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NMR frequency in superfluid phases of He
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All unitary solutions of the weak-coupling gap equation for / =1 pairing are exhibited, and
their rotational degeneracies highlighted. The role of the Zeeman and dipolar energies in
resolving these degeneracies is examined. These interactions are used to calculate the NMR

frequency, and the assumptions used by Anderson and Leggett in earlier calculations are
clarified. In particular, "classical" equations are given which are equivalent to Leggett's
quantum-mechanical Malysis.

The recent1y observed anomalies' ' in the ther-
modynamic and transport properties of liquid 'He
at temperatures around 2 mK have attracted con-
siderable attention. Theoretical explanations have
centered around the concept that transitions are
taking place into superfluid phases with condensa-
tion of quasiparticles into spin-triplet (odd-f) pairs.
To account for the observed shifts of the NMR fre-
quency' in the superfluid phases Leggett has pre-
sented an argument' based on sum rules and the
hypothesis that the shifted line saturates the spec-
tral weight. These arguments alone are unable to
predict successfully all aspects of the experimen-
tal observations. An intuitive heuristic approach
has been used by Anderson' to yield results at
some variance with Leggett's conclusions. ' In a
second paper" Leggett has calculated the NMR

frequency from a microscopic basis, with results
differing in some respects from those both of An-
derson' and Leggett's' earlier work. In the pres-
ent paper we also approach the NMR-frequency
problem from the viewpoint of the microscopic the-
ory. We clarify the assumptions found necessary
by Anderson and Leggett to obtain a shifted line in
agreement with existing observations. Moreover,
"classical" equations are presented which are
equivalent to Leggett's analysis.

The theoretical model which we adopt is that of
Balian and Werthamer, " in which we presume
pairing of quasiparticles into an l=1, s =1 state.
We also assume weak coupling, in the sense that
we do not accommodate retarded or frequency-de-
pendent interactions. In the Balian-%'erthamer
(BW) formalism" a 2x 2 gap matrix in spin space,
a", is defined [BW(19)]which for p-wave solutions
may be written as [BW(48)]

=g ~ d ocr2, (1)

in terms of a complex tensor d. Restricting atten-
tion to the unitary class of gap matrices [BW(22)],
we have proved that the gap equation (BW25) for
/= 1 has four and only four degenerate manifolds of

& 0 $&up2Qg'i30 $ ~4. (2)

Each of the four manifolds of Table I is still a so-
lution to the gap equation generalized to include an
exchange interaction, provided that the tensor I,
has the same symmetry as the X of that manifoM.
Conclusions similar to those of Anderson and

solutions. This extends to all temperatures —the
result derived by others" for the temperature re-
gion just below T~. The four manifolds are charac-
terized in Table I, together with the associated
quasiparticle energy Eg and susceptibility tensor
x

The parameter families (~ and (, are each an
independent set of orthonormal basis vectors,
which serve to define the degeneracy within each
manifold. The E;~& and the E& are associated with
the orbital and the spin-angular mornenta of the
pairs, respectively. Thus the susceptibility ten-
sor is defined with respect to the g; alone, while
the quasiparticle energies are given in terms just
of the F~.

BW have proved that, in the absence of any spin-
dependent quasiparticle interactions, the isotropic
state is the variational state of absolute lowest
free energy for all T & T~. The fact that more than
one superfluid state is actually observed seems
to indicate that the BW assumptions must be mod-
ified in some way. Anderson and Brinkman' have
pointed out that the strong spin fluctuations in the
normal 'He liquid, particularly at pressures near
the solidification line, reduce the free energy of
states with anisotropic susceptibility relative to
the isotropic state. They conclude that the axial
state is the energetically favored one for spin fluc-
tuations met within liquid 'He. A spin-dependent
effective pair potential is easily incorporated into
the BW formalism by replacing (BW1) and (BW26)
by"
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Brinkman can then be drawn. %'e confine further
attention only to the isotropic and the axial states.

A shift of the NMR frequency from the Larmor
value (d, =yH is possible only if there are spin-
nonconserving terms in the Hamiltonian. It has
been suggested~@'6 that the dipole-dipole interac-
tion X~ among the 'He nuclei is responsible for the
NMR shift. To examine the effect of X, we first
calculate the first-order change in free energy
which it induces in the paired phases. %'e find
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(isotropic), (3)

(&4 =&3'lk-(3'h')'j (~i»), (4)

where Vf'"' are positive coefficients of order
(8'y'/8')(~'/e'r), for which we do not give specific
expressions here. The dipolar interaction lifts
the degeneracy in the manifolds associated with
arbitrary relative rotations of spin and momentum
spaces. In the presence of an applied static mag-
netic field H, that portion of the free energy which
depends on the directions of the Es, the E~, and the
total induced spin polarization 8 may be written
as

8=3[S,Xj

=ZSXH+3[S, ~,j.

ax=-.'s }f-' s+g@

Reference to Eq. (4) and Table I for g shows that
5E is minimized in the axial state when P and P
are parallel and $ is perpendicular to S. For the
isotropic state, on the other hand, there is no pre-
ferred orientation for $s relative to the applied
field. "

To investigate the situation during an NMR ob-
servation, in which 8 deviates from its equilibrium
value, we turn to the quantum-mechanical equa-
tion of motion for the spin operator 5,

Taking expectation values of both sides in the mo-
lecular field states of Table I, an evaluation simi-
lar to that for (Kg leads to

S = y~&& H + &g" Q (P; ' 4 5, X 52 + Fi ' $', Vj X (; )
i, j

(isotropic), ("I)

S = ySx H —2V['& t~ ~ "$3 P x (3 (axial) . (8)

Our assumption in this procedure is that the devi-
ation from equilibrium does not admix differing
stationary manifolds, but the degeneracy of each
manifold is recogniged by allowing the ~s an
parameters to become time dependent. For the
isotropic state, Anderson averages the E, over all
orientations. This leads to a vanishing of the sec-
ond term in Eq. (7), so that the precession fre-
quency of 8 is unshifted from its Larmor value.
This is not based on a solid foundation, since in a
situation of broken symmetry the direction of g's
are specified even for the isotropic state. The re-
maining problem from Anderson's point of view is
to find the dynamical behavior of t3 and P in the
axial state.

One way to obtain results consistent with the ob-
served NMR frequencies is to make the same as-
sumptions as Anderson, ' namely, that

d -. q—E =0
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Presumably Eq. (9) is true because interaction of
the surface with orbital currents locks F~ to an
optimum position and any motion relative to it in-
volves energies of the order of the gap energy,
which are too large compared to those involved in
an NMR experiment. Equation (lo) is more mys-
terious, and we are not able to add further justifi-
cation as to why E adiabatically fol.lows the in-

TABLE I. Four manifolds of unitary solutions to the weak-coupling l =1 gap equation, with
the resulting quasiparticle energies and spin susceptibilities. The quantity F is the angular
average of the Yosida function, defined by %51).

Polar (Ref. 12)

Planar (Ref. 11)

Axial. (Ref. 13)

Isotropic (Ft,ef. 11)
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staneous energy minimum. Granted Eqs. (9) and

(10), however, they can be solved so as to elimi-
nate ( from Eq. (8), so that

Leggett's analysis is also equivalent to the as-
sumption that (~ are locked rigidly to their equi-
librium position; i.e., Eq. (9) is assumed; on the
other hand, the motion of P is not given by Eq.
(10). The "classical" equation giving Leggett's re-
sult is

(14)

(12)

For unsaturated resonance Eq. (11}may be linear-
ized in the deviations of S from H The.n 5 is found

to precess harmonically about 0 with frequency

u) =[(u'+(2}V$'}/y )(1+a} ']'~'. (13)

there is no longitudinal resonance. These results
are the same" as those of Anderson. It is also
possible to reduce Eq. (12) directly to quadrature,
from which it may be predicted in the saturated
resonance case that transverse absorption also
occurs at odd harmonics of the fundamental, while
longitudinal absorption develops at even harmonics
bui not at the fundamental itself. Thus pul. sed-
NMR experiments may be another critical test of
the assumptions (9) and (10) of Anderson, along
with a check of the dependence of u on a as per
Eq. (13), leading at low fields to &uo-H.

r 2~V[a} 1 1 /2

1 }} (1+n)
(15)

For the isotropic case, one can use Eqs. (7), (9),
and (14) for each component i and find transverse
resonance frequency to be zero, but find a longi-
tudinal frequency given by Eq. (15}, with n =0 and

Xlt=X

This equation leads to a clearer understanding of
the physics behind Leggett's quantum-mechanical
analysis, for it says that the field acting on $ is
the same as the field acting on 5. Clearly this
must be true if 8 is the generator of rotations in
spin space. From Eqs. (8), (9), and (14), one can
solve for the transverse and longitudinal frequen-
cies in the linear approximation. One again finds
the transverse frequency given by Eq. (13); how-
ever, there is now a longitudinal resonance at a
frequency given by
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