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Instabilities in continuous-wave light propagation in absorbing media

S. I.. McCall
Bel/ I aboratories, Murray Hill, Nevi Jersey 07974

(Received 27 November 1973)

The stability of a monochromatic constant-intensity laser beam propagating through a
resonant medium is considered. It is found that many absorbers should exhibit a region of
negative conductivity and, consequently, amplify perturbations. The associated gain is de-
pendent on a number of variable parameters, such as laser-beam intensity, perturbation
frequency, relaxation times, degeneracy, transverse mode, inhomogeneous broadening,
etc. Putting absorbers inside I abry-Perot interferometers allows the construction of plane-
wave devices with a bistable output.

INTRonUCTIOW

The development of the laser has stimulated the
study of nonlinear resonant light propagation in
absorbing media. In addition to the 2w hyperbolic-
secant pulse, ' periodic frequency- and amplitude-
modulated electric field pendulum-type solutions'
satisfy the idealized plane-wave undamped Bloch-
Maxwell equations.

Considered here is the stability of the steady-
state solution to the Bloch-Maxwell equations with

damping. The steady-state solution is found to be
unstable and to exhibit gain when the light intensity
is high. The unstable perturbations modulate the
amplitude, but not the frequency.

The pendulum-type solutions might be unstable
and evolve to some other solution, but the other
solution cannot be a high-intensity steady-state
solution, because it is itself unstable.

The instability of the steady-state solution im-
plies that a resonant medium with a light beam of
sufficient intensity passing through it can be used
as a light amplifier. It is mainly for this reason
that the regime and degree of instability is here
examined in some detail.

Schwartz and Tan' considered the problem of a
strong light beam and weak probe light beam pass-
ing through a resonant medium. They found that
the weak probe beam underwent reduced absorp-
tion, particularly when the difference in frequency
of the strong and weak beam was less than the in-
verse population lifetime. Mollow' pointed out
that a homogeneously broadened two-level system
in the presence of a strong light beam is unstable
2nd amplifies fluctuations. Since this work was
discovered during final manuscript preparation,
no attempt has been made to reconcile notation,
etc. , and the reader is encouraged to read his
work. Previous work is otherwise well referenced
in the paper by Bloembergen and Shen. '

The gain or instability of the steady-state solu-

tion with respect to amplitude modulations of small
frequency may be understood through general
arguments. I et a resonant medium of finite length
absorb an energy loss I from the energy of an in-
cident light beam. As the incident light intensity
is increased towards very large values, suppose
that I. approaches a given constant loss I.o. For
example, if the only loss mechanism is that of
spontaneous emission at the vacuum rate of quanta
from the partially excited atoms, then I., equals
the product of the two-level energy separation,
half the number of atoms, and the inverse spon-
taneous -emission lifetime.

The loss I. may be set equal to a product of the
light's electric field c and the total atomic current
J. It then follows that J=f.,/e in the region of
large intensity (proportionai to e'). The differen-
tial conductivity dZ/tfe is therefore negative in this
large-field region. Slow amplitude-modulating
perturbations of the electric field e are therefore
amplif ied.

A careful distinction between field and intensity
should be made. Suppose the unperturbed field is
e„and the perturbing field is 4~. According to
the previous paragraph, one may assume an ap-
paratus where b, e is amplified. The light intensity
is proportional to (e, +n, c)'. The intensity-modula-
tion part of this is 2~,h~ +a~'. lt may be that he
is amplified, but ~, is, at the same time, atten-
uated in such a way that the intensity modulation
is decreased.

In such a situation observation of the total in-
tensity with, for example, a phototube will reveal
a decrease in the intensity modulation. On the
other hand, if a frequency-sensitfve filter (e.g. ,
Fabry-Perot interferometer) is used to subtract
the field &0 from the exit beam, the intensity of the
modulating field, hc', will be observed to be in-
creased.

The absorber will be described through Bloch's
equations with relaxation times T„T„T,*, with
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T,* referring to a Gaussian spectral profile. The
comparison of observed gain with that calculated
with this or improved models may serve to provide
a means of distinguishing between various models
of the dynamics of, for example, collisional re-
laxation in gases.

The simplest case of T,*=~ (the homogeneously-
broadened-line case) is considered first. Exten-
sion is then made to the case of a mixture of homo-
geneous and inhomogeneous broadening. It is
found that the averaging effects of a transverse
mode or degeneracy typically only decrease some-
what the maximum gain or instability. Inclusion
of an absorbing medium in a Fabry-Perot struc-
ture allows the construction of plane-wave devices
that have arbitrarily large differential gain, or
have a bistable input-output relationship.

1. HOMOGENEOUSLY BROADENED LINE

In this section, the homogeneous-line case is
examined. At any point in the absorber, the plane-
wave electric field E is given by'

E(e, t) =e(z, t)e "" "+c.c.,

where z and t are space and time coordinates,
&u is a central fixed frequency, k =I)&u/c where q
is a background refractive index, c is the speed
of light in vacuum, and the electric field envelope
z is complex in the case of frequency modulation.
The letters c.c. denote the complex-conjugate
term.

Tmo-level atoms without level degeneracy inter-
act with the electric field according to the Hamil-
tonian

u, =0,

V, = T2Ke, (1 + F') ',

w, =-(1+F') ',

where

F = (T, T')' t'Ke,

(5)

(8)

( t)

(8)

is a dimensionless electric field. Introducing
a = T, /T,', where a ~-,', one may write

v = a ' t 'F (1 + F') '

Figure 1 presents vo and wo as functions of E for
various values of a. Notice that an increase in I'
causes a decrease in v, whenever I'&1. This im-
plies that low-frequency modulation of c, will
experience gain, and the steady-state solution
mill be unstable.

Specifically, let

6 =60+6',
where e, and Ae are real, and let

he =ReASe "

where, for the moment, v«Ke, T, ', T,' ', so that

slowly-varying-envelope approximation, leads to

Be q Be . 2p&EP
Bz c BI 'gc

Let Ro v o wo E0 rep rese nt the steady -state so lu-
tion with Qo 'vo w~o w~p 6'0 0. Then e, may be
chosen real, and the solutions to Bloch's equa-
tions are

3C —&6 w( Gz —~+~x y (2)
1.0

04where v„, 0, , a, are the usual Pauli spin matri-
ces, p is a dipole-moment matrix element, and
frequency , =(d. The electric field is tuned to the
absorber line center.

In the slowly-varying-electric -field-envelope
approximation, ' and in the frame rotating according
to a phase factor e ' "'", the atom's behavior
may be described through Bloch's equations:

1.0

2.0
V = -WKEK —V/T2,

u =wKE~ —u/T2,

w=vKEK —uKel —(w+1)/Tq,

(2b)

(Sc)

0
0 0.5

"o

where Q (=u+ iv) and w are the expectation values
of —,'(o„—io,)e" ' '" and o, , respectively, u and
v are real, T, and T,' damping terms have been
added, and K =2p/h, where Z is Planck's constant
divided by 2n, so that Ke is the Rabi frequency.
Here e„+i», = e, with e~ and e, real quantities.

Substitution into Maxwell's equations, using the

FIG. 1. u &0, v & 0 quadrant of the Bloch circle
u + v =1. The circle represents the motion of an un-
damped Bloch vector subject to an electromagnetic
field which is pulsed with temporal width «T2. The
ellipses represent the steady-state solutions given by
Eqs. (5)-(7). Note that a differential increase in I', for
I' & 1, leads to a decrease in eo, and consequently to
instability and differential gain.
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the steady-state solution may be used. Then Eqs.
(9) and (4) lead to

c'(x) =e "'c'(0). (13)

Subtracting terms describing the constant field
e, and neglecting terms higher than linear in 4e,

Bhe q 82 e ~ 1-E2
sx c si 2 (1 +E'}2 (14)

s(e„+me) q s(~, +me)
Bz c 8t

= --,'a(c, +be)[1+[8+ (T, T2}'~'xne]'}

(12)

where a =8wT,'imp'/qkc; thus for small steady-state
intensities in the region of linear absorption,

u = -A~V +KKt~ —Q/T2,

0 = n~s —wKE'g —v/T~,

lU = vxf ~ —u KEi —(w+ 1)/Ti,

and Maxwell's equation becomes

(2Oa)

(2ob)

(20c)

Doppler velocity shifts or a variation in static
local crystalline-field potentials. In such a case,
one may not correctly speak of a single homoge-
neously broadened absorption line, but instead
must include a parameter b ~, denoting the differ-
ence in frequency between the applied field and a
given homogeneously broadened isochromat, in
Bloch's equations. After solving Bloch's equations,
the macroscopic polarization envelope is found by
summjng the contribution from each isochromat.
Bloch's equations are now written'

The saturated loss factor

—,'n(1 —F')(1+8') ' (15)
+ q Be . 2g~Np

g(&~) d&~Q(&~), (21)
Bg c Bt 'gQ

changes sign when I' varies through 1, with E&1
representing gain or instability.

The gain

e E2 —1

2 (E'+ 1)'

is also a function of a and frequency v. If the
restrictions previously placed on v are lifted, the
perturbative solutions to Bloch's equations are
determined by

(1 + i ax -F')
nv = 'TReh he

(1
.

)(1
.

)

where x =T,' v.
The procedure used to determine Eq. (1'7) is

given later in more detail. A complex gain may
be defined

where g(4~) is the inhomogeneous distribution
function, with

(22)

The steady-state solution is given. by

uo(n (d) = T2 Eop(1 +/ +E )

U, (n.~) = T,'e,[1+y'+Z'] ',

w, (b, (u} = -(1+y') [1+y'+E']

(23a)

(23b)

(23c)

where y = T26, and e, is chosen to be real and
constant in time. If e now is chosen to have a
constant part e, and a small part 4e =heR+ ib e, ,
Bloch's equations may be linearized with respect
to Ae to find

so that

aug . qv+i —aS =c~S.
Bz c

n E' —(1+ iax)
2 F' + (1 + i ax)(1 + i x) ' (18)

(19)

—Au =Abv —T bu+u K&e
6

2 0 I~

6v = -AAQ —T DU —AKKe —'N Kkes -j.
dt 2 0 0 R&

(24}

(25)

A complete solution to Eq. (19) would involve
the solution to Eq. (4) with &e =0, using Eq. (6),
to find I' as a function of distance z, That result
and Eq. (1V) then allow a formal solution to Eq.
(19). The information of interest is primarily
contained in Eq. (18), however, so that Eq. (19)
or later similar equations are not solved explicitly.

II. EXTENSION TO INCLUDE INHOMOGENEOUS

BROADENING

Often optical-absorption lines are inhomoge-
neously broadened, perhaps owing to a range of

dt
—nW= -T n1ll+ KEQU +U KAE —M ICBM'0 R 0 I

(26)

Now u0 is an odd function of b, , and v0 and se0

are even functions of n~. The Eqs. (24)-(26)
therefore specify that the term in Au proportional
to AeR is odd in h~, and the term in Av propor-
tional to Ae, is also odd in 6. Consequently, if
g(n ~) is symmetric in n. ~, as will be the case
here, Eq. (21) decouples into three equations, one
involving only e0, one involving AeR and dv, and
one involving Ae, and ~u. The amplitude-modula-
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tion case s~, =0 will be considered first.
Let he, =0, and

he~ = Redye'" (27)

Equations (25) and (26) then yield

av(n. a&) = T-,'ReG(a~, v)age'"',

where

(1+ix)F' —(1+ ix)(l + iax)(I + v')
G b, &u, v)=

(1 +y' + F ) [(1 + ix)'(1 + i ax ) + (1 + i ax ) y' + (1 + i x )F'] (29}

andy = T,'6 and x = T2 v. The net gain for sym-
metrical g(b ~) is therefore

o. fg(n, ~)G(n, ru, v) da~
2 fg-(n~)G(n~, 0)da&u~~, '

(30)

where & is the linear-absorption constant, so that
weak fields eo behave as ~eo(z }~' = e "'~eo(0)[', and

near v = Kcp of gain or instability for relatively
large values of I'.

Only regions for which ReG&0 will now be con-
sidered, and description will be given in terms of
the value of ReG at v =0, and in terms of v,„,
where v,gF, a, T) is defined by ReG(v, „,E, a, T}
=0

Equation (33) becomes, in the limit v =0,

(
8 gfjV—+ ~$ =G~S.
az (."

(31)
ReG(O, F, a, T) =G(0, E, a, T)

S(z) =e* erfc(z), (32)

where erfc(z) = J '"e "'dy is the complex com-
plementary error function.

If g(n, ~)~e ", Eq. (30) reduces to

p2 ~The choice g(s Id}~ e r ' invites use of the com-
plex function'

] [v(I + F'}]'/' 1+F-

S( T(I +F2'/2}
(1 E2)l /2

(
7

/

which is independent of a. For large values of I',

G(vFaT)~+[/ty 1/2S(y1/2T)+fi61/2e 1/2

&& S (6' "e '/'T)1 S (T) -', (SS)-
where

I

G(0, F, T)=

One may introduce a nonlinear loss coefficient
+N„defined by

(s5)

/1 =(p+Py)(6-ye) ', 8=-S- Ie, /e=l+iax,

P=(1+ ix)e, p=E'(1+ ix)' —i3, y=1+E',
6 = (1+ ix)(P+E').

In order to describe the amplitude-modulation
gain function, some simplification is required.
Only the real part of the function will be described,
with the observation that the imaginary part of G

(or an exponential of G) is determined through the
knowledge that complex G is a causal function and
obeys a Kramers-Kronig relation.

Figure 2 displays ReG as a function of x for
various E, a, and T. Of the apparent general
features, attention is brought to the decrease in
gain (or increase in loss) when v varies from zero
to T, '. This feature was discussed with respect
to reduced absorption by Swartz and Tan. ' It
should be noted that, at least for values of a in the
region of unity, ReG is approximately constant
out to values & = Kco, where some peak1ng occul s.
Furthermore, the case T =0, which never has a
zero-frequency instability, does develop regions

2 dEO
A

dz0
(36)

which, using Eqs. (21) and (23b), may be found to
be given by

S( T (1 + E')'/')
(1 + F2 )1 /2S (T)

(3'I)

which, for large I', becomes

Q

TWm S(T) (38)

which is twice the expression in Eq. (35). The
factor 2 is not restricted to the particular case
discussed here, but follows from the assumption
that the losses in erg/cm' sec at high fields are
independent of field strength. The same assump-
tion implies the F ' behavior of Eqs. (38) and (35).

In Fig. 3, n„„/n is given as a function of E for
various T G(0, E, T)/n is. given in Fig. 4, and

G(0, F, T)/n„L is given in Fig. 5.
The bandwidth function v (E, a, T) is given in

Fig. 6. The bandwidth v approaches the Rabi
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FIG. 2. ReG as a function
of v and E for various T&/T2
ratios a, and various in-
homogeneous width param-
eters T. The numbers 0.0,
0.5, 1.0, ..., 10 represent
the value of E for each
curve. Note the scale
change for ReG & 0. As is
generally the case, absorb-
er results may be carried
over to the amplifying me-
dium results through a
change of sign. Thus, in
thea =2, T =~ case the
steady-state solution for
F =1.5 would admit of am-
plification of an additional
field which amplitude mod-
ulates at frequency 1.5T &~,

but would attenuate a simi-
lar field at frequency
0.5T &~, Frequencies v

are angular frequencies.
The case a = ~, T =0 re-
sults in gain at frequencies
near ~e, but never at zero
frequency.
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FIG. 3. Ratio o'NL jo of nonlinear absorption constant
to weak-field absorption constant. The numbers label-
ing various curves refer to different values of T. For
T &0.001 and E& 100, a. NL//& = a//(1+E2) ~ . The inde-
pendence of G. ~L//G. in the case of small T is due to
"hole burning, " and the presence of spectral diffusion
(e.g. , velocity-changing collisions) would considerably
change results in the small-T region.

0.0001
10 100 )000

FIG. 4. ReG at zero frequency, v =0. Plotted is
2G/G for the zero-frequency case as a function of E.
The figure is limited to the case ReG & 0. The numbers
~, 0.1, etc. , refer to values of T.
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(29)

frequency K~, as the field e, becomes large.
The case of pure frequency modulation, 4~„=0,

leads to
nu =+ T,' ReG~(b, u, v)dc'e'"',

where d c = i Res.e'e'" '. Equation (21) then speci-
fies that an instability can exist only if ReGF„(n, ~, v)
&0 for some n, &o, v, and I' U. se of Eqs. (24)-(26)
allows GFM to be expressed as

(1 +y')(1 + ix)(1 + fax) +I'
GFM(n (d, v) =—

(1 + ym + E~}[(1 + ix)2 (1 + i ax ) + (1 + iax )y' + (1 + ix)E' j
'

which has a nonpositive real part, so that fre-
quency-modulating perturbations are not amplified.

III. TRANSVERSE MODE AND DEGENERACY
EFFECTS

There are two limits of transverse-mode be-
havior. Vfhen the Fresnel number of a light beam
is so large that the intensity varies only slightly
across a Fresnel zone, then individual zones may
be treated in the plane-wave approximation. Each
pencil may be treated independently, and the out-
put pencil intensities may be individually summed.

At the opposite extreme, structure is presumed
present which forces propagation in a single trans-
verse mode, perhaps of Gaussian shape. Scat-
tering into other transverse modes is heavily
attenuated by the structure, but in such a way that
the resultant losses of the favored mode may be
neglected. Such a structure might consist of a
sequence of stops. In this case, pencils cannot be
individually treated, but the dispersive gain must
be integrated over the beam cross section to ob-
tain a net dispersion, and the result used to find
the characteristics of the evolving perturbations.
This second case will be discussed, with the

where f(r, s, x) is the transverse-mode function.
The slowly-varying-envelope approximation allows
electric-field-envelope propagation to be ex-
pressed by

where 6' is the polarization envelope. Omitted
from this equation is a term to take into account
the change in c due to focusing or defocusing, and
also a normalization factor. The emphasis is that
the contribution from a point r, 8, z is weighted
by the mode function g. As in Ref. 6, the phase
variation in ( is canceled in the final result.

1.0

(T) Tp) ~ KEo
f0 )00 1000

reader referred to earlier work for background
development.

Results of use' here may be outlined as follows.
At any transverse position, r, 6},z, the given mode
determines a variation of electric field

(41)

x Q. f

E

—0.01

)00 a
E

)cv

CV

10

to, ~00

( T, T,'j& Kgo
1000

0.0) '

)0 100 &000

F&G. 5. ReG/&N~at zero frequency, & =0. Plotted is
2C/+~at zero frequency as a function of E. The asymp-
totic approach to the value 1 depends only on the assump-
tion of a bounded loss. The figure is limited to the re-
gion ReG & 0.

FIG. 6. Bandwidth & ~ as a function of I'. Only the
case of zero-frequency G & 0 is considered. ~~ rises
abruptly, in the case of small T, because of the peaking
of gain near frequency ~so. The nine curves are asso-
ciated with values T = , 0.1, 0.01, and n =0.5, 3, 30.
The solid curves are for T = ~; long-dashed, T =0.1;
short-dashed, T = 0.01.
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In the case here, the additional polarization AU

at point x, 8, z is determined by a product:

z((( =ReG(x, E, a, T)Ee, (42)

except that now ~~ and I" vary across the beam
profile so that

(43)t U =ReG(x, Figi, a, T)~t e,

where E = (T, T,')' '((e, G is that given by previous
formulas, and he refers to the variation of e in
Eq. (42). Consequently, the gain function appro-

priate for a transverse-mode function E, is given by

u fr dr d B G(, F[ gi(, a, T)i g['
2 f-r dr d B G (0, 0, a, T )i $ i

'

(44)

the denominator being introduced for normaliza-
tion. If degeneracy is present, with a transition
with Rabi coefficient v introduced to define E,
etc. , and if T„T,', etc. , are independent of transi-
tion, then

u QK( fr dr d B G(x, Fi gi (((/((, a, T)i $i'(((, /(()'
G (rdrdB G(0, 0, a, T)((((/K)

... x E a T =—
K ~

(46)

where the Rabi coefficients ~,. refer to the various
transitions.

Among the various cases, the nondegenerate
Gaussian-mode case with T,*=~ is singled out for
discussion. In that case, one may take

l~(r, B)l= -"""'. (46)

(41)

according to Eqs. (16) and (45). A change of vari-
ables of integration allows

~1 pe 1
G((0, E) = — ds (, ),

= —,
' u [E '

1 n (1 + E') —2 (1 + F') '] . (48)

This result is presented in Fig. 7. A maximum
value 0.0602 occurs at I = 3.65.

The behavior of G(( =0} may be determined
through the energy-loss dependence on F. Even
in the Gaussian-mode ca,se, the losses increase
without bound as E increases, so that previous

0. 1

O~C0-
CU

-0.t
0

l

4
F (1'=0)

FIG. 7. Zero-frequency gain function for a Gaussian
profile and no degeneracy, The curve is 26/+, vvhere
C and 0 are given by Eqs. {48) and {49). The value of
a for a given curve can then be determined through the
inequality v~~{T, ai) & vf11ax{~ a2) if a f

The gain function G at zero frequency then becomes

, 0 F f d I~I'I(E'e-1)/(E'e. l) j
G((0, E) =- f«r-I &I'

t

formulas for large I' do not necessarily apply.
In the Gaussian-mode case above, the nonlinear
loss coefficient e~ may be shown to be given by

2 Be, ln(1 + F'}
BZ I2

0
(49)

so that G(0, E)/uNL does approach the value z for
I' large.

IV. BISTABLE MIRROR

Equation (9) specifies an atomic polarization U

as a function of steady-state field ~,. For a fixed
value of U, for example, 0.3a ' ', there are two
values of e, which, with the given value of U, allow
Eq. (9) to be satisfied; i.e. , e, is a double-valued
function of U. If the optical analog of a current
source could be made, one could construct, with
it and some atoms, a bistable optical device.

Although a close analog of a current source may
not exist, nevertheless it is possible to imagine
ways in which polarizations and fields can be
coupled so that an output field is a multivalued
function of an input field. An example follows.

A Fabry-Perot interferometer with 95Uj& re-
flectivity plates is adjusted for 100% transmis-
sion of light at frequency &. A homogeneously
broadened absorber, comprised of stationary
atoms, that absorbs light of weak intensity at fre-
quency is placed between the plates. Light of
frequency ~ is incident from the right. The elec-
tric field envelopes are E», incident from the
right; E~, reflected to the right; E~, inside the
cavity, moving to the left; E~, inside the cavity,
moving to the right; E~, left of the cavity, moving
to the left.

The electric field inside the cavity may then be
expressed as

E(z, t) =E e """"'+c.c. +Eze " ' "'+c c
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where E„and EB are taken to be real, and inde-
pendent of distance and time. The out-of-phase
susceptibility determined by Eq. (9) may vary
rapidly in a light wavelength, so that the slowly-
varying-envelope approximation must be used
with care E. valuation of Eq. (9) requires the
quantity

(E'). =2E'+2E'+2E E e-""+2E E e'~"
time jl'

(51)

Then u„ the polarization out of the phase with
the electric field, may be written

v, =T2z(E~e '"+Ese'")(1+T, T,
' z( E'). ) ',

(52)

2Ep

Eo

Eo

where o(0) is a spatial average of the last factor
in Eq. (53) averaged over a short distance, o(2k)
is a similar average of the product of the last
factor and a factor e"~', etc. Thus

o(0) = A '(1 —5') '~' (54)

o(2k)=u(- k2)*= A'5 '[1 —(1 —5') 'i'], (55)

where

A =1+T, T,' tP(E~+E2z}

and

b —2&i &2 «~EB
Equations (50) and (53) may be substituted into

Maxwell's electric field equation. The slowly-
varying-envelope approximation is made in the
usual way'; however, in this case terms of the
form E~o(-2h) will have the same sinusodial be-
havior as EB, thus coupling the two waves. Con-
sequently, the two resultant equations are

which may be written in a Fourier sum,

v, =T,'~(E~e '"+Ese'"}(o(0)+o(2k)e ""'

+ g(-2k)z"'"+ ~ ~ } (53)

FIG. 8. Output field Ez and reflected field Ez as a
function of input field EI, as determined in Sec. IV. The
mirror reflectivities are 95%, CfI =2 is the amount of
homogeneous absorber between the plates, and Eo
= a (T&T2) 2. Possibly a and c represent stable
points, while b represents an unstable point.

and EB —&RE~ =v TE„. The equations may be
solved with E~ specified to yield E~ and E„as
functions of E~. Figure 8 displays these results
for the case R=0.95, aL =2.

The result that E~ is a multivalued function of
EI means that if Eg were varied starting from
zero to a point between A and B, the output E~
mould be relatively low. On the other hand, if the
input mere to exceed A, then the output would be
relatively high, and would only decrease somewhat
if E, were then decreased to a value between A
and B. A reasonable guess is that the portion of
the curve with negative slope would be unstable,
and the device would exhibit hysteresis between
A and B.

If the ref lectivity, or the amount of absorber,
is changed enough, the multivalued property must
disappear, and at some point be replace~ by a
large differential gain.

BE@ A

az 2 ~ 2
= —(x(0)E + —(x(2k)E By (56) CONCLUSIONS

A

gz 2 B 2
' =- —o(0)E ——o(2&)E .p 0 (57)

It should be noted that contributions from waves
varying as e " ' or as e "~' are neglected, and
that, no motion of the absorbing atoms is allowed.

Let z =0 coincide with the left-hand mirror, and
z =L coincide with the right-hand mirror. The
boundary conditions may be chosen to be E~= WTE~,
Ee=&RE+, at z =0, where R is the mirror reflec-
tivity and T=1-R. At z =6, E~ —vÃEe=vTE,

The &» &,', T, model used here is not the most
general model. For example, such equations do
not admit the description of spectral diffusion
caused by velocity-changing collisions in a gas.

At large Rabi frequencies, the bandwidth of
the gain or instability region extends to approxi-
mately the Rabi frequency, for example, 30 6Hz
in the case of a 1-Vf optical laser of 10-p, beam
diameter in an absorber of large oscillator
strength characteristic of alkali s-p transitions.
If only the statistics of the absorbed photons limits
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the noise, as might be the case if a device con-
sidered in Sec. IV mere included in an ideal
Michaelson interferometer, then in principle, the
noise figure could be quite low, and comparable
to an ideal laser amplifier.
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