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Validity and meaning of the momentum-translation approximation for bound states in a
radiation field
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The conditions of validity for the momentum-translation approximation of Reiss are found much more
stringent than was thought before: multiphotonic transitions induced by one strong field cannot be
described by this method. First-order transitions between bound states dressed by a strong
low-frequency field can be calculated, but the method gives nothing but a trivial result; only for the
ionization of a dressed atom is the approximation found useful,

INTRODUCTION

Much interest arose when Reiss proposed" the
"momentum-translation (MT} approximation" as a
means of avoiding high-order perturbation theory
in the calculation of multiphotonic transitons in a
strong field. Many papers" using this approxima-
tion have been published since. However, doubts
are now being raised' about the method itself; so
it is necessary to reexamine the validity of the MT
approximation and its significance.

I. TRANSITIONS IN ONE STRONG FIELD

A. Reiss approximation

With notations taken from Reiss, ' the Schrodinger
equation is (5=1)

i&, q =(H, +H'}4,

H, = —+ V(x),

-2eA p+e'A'
2m

where A =a& cos~l. The dipole approximation for
the field is thus made, as in all applications' ' of
the method. Under the unitary transformation 4'
= e"" "4', the Schrodinger equation becomes

~A
fs, +=(H, +H, )V, H, =e

~t

The solution of Eq. (1) can be written as an expan-
sion in powers of Hz ..

(3-1)„=-f f df &C,(f), H'(t)e""C, (f))

df' e-'~"-' ' e,(f')c, (f'))+.~ .

The first term in Eq. (3) is the Reise approxima-
tion.

B. Higher-order corrections

Reise considers' that the second term in (3) gives
a contribution whose order of magnitude is lHI /El
times the contribution of the first term, from
which he states the condition of validity (a, is the
Bohr radius):

l«~.(~i E)I «. 1

This is an argument typical of a stationary prob-
lem (which does not mean that the conclusion is
wrong). What is needed actually in such anonsta-
tionary problem is the transition matrix element

which is the term proportional to
exp[i(Ef —E, +n&u)t I in the integrand of (3). That
is, of course, what is done by Reiss for the ex-
plicit ca,lculation of transition probabilities, but
it is also what should be done before a discussion
of the validity of the approximation.

From the expansion (3) in powers of P of H„
we can write

q(f) = c(f) —f d[ lao(lt I I H (ff)$(/f)

starting with the solution C = P e ' ' of the unper-
turbed equation i~, C = H, C. The amplitude for
transition from i to f is'

where we;vant the zeroth-order operator U &"' to
dominate over the remainder, for the MT approx-
imation to be valid. That first term is easily
ca,lculated to give
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P(n) P-fn )gr(Z)+ fn 2g»(Z)8AC'p. e 0
m ~ 2

= [a„f"Z„(z)J,

z =eaf ~ X.

The second expression is used by Reiss and fol-
lowers„but the first one serves our purpose
better. Now, the first-order term is explicitly

Uin) —[U(n-x)(H E +~)-&

-V&"")(O-E') —(u) 'j (- 2i &uz) . (8)

We shall replace the "Green operators" in Eq. (8)
by a mean energy difference dE. This trick is of
common use in stationary perturbation computa-
tions, and retains some validity in nonstationary
problems, as exemplified by the work of Bebb
and gold': for the multiphoton ionization of a
ground-state hydrogen atom, they show that 4E
can be chosen (away from resonances) as the first
excitation energy 5, -F.„the mean energy ap-
proximation should be still more reliable for
bound-bound multiphoton transitions such as 1s-2s
excitation of atomic hydrogen, where there are no
resonances. Within this approximation, the gen-
eral perturbation term can be written

+~ f" ~, 8„"„„(z)
Q

(For convenience of notation, rnE has been put
constant in all terms. )

C. Low -field limit

For not too strong fields (z«2 [n)'~2), we can
use the expansion of Bessel functions in powers
of the argument:

to get, for p& [)2[ —1,

(n) 806 'p (22z)I 2(Is(-P -1)l

2+2 (~&Z))n)-2 ~ P + P

2 4([s(-p-2)L ~E (n)

For p ~[n [
—1 the discussion is more tedious (but

less important), and one can find the order-of-
magnitude equation

VP, -V~") (2~z/Pr EP .

We conclude that for )n [ ~2, the first term in Eq.

(5) dominates if

iu&/ax[ «1. (7)

The discussion is different for (I j =0 or 1, and the
condition of validity is found to be

[)z(u/2' [«1. (8)

II. MEANING OF APPROXIMATION AND VALIDITY
FOR TRANSITIONS IN TWO FIELDS

A. Link with perturbation theory

In this section, I want to show directly which
processes are described by the MT approximation.

Condition (7) is fa more drastic than acies's con-
dition (4), which is just (8), and

~ ~/E ~
«1.' Con-

dition (8) for [n ~=0 or 1 means simply that the
Reiss approximation is at least as good as first-
order perturbation theory, which we knew. ' Qn
the contrary, condition (7) means that the MT
approximation cannot be used for the calculation
of multiphoton transitions induced by the field
itself, since then ()2~[ =(Ez -E; [ cannot be much
less than ) &E ~; ~

s&u/aE ) is more likely to be of
order unity, which is the conclusion reached in-
dependently by Cohen-Tannoudji et al .'

D. Strong-field limit

Let us now consider the strong-field limit
z» 1. We can use the Hankel asymptotic expan-
sion of Bessel functions' to show that

O',"' = U,'"'(-n(d/b, E).

The condition of validity (7) is thus still necessary.
Further study could lead to a condition for the
first term in (5) to dominate over the whole re-
mainder: This is a difficult task. I have made the
calculation for

~
n

~

» 1, and the resulting condition
was

~
z'+~/&E)«1,

which is not very different from Heiss's condition
(4)

E. Another discussion is needed

for two-field cases

Considering condition (7), it may be thought that
the MT approximation could keep its validity in the
ease where the greatest part of the transition en-
ergy is brought in by a weak field 8 (treated in
first-order perturbation theory), while the strong
field A supplies a little remainder I)2~ I «&EI .
The method used by Beiss and others for two-field
problems' ' is not valid under condition (7), so
we shall give a new one in Sec. II. The analysis
has been carried on for a monochromatic linearly
polarized field. Generalizations are straightfor-
ward, but tedious.
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The exact wave function 4,(t} is given by the
usual time-dependent perturbation theox y from the
development in powers of H' and the time integra-
tions of

4,(t) = 4, (t) —i, dt'e ' o' 'H'(t') e" 4', (t'),

where g-0, for an adiabatic switching of the per-

turbation. The result includes a number of sums
on intermediate states j with denominators
(E, -E, +P(d + iq) ' .Condition (7) of Sec. I suggests
that the MT approximation could be obtained by
neglecting lP(dl «j E, E,-( l everywhere. There
remains the questions of intermediate i states;
fortunately, we can write the exact 4', (t) in the
form'

t

4'e(t} = Ve(t)(q((t) j V((t)) '"exp - t E,t+ «R«~(jtt'(i')e"'j y, (t )}
~ (&o

where ((t), l (t&, (t)} = 1 and the perturbation develop-
ment of (t((t) contains only" denominators (E, -E,
+P~+t()) ' with je-'t. If we neglect the p(d terms
everywhere (an approximation to be discussed in
Sec. II)-'i), qq(t) becomes the corresponding wave
function of the static perturbation theory, "as
does 4&(t); the normalized wave function of the
static perturbation theory (i.e., as if A were time

independent) is exactly e""'"4);(t), and the approx-
imation is thus

4,(t) = e"" "4,(t).
The first-order transition amplitude in a weak

field of circular frequency A can now be easily
calculated as the term proportional to expi(Et -E(
—0- s(d)$ in

(e,(t)I ( ' ' e ~
'

I e,lt)) = &e, (t&le
-"" " ' ' ' e"" '"Ie, (t)& = ( e,(t)l

' ' e
)II e, (t&),

i.e., exactly the same result as if the dressing
field A were not pre.sent.

B. Discussion

we have gained is the knowledge that the same
trivial result holds in perturbation theory to the
~th order-not only to the zeroth order —provided
conditions (4) and (11) are satisfied.

If the condition

v ' ~ i, l
t&t(u j « l E, —E, l

is fulfilled for some +, we can consistently neglect
the P~ terms in the perturbation development of
(I&;(t) up to the t&tth order in lAl. The MT approxi-
mation can thus be used for the calculation of a
transition involving n -N quanta &u (and one quan-
tum II) if the dressing field A is not too strong:
for there is certainly a limitation on the strength
of the field, since in very strong fields jP(d l may
be much greater than n~ in some intermediate
states of some amplitudes that contribute signifi-
cantly to the transition. This limitation can be
determined approximately from arguments similar
to those of Sec. I, leading to condition (4) [or
perhaps (9)]; conditions like (7) or (8) could also
be obtained, but they are weaker than (4) and (11).

The first-order transition amplitude of Eq. (10}
could have been calculated equivalently in the
representation where the wave equation is (1) and
the perturbation is H&. The MT approximation is
therefore the zeroth-order approximation, and the
trivial result obtained in (10) is now evident. What

C. Conclusion

The MT approximation cannot be used to cal-
culate multiphotonic transitions in a strong field.
It can be used under conditions (4) and (11) to
compute first-order transitions between bound
states dressed by a strong field, but it gives
nothing but trivial results. The only open way I
could find is the calculation of bound-free transi-
tions in a dressed atom, the bound state being
treated in the MT approximation, while another
approximation is used for the free state, e.g., the
transformation of Schwinger" and Henneberger, "
plus the Born approximation for high energies:

t

et(t) = eee (- t et' tt (t le "' e''
This could lead to nontrivial results.
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