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Molecular-orbital x rays*
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Line-broadening theory is applied to photons emitted during atomic co11isions. The maxi-
mum cross section for such collisions has an order of magnitude of 10 ~ ~a02, and is indepen-
dent of the atomic number Z. Excitation of such radiation without the presence of atomic
x rays is discussed. The spectrum may show an oscillatory energy dependence. The molec-
ular-orbital x ray may have a linelike emission which is characteristic of the united atom.

In the electron-promotion model, '-' excitation
of inner-shell electrons occurs in slow atomic
collisions through the promotion of molecular
orbitals~' in passing from the separated-atoms
(SA) to united-atom (UA) limit. On the basis of
this model, Saris' discussed '*molecular-orbital
x rays" (MO x rays) which consist of emitted pho-
tons caused by a transition between two MQ's of
the molecular-collision complex. He postulated a
two -step excitation mechanism. An inner -shell
vacancy is produced in the projectile in a first
collision with an atom. In a solid target, it is
possible for a second collision to occur before the
inner-shell vacancy has decayed. Because of
electron promotion, the MQ x ray ean have a
larger energy than the x ray of the SA. There
are several experimental reports of such MQ
x rays '-" Some authors"" have proposed. a
one-step mechanism in which both excitation and
x-ray emission occur during the same collision.

A troublesome feature is the continuous nature
of the spectrum, which blends into the background
radiation and often is dominated by strong lines of
the SA. The purpose of this paper is to point out
certain possibilities which could make identifica-
tion of the MQ x rays less ambiguous.

The theory of atomic line broadening is appli-
cable to MQ x rays. Lorentz" treated line broad-
ening by considering the Fourier analysis of a
classical oscillator with phase interruptions
caused by collisions. %'eisskopf" and Nargenau"
kept the concept of the Fourier analysis of the
emitted wave and took into account the shifts of
the atomic energy levels during the col.'ision.
Application of this approach to MQ x rays leads
to several immediate conclusions. The emission
spectrum is simply obtained in a classical ap-
proximation by taking the separation between MQ's
at each time, multiplying by the emitted intensity,
and integrating this result throughout the collision.
Choice of large-angle scattering of projectiles
leads to (1) a spectrum with a linelike feature
associated with the classical turning point of the

radial motion. This effect can be quite strong in
heavy systems. '"

A quantum-mechanical treatment can be shown
to add two effects: (2) Heisenberg (uncertainty
principle, &E&f -8) broadening of the MO x ray
occurs at small impact parameters and large
velocities'; (S) an osciliatory spectrum results
from interference between radiation emitted from
two or more points on the trajectory followed
during the collision.

The purpose of this paper is to point out via
examples how these effects could bear on current
experimental efforts in this rapidly developing
field.

Molecular emission during col.lisions must be
almost universal. Very often, there is at least
one molecular state which is excited during the
col.lision and which can radiate to a lower state.
An important example is a symmetric ion-atom
collision, which involves a mixture of at least
one pair of even (g) and odd (u) states, with an
allowed transition occurring between them. Ex-
amples are H+ on H, He' on He, Li' on Li, Ne'
on Ne, etc. MQ x rays can occur if the ion is
He' on He or Li on Li (2po - isa), Ne' on Ne,
or Ar" on Ar (Sdo-2pv, Sdw-2pw). These col-
lisions produce inner-shell vacancies of the mo-
lecular complex during the purely adiabatic col-
lision, but neither SA is excited either before or
after the encounter. Such a collision has the ad-
vantage of eliminating or minimizing the back-
ground of SA x- rays. It is important to point out
that such highly stripped projectiles may occur
inside thick solid targets as a result of mul. tiple
collisions.

A second feature of MQ x rays is the universal
magnitude of the cross section. Consider an x ray
produced in a transition between the 2po -1sa
MQ's in a proton-hydrogen collision, which has
He' as the UA. Since radiation is most likely when
the collision time is long, the maximum cross
section occurs for the minimum projectile energy
(- l a.u. ), just enough to form the molecular com-
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plex. The radiative cross section is o-vao(T/7), '

where T is the collision time, T-2a, /e, and
v- T(He+, 2P) = 10-" sec is the lifetime of the
2po MQ. This gives a radiative cross section

0 ' g~o-10-" cm' It is readily shown that,
for heavier partners, this result scales in such
a way to be independent of the atomic number Z.
Thus, as the atomic number increases, the MQ
x-ray cross section should increase relative to
the atomic x-ray cross sections. For &„„-1/&
-13'7, for a 1@a vacancy, the two cross sections
become of the same order of magnitude, as the
probability for radiative decay during the collision
approaches unity. "

At present, the best tests of the theory come
from a comparison of the cutoff wavelength of
the MQ x-ray continuum with the expected separa-
tion between MQ's at the distance of closest ap-
proach. Figure 1 shows such a plot for the MQ
x ray in collisions of carbon iona with carbon
solids, taken by MacDonald ef af." The theoreti-
cal 1so -2po splittings were obtained by the scaling
procedure of Briggs and Macek." The agreement
is reasonably good, if one allows for multiple
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FIG. 2. Energy levels involved in radiation during
collisions between a proton and a deuterium atom. The
vibrational wave function of the upper state is shown.
The line marked "A" corresponds to a transition at the
classical turning point for an ion energy of 41 eV (1 a.u.
in the center-of-mass frame). The line markedB shows
a transition at a lower photon energy,
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K-shell vacancies and Heisenberg broadening. "
In the case of coincidences between scattered

particles and x rays, it is possible to select col-
lisions where there is little or no excitation of SA.
In the examples that follow, there is a head-on col-
lision (zero impact parameter) without excitation
of the K shell via rotational coupling of the 2po
and 2Pm MQ's.

Figure 2 shows the potential-energy curves, en-
ergy levels, and upper-state vibrational wave
functions involved in a head-on collision between
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FIG. 1. Comparison of experimental x-ray cutoff
eneqgies (from Ref. 11}with estimated energies ]from
scaled energy levels (Ref. 17}]in the C-C+ system. An
error in the horizontal scale in Ref. 11 has been cor-
rected. The Heisenberg broadening is a rough estimate
based on the uncertainty principle and should not be
taken as quantitatively correct.
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FIG. 3. Spectral energy distribution for proton-deute-
rium collisions. Because of the approximations used,
effects caused by the vibrational structure in the lovrer
state are ignored. The classical turning point is shown
by arrows.
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