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The conditions of validity for the momentum-translation approximation of Reiss are found much more
stringent than was thought before: multiphotonic transitions induced by one strong field cannot be
described by this method. First-order transitions between bound states dressed by a strong
low-frequency field can be calculated, but the method gives nothing but a trivial result; only for the
ionization of a dressed atom is the approximation found useful.

INTRODUCTION

Much interest arose when Reiss proposed'? the
“momentum-translation (MT) approximation” as a
means of avoiding high-order perturbation theory
in the calculation of multiphotonic transitons in a
strong field. Many papers®'® using this approxima-
tion have been published since. However, doubts
are now being raised® about the method itself; so
it is necessary to reexamine the validity of the MT
approximation and its significance.

I. TRANSITIONS IN ONE STRONG FIELD
A. Reiss approximation

With notations taken from Reiss,' the Schradinger
equation is (Z=1)

0,0 = (Hy+ H'),

P’ =
H0= 2—; + V(X),
e = 2¢A-p + ?A’ ,
2m

where A =aé coswi. The dipole approximation for
the field is thus made, as in all applications'™ of
the method. Under the unitary transformation ¥
=e¢'** Xy, the Schrédinger equation becomes
_ - oA .

i3, ¥=(H,+H)¥, H,=e-§--x. (1)
The solution of Eq. (1) can be written as an expan-
sion in powers of H;:
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turbed equation i, =H,$. The amplitude for
transition from i to f is'
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The first term in Eq. (3) is the Reiss approxima-
tion.

B. Higher-order corrections

Reiss considers’ that the second term in (3) gives
a contribution whose order of magnitude is IH, /E|
times the contribution of the first term, from
which he states the condition of validity (¢, is the
Bohr radius):

leaa(w/E)| «1, (4)

This is an argument typical of a stationary prob-
lem (which does not mean that the conclusion is
wrong). What is needed actually in such anonsta-
tionary problem is the transition matrix element
7§, which is the term proportional to
expli(E; - E; +nw)t| in the integrand of (2). That
is, of course, what is done by Reiss for the ex-
plicit calculation of transition probabilities, but
it is also what should be done before a discussion
of the validity of the approximation.

From the expansion (3) in powers of p of #,,
we can write

T;";‘=p'_>__2<¢,,rf£"’¢,~>, (5)

where we want the zeroth-order operator U{™ to
dominate over the remainder, for the MT approx-
imation to be valid. That first term is easily
calculated to give
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The second expression is used by Reiss and fol-
lowers, but the first one serves our purpose
better. Now, the first-order term is explicitly

P <UD (B, )
—UMD H, -E, - w)] (- Siwz). (6)

We shall replace the “Green operators” in Eq. (6)
by a mean energy difference AE. This trick is of
common use in stationary perturbation computa-
tions, and retains some validity in nonstationary
problems, as exemplified by the work of Bebb
and Gold®: for the multiphoton ionization of a
ground-state hydrogen atom, they show that AE

can be chosen (away from resonances) as the first

excitation energy E, —E,; the mean energy ap-
proximation should be still more reliable for

bound-bound multiphoton transitions such as 1s-2s
excitation of atomic hydrogen, where there are no

resonances. Within this approximation, the gen-
eral perturbation term can be written

eaf-’ on '
Ug") o~ [—————E‘l —lZ(p)Jn-P+2a (2)

m —\q
e*a® ,,_ P\, . wz ¥
RGPt (555 )

(For convenience of notation, AE has been put
constant in all terms.)

C. Low-field limit

For not too strong fields (2 << 2|n|*/?), we can
use the expansion of Bessel functions in powers
of the argument:

7a@) = ey 3 L
" ekl +r)l’
to get, for p<in|-1,

U(m~{—eaz'§ (3iz)ln!=
r - m  2(n|-p-1)1

ed®  (3iz)"1-2 ](—w)"(n)’
*om a(nl-p-2)U\AE / \[nl/ °
For p =|n| -1 the discussion is more tedious (but

less important), and one can find the order-of-
magnitude equation

U, ~US™ (2wz/pAE) .

We conclude that for |n|=2, the first term in Eq.
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(5) dominates if
lnw/AE|<1. (7

The discussion is different for |#|=0 or 1, and the
condition of validity is found to be

|zw/20E |« 1. (8)

Condition (7) is fa. more drastic than Reiss’s con-
dition (4), which is just (8), and |w/E|«1.! Con-
dition (8) for |#|=0 or 1 means simply that the
Reiss approximation is at least as good as first-
order perturbation theory, which we knew.! On
the contrary, condition (7) means that the MT
approximation cannot be used for the calculation
of multiphoton transitions induced by the field
itself, since then |nw|=|E;~E;| cannot be much
less than | AE |; |nw/AE| is more likely to be of
order unity, which is the conclusion reached in-
dependently by Cohen-Tannoudji et al.”

D. Strong-field limit

Let us now consider the strong-field limit
z>1. We can use the Hankel asymptotic expan-
sion of Bessel functions® to show that

UM ~U™M(-nw/AE).

The condition of validity (7) is thus still necessary.
Further study could lead to a condition for the
first term in (5) to dominate over the whole re-
mainder: This is a difficult task. I have made the
calculation for |z|>1, and the resulting condition
was

[2'2w/BE|<«<1, (9)

which is not very different from Reiss’s condition

(4).

E. Another discussion is needed
for two-field cases

Considering condition (7), it may be thought that
the MT approximation could keep its validity in the
case where the greatest part of the transition en-
ergy is brought in by a weak field @ (treated in
first-order perturbation theory), while the strong
field A supplies a little remainder |nw|<«< AE|.
The method used by Reiss and others for two-field
problems' ™ is not valid under condition (7), so
we shall give a new one in Sec. II. The analysis
has been carried on for a monochromatic linearly
polarized field. Generalizations are straightfor-
ward, but tedious.

II. MEANING OF APPROXIMATION AND VALIDITY
FOR TRANSITIONS IN TWO FIELDS
A. Link with perturbation theory

In this section, I want to show directly which
processes are described by the MT approximation.



1448 ALAIN DECOSTER 9

The exact wave function ¥(¢) is given by the
usual time-dependent perturbation theory from the
development in powers of H' and the time integra-
tions of

t
\p,.(t)=<1>‘(t)—if ate= ot (1) e ™ (1),

where -0, for an adiabatic switching of the per-

J

turbation. The result includes a number of sums
on intermediate states j with denominators

(E;-E; +pw+in)~'. Condition (7) of Sec. I suggests
that the MT approximation could be obtained by
neglecting |pw| <« |E;-E;.;| everywhere. There
remains the questions of intermediate i states;
fortunately, we can write the exact ¥;(f) in the
form®

, ¢ ’
(0= 906Dl ) expl= e+ | a ReCor @™ 1o, 1),

where {(¢;| ¢(t)) =1 and the perturbation develop-
ment of y;(¢) contains only'® denominators (E; -E;
+pw +in)~! with j#¢. If we neglect the pw terms
everywhere (an approximation to be discussed in
Sec. IIB), ¢;(t) becomes the corresponding wave
function of the static perturbation theory,'' as
does ¥;(t); the normalized wave function of the
static perturbation theory (i.e., as if A were time

-

m

r

independent) is exactly e‘ex'xﬁb;(t), and the approx-
imation is thus

¥y(t) = e‘e"‘";cb‘(t).

The first-order transition amplitude in a weak
field of circular frequency £ can now be easily
calculated as the term proportional to expi(E; -E,
-Q-nw)t in

-
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i.e., exactly the same result as if the dressing
field A were not present.

B. Discussion

If the condition

v i#i, |Nw|«|E,-E, (11)

is fulfilled for some N, we can consistently neglect
the pw terms in the perturbation development of
@,(t) up to the Nth order in |A|. The MT approxi-
mation can thus be used for the calculation of a
transition involving n <N quanta w (and one quan-
tum Q) if the dressing field A is not too strong:
for there is certainly a limitation on the strength
of the field, since in very strong fields |pw| may
be much greater than nw in some intermediate
states of some amplitudes that contribute signifi-
cantly to the transition. This limitation can be
determined approximately from arguments similar
to those of Sec. I, leading to condition (4) [or
perhaps (9)]; conditions like (7) or (8) could also
be obtained, but they are weaker than (4) and (11).
The first-order transition amplitude of Eq. (10)
could have been calculated equivalently in the
representation where the wave equation is (1) and
the perturbation is H;. The MT approximation is
therefore the zeroth-order approximation, and the
trivial result obtained in (10) is now evident. What

(10)

r

we have gained is the knowledge that the same
trivial result holds in perturbation theory to the
Nth order—not only to the zeroth order—provided
conditions (4) and (11) are satisfied.

C. Conclusion

The MT approximation cannot be used to cal-
culate multiphotonic transitions in a strong field.
It can be used under conditions (4) and (11) to
compute first-order transitions between bound
states dressed by a strong field, but it gives
nothing but trivial results. The only open way I
could find is the calculation of bound-free transi-
tions in a dressed atom, the bound state being
treated in the MT approximation, while another
approximation is used for the free state, e.g., the
transformation of Schwinger’? and Henneberger,
plus the Born approximation for high energies:

t - -
'Il,(t)l'exp(—if dtiH!(l/)em'>e-laftexk~x‘
This could lead to nontrivial results.
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