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A new calculation of the Ml decay rates of the metastable 2 S& states of two-electron ions
is presented. The calculation is based on the Furry bound-interaction representation of
quantum electrodynamics and expansion in powers of nZ is avoided. The basic one-electron
states are constructed from solutions to the Dirac equation including the ground-state Dirac
-Hartree —Fock potential. Correlation and transverse-photon-exchange effects, both of rela-
tive order Z, are included in the calculation by the perturbation expansion of the S matrix
in powers of ct. Decay rates calculated to lowest order in powers of o are smaller than pre-
viously reported rates. When correlation and transverse-photon-exchange corrections are
included in the calculation the resulting rates agree well with previous calculations. %'e

estimate that the present values are more accurate than the older results for Z & 12, while
for smaller Z the older results are expected to be better. The close agreement between the
present calculations and previous theoretical results confirms the smallness of both higher-
order relativistic effects and of higher-order correlation corrections in calculations of this
type.

I. INTRODUCTION

During the past few years there has been re-
newed interest in the decay of metastable 2'S,
states of two-electron ions. This renewed interest
stems from the identification of intense 2'S, -1 'S,
lines for several two-electron ions in the x-ray
spectrum of the sun by Gabriel and Jordan. '

Following the observation of the one-photon de-
cays, several calculations of the corresponding
i'V41 decay rates have appeared. The first of these
recent calculations by Griem' made use of
screened Dirac wave functions. More accurate
calculations by Drake, ' by Feinberg and Sucher, '
and by Beigman and Safronova' followed. In all
three of these more accurate calculations, rela-
tivistic corrections of higher order (in powers of
aZ) are omitted.

In addition to the theoretical work on the rM1

decay rate a number of laboratory measurements
have been reported by Schmieder and Marrus'
(Ar"'); Moos and Woodworth' (He); Gould,
Marrus, and Schmieder' (Ar"', Ti"'); and Cocke,
Curnutte, and Randall' (Cl"'). The experimental
lifetimes are all smaller than the theoretically
predicted values. In the case of He, where the
experimental errors are largest, the theoretical
value is within the experimental error limits.

To determine whether this discrepancy between
theory and experiment can be accounted for by
those terms of higher order in eZ neglected in
previous calculations, we have undertaken a rela-
tivistic evaluation of the M1 decay rates in which

expansion in a aZ is avoided.
Our point of departure is the Furry bound-inter-

action representation of quantum electrodynam-
ics." In the Furry picture the electron-positron
field operator t)(r, t) is expanded in the complete
set of solutions to the Dirac equation in the nuclear
Coulomb field. For our purposes it is convenient
to include the principal effect of the electron-elec-
tron interaction in the field operator g. To ac-
complish this we expand g in the complete set of
solutions to the Dirac equation including the Dirac-
Hartree- Fock (DHF) potential. This potential
includes, together with the nuclear Coulomb field,
the ground-state self-consistent potential. The
inclusion of the self-consistent potential in g, and
in the electron-positron Hamiltonian, requires the
introduction of a DHF counter term in the inter-
action Hamiltonian.

To calculate the decay rate we employ the usual
perturbation expansion of the S matrix. The low-
est-order term in the perturbation expansion, S",
gives a matrix element of order (nZ)'. The next
nonvanishing term in the perturbation expansion,
S", which includes the effects of one-photon ex-
change, gives a matrix element of order e(eZ)',
or of order Z ' relative to the lowest-order term.
In evaluating S"' we omit the contribution of elec-
tron self-energy and vacuum polarization which
are expected to be considerably smaller than the
one-photon exchange terms. The contributions of
S" and higher-order terms in the S-matrix ex-
pansion, which are dominated by the Z ' correla-
tion corrections, are also omitted.
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Since we include terms of relative order (uZ}'
in the present calculation but omit corrections
of order Z ', we expect our results to be more
accurate than previous theoretical values for
large Z. A rough estimate of the range of Z for
which the present calculations represent an im-
provement is given by assuming that the coeffi-
cients of the terms omitted in the present case
(the Z ' terms) and those omitted in previous cal-
culations [the (uZ)' terms] are equal. On this
basis one judges that for Z & a. '»= 12 the present
values are more reliable.

These present results, which are given in Table
I, are seen to be in substantial agreement with

previous values represented by Drake "s calcula-
tion' for the entire range 2 = Z «26. One is led
to the conclusion that the terms of higher order
in aZ omitted previously are not responsible for
the existing discrepancy between theory and ex-
periment. Further, one may judge from the close
agreement between the present calculation and the
older results that an approximate treatment of
correlation such as that presented here is suffi-
cient for computing reliable decay rates, even
for the lightest elements.

II. CONSTRUCTION OF THE DHF POTENTIAL

AND ORBITALS

As mentioned in the Introduction, we wish to
include effects of the electron-electron interac-
tion as well as the electron-nucleus interaction
in the electron-positron field operator g(r, t).
To this end we expand g(r, t} in the complete set
of DHF orbitals u„, , These orbitals are solu-
tions to the time-independent Dirac equation

[h, —a Z(r)/r] u„„„=e„,„u„„
(2.1)

jg0 = ' p + )3m

The radial functions G, (r) and F,(r) satisfy a pair
of coupled differential equations which follow
from Eqs. {2.1) and (2.2):

d 1 ot Z(r)

g, + m+&, + F, =0.
(2.4)

The system of Eqs. (2.3) and (2.4) are solved self-
consistently for G, (r), F,(r), and e, . Once I'(r) is
known in terms of the self-consistent solutions,
an entire spectrum including both positive and
negative eigenvalues &„, can, in principle, be
determined from Eq. (2.1). In Figs. 1 and 2 we

show graphs of the numerically determined radial
functions for the 1s,» and 2s,&, orbitals in the
special case Z =20.

III. MODIFICATION OF THE FURRY BOUND-

INTERACTION REPRESENTATION

To calculate the decay rate of a two-particle
excited state we employ the Furry bound-interac-
tion representation" and the perturbation expan-
sion of quantum electrodynamics. The ground-
state DHF potential nY(r)/r is included with the
nuclear potential in the electron-positron Hamil-
tonian. %e compensate for the above modifica-
tion by subtracting an identical term from the in-
teraction Hamiltonian H, ~. The entire calcula-
tion is carried out, for convenience, in the Cou-
lomb gauge. Specifically, we write

the one-electron orbitals is,» and 2s,&, by the
subscripts 1 and 2. The effective charge Z(r)
introduced in Eq. (2.1) is given as Z(r) =Z —Y(y),
where the DHF screening function I'{r) is defined
by

drI'(r) = dr (G', +F', ) +r —(G', +F', ) . (2.3}
0 r

where n and P are the usual Dirac matrices and
where nZ(r)!r is a spherically symmetric poten-
tial introduced to account for the electron-electron
interaction in the 1 'S, ground state, and for the
electr on-nucleus interaction.

The assumed spherical symmetry of Z(y) per-
mits an angular decomposition of the orbitals

B, ~= g' [h, —a Z(r)/r]4 d'r,

0 =H"'+a", ,I I

H,' = -e g e ~ Agd'y,

(3 1)

(3.2)

iG„„(r)n„.(r)
F„.(r)Q {r)

(2.2)

The subscripts n, K, and m are the usual princi-
pal and angular momentum quantum numbers,
while G„,(r ) and F„,(r) are the "large" and "small"
component radial Dirac functions, and 0, (y) is
a spherical spinor.

To simplify our notation somewhat we designate

12

, I (r)
gd r,r (3.3)

with R»= ~r, —r, ~.

The field operator p is expanded in the complete
set of orbitals of Eq. (2.1). The transverse elec-
tromagnetic vector potential A is expanded in
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K
(sec ')

+'Drake

(sec ') (sec ')
~Drake

(sec ')

TABLE I. Theoretical transition rates u for the M1
decay 2 S&-1 ~SO in the He isoelectronic sequence. Re-
sults of the present calculation are compared with
Drake's (Ref. 3, p. 913) previous theoretical values.
Numbers in parentheses represent powers of 10. ao

l.0
I

2 1.253 (-4)
3 2.037 (-2)
4 5.638(—1)
5 6.731(0)
6 4.887 (1)
7 2.551 (2)
8 1.052 (3}
9 3.640{3)

10 1.098 (4)

11 2.966 (4)
12 7.327(4)
13 1,680(5)
14 3,614 (5)
15 7.365 (5)
16 1.432 {6)
17 2.672 (6)
18 4.808 {6)
19 8.377 (6}
20 1.418{7)

1.272 (—4}
2,039(—2)
5.618(—1)
6,695 (0)
4.856 (1)
2.532 (2)
1,044 (3)
3,608(3)
1.087 (4)

2, 935{4)
7,243 (4)
1.658(5)
3.563 (5}
7.251(5)
1.408(6)
2.622 {6)
4.709(6)
8.187(6)
1.383(7)

21
22
23
24
25
26
30
35
40

50
55
60
65
70
75
80
85
90

2.338{7}
3,767(7}
5, 939(7}
9.183(7)
1.395(8)
2.084 (8)
9.023 (8)
4.383(9)
1.729(10)

5.828(10)
1.737 (11)
4.694(11)
1.171(12)
2.732 (12}
6.032 (12)
1.272 (13)
2.577(13)
5.054 {13)
9,639{13)

2.275(7)
3.656(7)
5.751(7)
8.870 (7)
1.344(8)
2.002 (8)

electric and magnetic multipoles.
The lowest-order contribution to the decay rate

arising from the first-order S-matrix element
S") is illustrated by the Feynman diagram of

Fig. 3(a). The remaining diagrams of Fig. 3 il-
lustrate terms of importance in the third-order
S matrix S"I. The diagrams of Figs. 3(b)-3(e)
illustrate third-order terms contributed by the
electron-electron Coulomb interaction. The in-
fluence of the DHF counter term is illustrated
by the two diagrams 3(c') and 3(e'). lt will be

shown later that the two DHF counter terms can-
cel identically the Coulomb contributions of dia-
grams 3(c) and 3(e). The remaining Coulomb

diagrams, 3(b) and 3(d), represent a residual

correlation effect. The diagrams of Figs. 3(b")-
3(e") represent third-order effects due to the ex-
change of one transverse photon which contribute
to the same order in both n and a Z as the terms
of Figs. 3(b) and 3(d}.

That part of the electron-electron interaction
included in g will be called a "screening" correc-
tion. The remaining parts of the electron-electron
Coulomb interaction, accounted for by 3(b} and

3(d}, will be called "correlation" corrections. In
Sec. IV we determine the screened decay rates
from Fig. 3(a). We evaluate the correlation and
transverse photon corrections in Sec. V.

There are, of course, other contributions to
S"' which could be included with those illustrated

1 )A3 1fhg

1 Ni 2 fTlp

(o)

(c) (e)

FIG. 2. Radial DHF wave functions for the 2s, y2 orbital
with Z =20. The functions G2(r) and E2(~) are the large
and small components of the corresponding orbital.

( c') ( e')

{0u) ( c") (e")
I I I

0.2 0.4 0.6 0.8 ).0
r/o 0

FIG. 1. Radial DHF wave functions for the 1s&/2 orbital
with Z =20. The functions G&(r) and E&(~) are the large
and small components of the corresponding orbital.

FIG. 3. Heavy lines represent a bound electron; the
electron quantum numbers, explicitly represented on
the first-order diagram (a), are understood to occur in
the same position on the remaining diagrams. The elec-
tron-electron Goulomb interaction is illustrated by the
dashed lines in diagrams of the second row. The cross in
in the diagrams of the third row indicate the DHF coun-
ter term. The wavy lines, as usual, represent a trans-
verse photon.
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in Fig. 3; they are vacuum-polarization and self-
energy terms. By limiting ourselves to the dia. —

grams of Fig. 3 we avoid those difficulties which
require the use of damping theory, " or similar
techniques. In evaluating the transverse-photon-
exchange diagrams we drop retardation, which
contributes to the same order as the vacuum-
polarization and self-energy terms already omit-
ted.

The matrix element M is conveniently decomposed
by removing the initial- and final-state Clebsch-
Gordan coefficients

M= &2 g C(-,'-,'1;m, m, m}C(,'- —,'0; m, m, 0)T .

(4.5)

The contribution to T which arises in first order
from Fig. 3(a) is

IV. FIRST-ORDER DECAY-RATE CALCULATION

The initial and final two-electron states are
described by the interaction-representation state
vectors

~2 S,) = Q C(~~I, m, m m) ~1s,i,m„2s,i m ),
(4.1)

~
I '8,) =-,'v 2 g C(-,'-,'0, m, rn, 0)

~
ls...m„ is,&,m, ) .

ee'"' ' = Q C~~„(k, e}A „(kr),
JM X

(4.2a)

In Eqs. (4.1) the Clebsch-Gordan coefficients
assure that the stat;es have the correct angula. r
momentum, while the factor ~2 in the ground state
is for normalization purposes. The z angular
momentum of the 2'5, state is rn.

We expand the electromagnetic vector potential
in multipoles as mentioned previously. The rela-
tion between the multipole expansion and the usual
plane-wave expansion is given by

(4.6)

Performing the angular integration in Eq. (4.6)
and substituting into Eq. (4.5) we find that the
first-order contribution to M is given by

M"' =(i jv3w)Q, . (4 7)

The radial integral Q, is expressed in terms of
the radial functions of orbitals 1 and 2 by

q, = ~, (k~) V', F, +F,C, ) d~, (4.8}

where j,(kr) is a spherical Bessel function of
order 1.

Combining Eqs. (4.5) and (4.7) we find a simple
first-order expression for the decay rate:

E~(&) 8~(„@a'5 a' (4.9)

If we use Coulomb wave functions rather than
screened DHF wave functions to evaluate Eq. (4.8)
and drop (aZ)' relativistic corrections, we are
led to the approximate result

C~r „(k, e) = 4rri ~ "Y,'„(k) (4.2b)
ge"~ = 1.664Z" x10 ' sec '. (4.10)

S= 2rri, ~-, 5((u —e, +e, )C', *(k, e)M. (4.3)
(2~ V)'~'

Summing over polarization dix ections and inte-
grating over photon angles we find that the transi-
tion rate z} is given by

ru = 8 rr n
J
M

/

' . (4.4}

Definitions of the multipole vectors A~~„and the
vector spherical harmonics Y~„are found in Ref.
12; the vector e is the transverse polarization
vector. In the expansion of Eqs. (4.2a) X =0 and 1

refer to magnetic and electric multipoles, re-
spectively, while J and M are the photon-angular-
momentum quantum numbers. Conservation of
angular momentum and parity limit the sum in
Eq. (4.2a) to a single magnetic dipole term with
A=O, J =1, and M=rn.

In writing down the S-matrix element it is con-
venient to extract the polarization-dependent co-
efficient O'I (k, e) in addition t:o the usual kine-
matic factors. We write

Using the form suggested by Eq. (4.10) to param-
etrize the decay rate we write

re =1.664F(Z)Zrox10 ' sec '.
The contribution F'~(Z) to the "form factor" F(Z)
determined in lowest-order perturbation theory
from Eq. (4.9) is listed in Table II. The corres-
ponding first-order decay rates are found to be
substantially smaller than the rates calculated in
Ref. 3, especially for the lightest elements. This
discrepancy disappears, however, when third-
order ccntributions are included in the calculation.

V. THIRD-ORDER CORRELATION AND TRANSVERSE
PHOTON CORRECTIONS TO THE

DECAY RATE

To illustrate the technique used in the third-
order calculation of the transition matrix element
T let us consider the Feynman diagram of Fig.
3(d). We may immediately write
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d'r, d'r, d'r,
13

x [u}~,&r(rz~ rzz e} u')A}m ' zru}m, ]}2

momentum and parity selection rules to have quan-
tum numbers zz = -1, +2 (corresponding to s- s and

s —d perturbations), and m = m, —m = -m, . The
expansion coefficients C-, —are given in terms of

(5.1) C-, —= (-1)z" '[(2j +1)/4}}]'

where ft» =
~
r, —r, ~, and where the Feynman

propagator S~ is given by

u„(r,)u'(r, ) u„(r,)ut(r, )S, r„r„~)= tf 1 7% 2
~ ~6„-E —S'g 6„—E +'E'g

Eft CO

(5.2}

The orbitals u„(r} are solutions to the DHF equa-
tions (2.1). To avoid a direct evaluation of Eq.
(5.2) we make use of a technique developed by
Brown et al." The technique consists of intro-
ducing a perturbed orbital

'},}=js (r„z„a,— }z',„' ««, (r,}«',
(5.3)

which satisfies an inhomogeneous DHF equation,

[iz, —oZ(r)/r —e, +u}]u}'=A", au,

se =Zd
Krn K& (5.5)

where the perturbations ad are limited by angular

The inhomogeneous DHF equation (5.4} can be
decomposed into angular momentum states and
reduced to a set of coupled radial differential equa-
tions. The techniques used for carrying out the
angular decomposition are discussed, for example,
by Feiock and Johnson. "

Specifically we write

x C (j -'; —,'0 —')C (j 1—'; rnrnrn, ) . (5.6)

We may further decompose w-, —in a spherical
basis as

iS d(r)fl-„-(r)

T-„(r)Q -„-(r)
(5.7)

(5.8)

The radial differential equations (5.8) together with
the boundary conditions that S d and Td vanish for
r =0 and for r = ~ are suitable for numerical solu-
tion. %'e postpone further discussion until Sec.
Vl.

In terms of the perturbations se introduced above
we can simplify Eq. (5.1) to

12

The angular decomposition of each term in the
integrand can be introduced at this stage and the
matrix element thereby reduced to radial integrals
similar in form to the Slater integrals of atomic-
structure calculations. " Carrying out the calcula-
tions described above and substituting Td" into
Eq. (4.5) we find that Fig. 3(d) contributes to the
third-order matrix element M"' a term

from which follows the radial differential equations

(
T—+ pal —6 + CO—

a&(r} S-„=j,(}zr)F,(r),
dr r r

K u Z(r)—+—$—„+ PPl +El —4) + T.= j,(f r-)G, (-r) .
dr r

TABLE II. Form factor Eg) defined by u =1.664Etz)
xZio &c] 0-6 sec i. The lowest-order contribution E g)
is tabulated along with the final value F (Z). The validity
of the perturbation approach for large Z can be judged
by comparing F~ &g) and+@).

M d" —-(z o/v 3zz) Qd,

where the Slater integral Qd is given by

(5.10)

z z~'& ~z) z ~z) z z('~ (z) z ~z)
(5.11)

2

6
8

10
12
14
16
18
20

0.0350
0.2291
0.3879
0.4983
0.5775
0.6369
0.6S33
0,7209
0.7523
0.7793

0.0736 25
0.3231 30
0.4857 35
0.5890 40
0.6596 45
0.7112 50
0.7509 60
0.7S27 70
0.8093 80
0.8321 90

0.8343
0.8794
0.9201
0.9596
0.9998
1.0423
1.1392
1.2607
1.4202
1.6385

0.8790
0.91S3
0.9547
0.9909
1.0286
1.0691
1.1633
1.2834
1.4424
1.6614

It should be noted that only the perturbation with
Fc= -1 {s-s) contributes to Qd.

An entirely similar procedure can be carried
out for each of the Coulomb terms of Figs. 3(b)-
3(e). The relevant formulas are collected in
Appendix A.

The two DHF counter terms of Figs. 3(c') and
3(e') may also be reduced in terms of perturbed
orbitals. For example, we find that the contribu-
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tion from 3(e') can be written

(5.12)

the "correlation" corrections referred to earlier.
Adding the first- and third-order contributions

to M we have our final expression for the transi-
tion rate,

where the perturbation w' satisfies Eq. (Ale) of
Appendix A. Carrying out the angular integration
and making use of the definition of Y(r) given in
Eq. (2.2) we find that Fig. 3(e') contributes to
M" a term

M',", = -(iu/M3m)Q, , (5.13)

where the Slater integral Q, is given in Eq. (A5)
of Appendix A. The contribution M,' is equal in
magnitude and opposite in sign to the Coulomb
term M,'~.

The transverse-photon exchange diagrams of
Figs. 3(b") to 3(d") are similarly evaluated in
terms of the perturbed orbitals. The contribution
of Fig. 3(d"), for example, reduces to Eq. (5.9)
with the modification that the Coulomb interaction
u/R» is replaced by the Breit interaction

8„=-(a/2R„)(a, a, + u, R„a, R„). (5.14)

The Breit operator follows from diagram 3(d")
after dropping retardation, an approximation which
is consistent with the neglect of self-energy and
vacuum-polarization corrections. Techniques
for evaluating two-electron matrix elements of
the Briet operator using DHF orbitals have been
given by Grant, by Kim, and by Mann and John-
son. " Making use of these techniques we find that
the contribution of Fig. 3(d") to M"' is

(5.17)

As we show in Sec. VI, the third-order matrix
element M" is of order u(uZ)', while the first-
order matrix element M"' is of order (uZ}'. The
correction ~ is, therefore, of order Z ', as men-
tioned in the Introduction. Parametrizing the de-
cay rate according to Eq. (4.11) we find

F(Z) = 5'"(Z}(1+2u), (5.18)

Vl, EVALUATION OF THE THIRD-ORDER
MATRIX ELEMENT

In this section we discuss some of the details
connected with the evaluation of the third-order
matrix element.

Let us first consider the inhomogeneous dif-
ferential equations for the perturbations intro-
duced in Eqs. (5.8) and (A2}. Applying the Pauli
approximation to these inhomogeneous equations
we obtain approximate nonrelativistic solutions.
These approximate solutions are given by

where F ''(Z} is determined from the first-order
calculation. The relatively small difference be-
tween F(Z) and F"~(Z}for large Z seen in Table
II serves as a measure of validity of the perturba-
tion approach employed above.

where the magnetic Slater integral Qd (x) is listed
in Eq. (A9d"). The argument g of the magnetic
Slater integral refers to the angular momentum
quantum number of the perturbed orbital se„

To summarize, we write the entire third-order
contribution to M as

(6.1)

M"' = -(iu/v'Sv)

x[Qb+9, -g@b (-I}+gab (2)+vQ, (-1)

-|'r Q. -(2)+sQd (-1) —lQ, -(-I)j.
(5.16)

In writing down Eq. (5.16) we have omitted the
terms from diagrams 3(c) and 3(c') and from 3(e)
and 3(e'), which are shown to cancel in Appendix
A. This cancellation was not unexpected; it occurs
because screening effects represented by diagrams
3(c) and 3(e} are already included in Q, ; the coun-
ter term introduced in the interaction Hamiltonian
assures that the interaction is not again counted
in the perturbation expansion. The remaining
Coulomb terms of Figs. 3(b} and 3(d) represent

The leading terms on the right-hand sides of Eqs.
(6.1), which are independent of photon energy,
are easily seen to cancel in the third-order matrix
element. To avoid numerical complications we
subtract the leading terms from S, and T, and
modify the inhomogeneous equations accordingly.
The second terms on the right of Eqs. (6.1) rep-
resent the "proper" nonrelativistic effects to
lowest order in o.Z. Examining these residual
terms we find that [relative to the large com-
ponent G, (r) of the unperturbed orbital] S„ is of
order {o.Z)' and 7„ is of order o.Z.

Using these nonrelativistic order-of-magnitude
estimates for the size of 8, and g, one sees that
the Sister integrals Q„(both electric and mag-



1492 W. R. JOHNSON AND CHI E N- PING LI N

/
I /

I
1 /

I
I

I
I

Sb=8
T — Tb

0.4 0.6
r

/

0.8
r/ao

I.0

/
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/
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/

/

I
I

I
I

0.2 0.4 0.6 0.8 I.0
r/0 p

FIG. 4. Solution to the perturbed orbital radial equa-
tions for Z =20. The solid lines represent the "large"
component of the perturbed orbital corresponding to
diagrams 3(b) and 3(c), while the dashed lines give the
"small" component. The approximate behavior T'& ~

= —cuxG& j6m is evident on comparison with Fig. 1.

netic types) defined in Appendix A are all of order
(o Z)' as claimed previously.

After subtracting out the leading terms of Eqs.
(6.1) the inhomogeneous radial equations (A2) are
solved numerically. Graphs of the solutions for
the perturbed orbitals are given in Figs. 4-6, for
the special case Z =20 and y = -1. Comparing
these perturbed orbitals with the unperturbed
orbitals of Figs. 1 and 2 one can see that the solu-
tions behave approximately as predicted by Eq.
(6.1).

Once the perturbed orbitals are obtained by
numerical integration of the radial equations, the
Slater integrals of Eqs. (A5) and (A6) are carried
out numerically and combined according to Eqs.
(5.16) and (5.11) to give the transition rate.

In carrying out the numerical work advantage is
taken of the fact that the magnetic contributions
of Q~„(-1) and Q„(2) cancel to order (aZ)'. The
residual difference is thus of order (et Z)' and can
be neglected along with the self-energy and vacu-
um-polarization terms. The same cancellation
occurs between Q„(-1) and Q,-(2} and these terms

FIG. 6. Behavior of the perturbed orbital radial func-
tions for diagram 3{e). The approximate nonrelativistic
behavior T ~ = -~rG2/6m is seen on comparison with
Fig. 2.

are also dropped. Since these two magnetic inte-
grals, Q&. {2) and Q,-{2},are the only terms in-
volving It =2 it is unnecessary to solve Eqs. {A2)
for g =2.

APPENDIX

Following the procedure outlined previously
in Sec. V we can introduce a perturbed orbital
for each of the four diagrams 3(b)-3(e} of Fig. 3.
The perturbed orbitals are labeled with a super-
script to represent the corresponding diagram.
We find

[h, —a Z(r)/r —e, tw"

=o. ~ A', u, —(2, m+m, fo. ~ A', „~lm,}u,

[0, —uZ(r)/r - e, +or]w~ = A', * o.u, (Ald)

[h, —o.Z(r)/r —s, ]w'

= A'+ Zu —(lm, - m
~
A', * n

~
2m, )u, „

{A1e)

[0, —aZ(r)/r —e, ]w"

=u ~ A', u, —(2, m+m, j(x ~ A, elm, )u,

(Alc)

0.2 0.4 0.6 O.B

/
/I

/
I

t I
l I
I

I
\

/

r/Qp
l.0

I

We can carry out an angular decomposition of each
of these equations into a sum of terms corres-
ponding to perturbations (s- s) and (s- d), labeled
by angular momentum quantum numbers K = —1 and
~=2, respectively.

The radial differential equations analogous to
Eqs. {5.8) for the perturbation can be written

FIG. 5. Solution to the perturbed orbital radial equa-
tion for diagram 3(d). The approximate nonrelativistic
behavior T d& = —rorG&/6m is evident on comparison with
Fig. l.

T—, + r+ —e — S,—=K—, ,

—+—S—, + rn+e+



DIRAC-HARTREE- POCK CALCULATION OF TH E. . .

The parameter ~ takes on one of the values &„
6l —(al, ol 6 depending on the equation in ques-

tion, while the inhomogeneous terms are given by
where

(A6)

„=SC-'„=j,—(I r)F, (r) —Q,G, (r)5—„
L-„=L'„=j-,(kr)G, (r) —Q, F, (r)5

Z „' =j, (-) r)E, (r),
L„'=j,(I-r)G, (r),
IC„' =j,(-kr)F, (r) —Q,G, (r)5—„
L;=j,(kr—)G,(r) —Q,F,(r}5-„

(AS)

The coefficient Q, occurring above is just the
first-order radial integral defined in Eq. (4.8}.

Carrying out the details of the calculations
outlined in Sec. V for the four diagrams 3(b)-3(d)
we obtain

Q, = a —(S',G, +T',F,) Y(r),
p r

Q, = o —(S',G, + T',F, ) Y(r} .
"dr

p

(AVc ')

(AVe')

Making use of the definition of Y(r) given in Eq.
(2.3) we see that Q, = nQ, and that Q,. = uQ„so
that the corresponding matrix elements cancel
identically.

Turning to the transverse photon diagrams of
Figs. 3(b"}-3(d"} we find

M~", = -(io'/~Sv)l-~Qb-(-i)+~Qb (2)

+yQ, -(-i) -yQ, -(2)

~&'b', = -(in/~»}(Qg —Q, + Qy —Q, )

where the Slater integrals Q, are given by

(A4) + sQd-(-i) —3Q, (-~)], (AS)

0 "( )=,'t —1)' I j d, u, —;ts "~,+7',-"G),

(A5b) x(G,E, +E,G,},, (A9b" )

(A5c)

r p

x (2F,G,},, (A9c")

x (G,E, +F,G, },, (A9d")

(A5e)

Similarly we find that diagrams for the two coun-
ter terms, Figs. 3(c') and 3(e'), give x (2E,G, ), . (A9e")
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