spectrum losing its identity and being
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smeared out over the entire series, with con-
comitant strong effects on the series as a whole.
These SOC calculations were also able to satis-
factorily reproduce both the term spacings and

f values.
(iii) It is also possible to extract from these

wave functions a Hydberg component which is quite
different from the Hartree-Fock but nearly identi-
cal to that implied by the Coulomb approximation.
The wave function can thus be separated as,

Rydberg part (Coulomb approx. )+ Perturber (HF)

+ Correlation terms.

(iv) Omitting all the correlation terms also
seems to give a reasonably good approximation,
in terms of both level spacings and f values as
well as the derived Rydberg components. Such
a complete series-perturbation approach is essen-
tially equivalent to a quantum-defect calculation,
However, adding onto such a function only the
important interaction,

38 +3p,

gives a poor approximation. The 3s' correlation
and the correlations of the 3s3p' perturber appear
to be in rather delicate balance, with their effects
very nearly cancelling.

(v) The 3P orbital which is most effective for
correlating the 3s' core is also quite different
from that of the perturber. Thus, the most ap-
propriate trial function for something like an
MCSCF approach would be of the form (4'} with
nonorthogonal orbitals, or the more elaborate
form (4} if orthogonal orbitals were used. In
addition it is essential to also include some of the
important perturber cor relations in such a calcu-
lation.

In conclusion, while the comparatively simple
"complete" series-perturbation approximation
appears to represent the main features of the
spectrum quite well, one should perhaps be a
little cautious. The 3s'-3p' interaction is present
and is strong, and its adverse effect is only can-
celled out by the addition of terms which appear
to represent correlation corrections for the per-
turbing configuration.
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