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Hydrodynamics of superfluid helium below 0.6'K. III. Propagation of temperature wavese

Humphrey J. Msris
School of Mathematics and Physics, University of East Anglia, Norwich, England~

Institute of Theoretical Physics, Goteborg, Sweden

Department of Physics, Brown University, Providence, Rhode Islandt
(Received 4 September 1973}

The propagation of second-sound waves in superfluid helium is considered for temperatures below

0.6'K. A dispersion relation for the waves is obtained. This relation is valid for frequencies much less

than the small-angle phonon-phonon collision rate. In the low-frequency limit the usual second-sound

mode with velocity cd+3 is found (co is the phonon velocity). At higher frequencies the velocity of
this mode increases towards co, and other modes of lower velocity appear. The nature of these waves

is discussed. Finally, several experiments that might give information about the waves are considered.

I. INTRODUCTION

The existence of second sound in superfluid heli-
um-4 was first proposed by Tisza' and by Landau. '
The first experimental observations were made by
Peshkov. ' Second sound is a collective oscillation
of the gas of phonons and rotons. ' Using the two-
fluid model, Landau was able to derive the follow-
ing result for the second-sound velocity c,:

c', = p, TS'/p„C .

8 and C are respectively the entropy and specific
heat per unit mass, and p„and p, are the densities
of the normal and superfluid components. At tem-
peratures above 1.3'K the major contributions to
the entropy, specific heat, and normal Quid densi-
ty come from the roton region of the dispersion
curve. In this temperature range the velocity of
second sound as calculated from Eq. (1) is ap-
proximately 0.2@10' cm sec '. This is in good
agreement with experiment. ' At temperatures
below 0.6 'K it is the phonons that dominate the
thermodynamic functions. As a first approxi-
mation, the relation between the energy ~ of a
phonon and its momentum p may be assumed to
be linear. Thus,

e= cQ.
It is then straightforward to show that the two-
fluid result for the velocity of second sound [Eg.
(1)) is

c, =c,/v 3.
The velocity c, is known' to be 2.383 ~10' cm sec '.
Hence, the velocity of second sound below 0.6 'K

should be 1.38 &10' cm sec '. Experimentally,
an increase in velocity is definitely observed as
the temperature is lowered below 1 'K, but dif-
ferent experiments seem to give different re-
sults. " The difficulty appears to be that the

derivation of Eq. (1) using the two-fluid theory
implicitly assumes that the mean free paths of the
phonons and rotons are negligible compared to the
wavelength of the second-sound wave. Thus Eq.
(1), and Eg. (3), which is derived from it, must
be considered as correct only for second sound
of very long wavelength. When the wavelength
of the second sound is comparable to the mean
free path of the excitations, the second-sound
velocity becomes frequency dependent and the
wave is attenuated. 4 Experiments at different
frequencies may then give very different results.
As a practical problem, this becomes important
at low temperatures because the mean free path
of the excitations increases rapidly as the tem-
perature is decreased.

In this paper the velocity of second sound is
calculated as a function of frequency and tem-
perature. We consider only the temperature range
below 0.6 'K and assume that rotons may be ne-
glected. In the next section we obtain the basic
theory and formal results for the second-sound
dispersion relation and the group velocity. In
Sec. III we obtain numerical results for the dis-
persion relation. We find that at low temperatures
(T &0.4'K) there are other waves that can propa-
gate through the phonon gas in addition to the
usual second-sound wave. In Sec. IV we discuss
various experiments that might be carried out
to investigate the dispersion relations of these
waves .

II. DISPERSION RELATION FOR
SECOND SOUND

Consider a superfluid containing a distribution
n of excitations. Assume that the density is
uniform and that the superfluid velocity is every-
where zero. " The rate of change of n with time
is determined by the Boltzmann equation
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~here v~ is the group velocity of an excitation,
given by

C(p, p')m, d~, .
coll

The integral is over all of momentum space. %e
introduce the symmetrized coBision operator"
C(p, p'}, defined as

C(p, p') =-C(p, p')[st. (so~ +I)/s', (s~+I}]'~'.

We may define eigenfunctions g, (p) and eigen-
values A. , of P by

r C(p, p')A(p') dT. = &, 0, (p}-. (1

%e now write ~~ as an eigenfunction expansion:

m, = (so~)'~'(s', + l)~' Q A, p, (p) . (ll)
J

The (A,}are coefficients, which may depend on

position and time. If we substitute Eq. (11) into
Eq. (4), multiply by q, (p), integrate over momen-
tum space, and use the orthogonality of the eigen-
functions, we obtain

BA, . 8A;' = -x,A, —Q (i ~ v, ]j ) (12)

The matrix element: is defined in the conventional
way as

$] P vplI} ) de.

Consider solutions of Eq. (12) in the form of plane
waves propagating in the z direction. Let

~ If &t(a fixe- At)
i

The first term on the right-hand side of Eq. (4)
arises from collisions between the excitations.
Suppose that n~ differs only slightly from an equi-
librium distribution no~ characterized by a tem-
perature T. Then, we define ~~ as

~~=-n~ -n~)

with

no —(etta sr 1)-
P

The collision term may then be linearized by
writing

E„.(K) = 2wK(i ( U~cos 8 [j) —iX,.6,,
The dispersion relation for the waves is

det(E -IQ) =0,

where I is the unit matrix.

A. Properties of the eigenfunctions

To proceed further we need to know the eigen-
functions and eigenvalues. Since C(p, p'} only
depends on the magnitudes of p and p' and the
angle between these vectors, the angular parts
of the eigenfunctions must be spherical harmonics.
%e therefore label each eigenfunction by a radial
quantum number n & 1, an "angular momentum"

l, and a magnetic quantum number m. The eigen-
values need only be labeled by e and E, since they
do ~ot depend on m. Eigenfunctions with the same
I, and m but different radial quantum numbers must
be oxthogonal. Thus, for any atm combination
there can be at most one eigenfunction with no
radial modes. " If this exists, we denote it by
n =1. The physical meaning of the eigenvalues
can be appreciated if we note that when the ]A,}
are independent of X, a solution of the Boltzmann
equation (4) is

ns —(s')'~'(n'+I)'~' p A g (p)e ~&'

Thus, if we add to an equilibrium distribution
function n~ a perturbation proportional to (n')'i'
(s', + I)'i'g, .(p), this perturbation decays exponen-
tially in a time A., '. lt follows that conserved
quantities lead to eigenfunctions with zero eigen-
value. If we raise the temperature by gr„ the
phonon distribution is changed by [see Eq. (7)]

= m', (a~+ I)ar/ksr'.
Because of energy conservation, collisions do
not change this distribution. Hence, from (17}
there must be an eigenfunction:

g„,(p)=(const. )~(s',)'i'(n', +I)'i' (lS state). (19)

The eigenvalue A.„of this state must be zero. To
make this eigenfunction normalized, we have to
choose" the constant to be (p/C pT)"i', where

P = j, //'k~T, p is the density, and C is the specific
heat per unit mass. Conservation of momentum

gives three more eigenfunctions. The eigenfunc-
tion connected with p, is

Q [E,~(K) -D5„]A) =0, (14)
g„,(p) = (co»t. ) P cos8 (n~}'~'(n~+ I)' ' (1P state) .

(20)
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A.„=0. (21)

f(e) =»'(eP~'[»'(~) + I]'~'.

w0 is the Qruneisen constant defined by

(28)

~ 1+p~ P~
I+(pip }' (22)

y, pgf and p~ are constants chosen so that this
dispersion curve is consistent with neutron-scat-
tering, "specific-heat, "and viscosity measure-
ments. " Two sets of possible values were ob-
tained: these values are listed in Table I, and
we refer to the corresponding dispersion curves
as C and D. Using the collision kernel given in I,
it is straightforward to show that the eigenvalue
equation (10) becomes

F) (e I 62)R„)(e2)e2 de~ = A„(R„((e.) 6 I
0

where

E, (e, e, ) = I'(e)5(~ —e, )P, (0)

—B«,(~ —e, )'f( I & —&2 I )Pi(8')

+Bee (e + eg) f(e + e )Pg(8 ), (24}

To calculate the remaining eigenfunctions we have
to make specific assumptions about the form of the
kernel of the collision integral. This kernel has
been considered in detail in a previous paper, "
referred to hereafter as I. The main features
are as follows: The collisions between the phonons
are predominantly small-angle three-phonon col-
lisions. To calculate the collision angle, it is
essential to crnsider the small deviations of the
phonon-dispersion law from the linear approxi-
mation [Eq. (2)]. In I it was assumed that a good
approximation to the dispersion relation was

p 8c()uo=
Q0 BP

Measurements by Abraham eI, al."give w0 =2.84.
The angles 6' and 6}" are most conveniently de-
fined by regarding p as a function of e. Then,

„,„, p'(e)+p'(e, ) p'(-le —~, l)
2p(a)p(e, )

„,8„p'(~ + e.) -p'(e) -p'(~, )

2p(e)p(~, )

(29}

Although we have explicitly indicated the limits
of integration in Eqs. (23) and (25), it is to be
understood that the ranges are still limited by
the requirements that 8' and 8" be real. " P, (8}
is the 1th Legendre polynomial. The eigenfunction

(p) is connected to the function R„,(e) by

g„,.(p) =R„,(~}I;.(8, y),
where V, (8p) is a spherical harmonic, and the
direction of p is defined by the angles 6} and p.
There are a number of approximations in these
results: these are discussed in detail in I.

We have been unable to solve Eq. (23) analytical-
ly and have therefore had to use a numerical
method. The technique is simply to replace the
integral on the left-hand side by a sum over a
finite set of points. This reduces Eq. (23) to a
matrix eigenvalue problem. The number of eigen-
functions and eigenvalues found is equal to j, the
number of points summed over. Consider first
the solutions for S states (I=0}. If we use a set
of points j~e, where j =1, 2, . . . ,j, we find the
1S-state eigenfunction [Eq. (19)] together with

+gg g3 g +g&) R g~) -Pl 6+6~)
0

with

B = (u, + I)'/(4wph'c, '},
»0(g) —(e&~"Br

(26)

(27)

TABLE I. Parameters defining the dispersion curves
C and D.

K
CL

N
Q' 0 , c~

l i'

I j
lI
1I

IP

I /
jg
n

7
(1037 g 2cm sec )

8
10

0.5385
0.5418

0.3727
0.3322

FIG. 1. Badial part A„p(c) of the 8-state eigenfunctions
at 0,25 'K. The 1$-state eigenfunction is denoted by the
solid line. The remaining curves are three typical eigen-
functions from the continuous spectrum.
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A5(e —~,) +8/(~ —~, )~, (32)

where A and 8 are constants and P denotes the
principal part. There may also be weaker singu-
larities at the same point; we have not made a
detailed study. The critical energy &, is related
to the eigenvalue ~ by"

x = I"(e,) . (33)

The eigenfunctions and eigenvalues for S states
change with temperature in a simple way. Sup-
pose that at temperature T there is an eigenfunc-
tion pr(p) with eigenvalue zr. Then from Eqs.
(23)-(25), it is easy to show that at temperature
T' there is an eigenfunction"

The associated eigenvalue is

z, =~,(T/r)'. (35)

The l dependence of the eigenvalues is shown
in Fig. 2. These results are for T =0.25'K using

j =10 and ac=2k~T. The eigenvalues of the n&1
eigenfunctions are nearly independent of / arid

are nearly independent of which phonon-disper-
sion curve is assumed (C or D). The eigenvalues
of the n =1 states, on the other hand, increase
rapidly with increasing l and are significantly
different for the two phonon-dispersion curves.
These features arise because most collisions
between phonons are small-angle collisions. Sup-
pose an equilibrium distribution of phonons is
perturbed by adding a distribution with angular
dependence P, (8) and a radial dependence similar
to that of a 1S or 1I' state. To bring the system
back to equilibrium, the small-angle collisions
must transport the excess phonons from regions
of momentum space where P, (8) is positive to
regions where P, (8) is negative. This takes a
long time and therefore A.», which is the recip-
rocal of this time, is small. The time taken,
however, does decrease rapidly with increasing

j —1 eigenfunctions with finite eigenvalues. Dou-
bling the number of points and simultaneously
halving ~& has the following results. The 1S state
is still found. The j —1 eigenfunctions found pre-
viously with finite eigenvalues have their eigen-
values shifted slightly. New eigenvalues appear be-
tween each of the old eigenvalues and one new
eigenvalue is added above the highest eigenvalue
found previously. These features imply that the
eigenvalue spectrum is continuous starting at zero.
This is in agreement with a result obtained by
Jackie." The radial parts of some of the eigen-
functions for T =0.25 K are shown in Fig. 1. The
n 41 eigenfunctions all have a singularity of the
forQl

I, since the maxima and minina of P, (8) come
closer together. Thus, X„ increases rapidly
with /. The time also involves the angle of the
typical collision and this is different for the two
forms of the dispersion curve. On the other hand,
a perturbation having S symmetry and a radial
mode is rapidly destroyed by small-angle colli-
sion. Thus, in general, X„~ for n 41 is large in
the sense that

&~& o o o u u o o o u o 0 o 0 o c

) 0000000000 0000$
&0~) 00000000000000~

)00000000000000

LLI 5'lO-

z
C

10-

0 X
X

~ X

X

X

'lO
0

ANGULAR MOMENTUM

I'IG. 2. Eigenvalues g, of the symmetrized collision
operator C as a function of the angular momentum I,.
The temperature is 0.25 K. x and denote eigenvalues
of n =1 states obtained using dispersion curves C and D,
respectively. The higher eigenvalues are nearly inde-
pendent of whether C or D is used and are denoted by
Q. Only the five lower eigenvalues are shown for each
value of /.

(35)

This statement has to be qualified in two regards.
First, it is only true provided / is not too large.
The typical collision angle in the small-angle
collisions is roughly 10'. For I z 15, P, (8) varies
considerably over a 10' range, and thus only one
small-angle collision is required to destroy a
1l state. In the second place, Eg. (36) cannot
be true for all S states, since the eigenvalue spec-
trum of these forms a. continuum starting at zero.
However„as can be seen from Fig. 1, the states
with very small eigenvalues have eigenfunctions
which are appreciable only for very small ener-
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gies, i.e., for ~«k~T. Subject to the same sort
of qualifications, it is also true that, for e 41,

nl 11'

Finally, we note that, for e41, A„~ is of the
order of 7~~', where r,

~

is the smaD-angle-colli-
sion time. The effective large-angl, e-collision
time T~ may be sensibly defined as

Ti = ~12' = ~~L'.

8. Lour -frequency approximation

Consider the propagation of a wave with fre-
quency 0 such. that

QT)I &&1 . (39)

For such a wave there will be a large number of
small-angle collisions in one period. Thus, one
expects that for a given direction in momentum
space the phonon-distribution function wiQ be
approximately described by a "temperature" and
will vary smoothly with the magnitude of p. It
follows that in E&I. (11) the expansion coefficients

g, will be very small except for the n = 1 states.
If we restrict attention to n =1 states, the ele-
ments of the matrix E appearing in the disper-
sion relation (16) may be written

E, , (K) =2«K(le i «cosei II'm')

~~lt~ll ~mfft

The matrix element of cosg vanishes unless ~m
~

= ~m' ~. Hence, the matrix E may be put into
block diagonal form in which the blocks are char-
acterized by definite values of ~m ~. It follows
that any wave propagating through the phonon gas
will be characterized by a definite number p. , in
the sense that the distribution function will be a
linear combination of eigenfunctions with magnet-
ic quantum numbers ~p. Only waves with p, =0
have a nonzero value of the coefficient A&~(~A»).
p 100 is a measure of the fluctuation in the energy
density of the phonon gas. Thus, waves with p, =0
are the easiest to detect experimentally and we
will therefore concentrate on them. " In this case
we may drop the subscripts m and m' and write"

2mKc, C,
2mKC Q, g 2~Kdet(E —IG) =0= 0 2

2wKcpQ,
4

where

&"
&

—= {1l —1 0
~ v& cos 8/co ~

1l 0) . (42)

we may use perturbation theory. Consider a
small variation ~ in K. Let

Note that A. 10 and A.» are zero. For any choice
of the wave number K we will find a number of
solutions for 0 which we label by an index g. The
solution A~~ will have definite values of the co-
efficients A„, associated with it, these satisfying
E&I. (14). We denote these by A&~, dropping the
n and m subscripts which from now on wQl al-
ways have the values j. and 0, respectively, Using
E&ls. (11), (13), and (31), we find that the phonon-
distribution function associated w'ith the wave Kg
ls

(2r)-&/2(no)&/2(no+I)1/2e&(2&«&g og )&
P

x g Af 'P&(6)lt&(e) .

E«, (K+ M) —-E&, .(K)

&+1,& G& \, & +1) '

Then, to first order in ~,

»

=4vnKc, p A &-.,A'„t, .

Thus, the group velocity is

=2c, g Ar'GP'„', .

(45)

(46)

(4V)

We have dropped the n subscript on R„&(e). Since
E» is a symmetric matrix, we ma, y choose the
A~~ so that

To calculate the group velocity of the wave K,

III. NUMERICAL RESULTS

A. Small-angle collision rate

Consider first the small-angle-scattering time
%e need to know this to estimate the range

of frequencies for which the "low-frequency ap-
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TI~
——2.62 ~ 10 "T ' sec .

Thus, the frequency condition (39) becomes

(50)

proximation" is valid [see Eq. (39)]. The colli-
sion rate for a phonon of energy ~ is I (e), as
given by Eq. (25}. The lifetime ~~~ is thus

Ti = I/I"(e) . (4

%'e also define a mean free path AII by

A
I)

= COTII

The temperature and energy dependence of TII

and A~~ are shown in Fig. 3. To apply Eq. (39),
let us define T~~ as the lifetime of a "typical"
thermal phonon. We take the energy of the typical
phonon to be SA~T. Then,

those with lower frequency have coefficients
A~ ~, which decrease rapidly as / increases beyond
some critical value /, . If l is sufficiently great-
er than /„ these solutions are found to be in-
dependent of l . Values of 1 up to 16 were
used. For any given choice of /, there are
always some high-frequency solutions for which
even A.~~ is of the same order of magnitude as

These solutions change radically even if
l~~ is increased by 1 and therefore were discard-
ed.

Using this method, we have investigated the
dispersion relation (D vs K) for a number of tem-
peratures between 0.15 and 0.6 K. In Fig. 4 we
show results obtained for the complex phase veloc-
ity U defined as

v «608T'. (51) v = II/2sK. (52}

where p is the frequency in MHz.

8. Dispersion relation

To find the frequency as a function of wave
number, we must solve the determinantal equation
(41). To do this, we have to truncate the infinite
determinant at some finite value of l, which we
call I . This gives (I ..+1) solutions for Qr~

and the coefficients A.~~. Of these solutions,

These results are for 7 =0.25 'K and assume dis-
persion curve C (Table I). From Eq. (41) it is
clear that when K=O, solutions are

Since ) „and A.» are both zero, there are two
solutions of zero frequency. When K is finite,
these two solutions split. For very small K these
solutions become

Q =y2mKcop~. (54)

v„(ld cm sec }
2

x
10 -05-- o /

/
/

/

10

10
'V)

a K-O.OOI cm'
& K~O.O'I

& K~O,I
& K~)

K~Q

FIG. 3. Small-angle collision time 7,
)

and mean free
path A

I~
as a function of reduced phonon energy ~/k~T.

7he different curves are labeled by the temperature in
'K.

FIG. 4. Dispersion relation at 0.25'K plotted in the
complex velocity plane. OM&»ry (first) second sound
( ), second second sound (. ~ ~ ~ ~ ) third second
sound (—-—}, fourth second sound {——).
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If the dispersion of the phonons is small, the group
velocity g~ is approximately equal to c,. The ma-
trix element G, [Eq. (42)] is then determined com-
pletely by the angular factors and equals 1/W.
The velocity of these solutions is thus

V=WC /W ~

This is the velocity usually associated with second
sound [see Eq. (2)]. We therefore call this branch
of the dispersion relation first second sound. For
larger K, the velocity of this branch increases and
becomes complex. The other roots remain on the
imaginary axis initiaOy but eventually two x'oots
meet and split into a pair of the form

+A„+iAq .

%e caO these branches of the dispersion relation
second second sound, third second sound, etc. ,
according to the sequence in which they leave
the imaginary axis for increasing E.

C. Phonon distribution assoriated with

the waves

Knowing the expansion coefficients, we may
work out the phonon distribution function associa-
ted with the waves using Eq. (43). To express the
results in a simple form, we consider aT(8), a
direction-dependent "temperature change" of
the phonon gas. %e define this as

If /=0, the integral over c gives 1 because the
radial parts of the eigenfunctions are normalized.
For /40 we approximate the integral by 1. Pro-
vided 1&10, this gives an error less than about
15% at all temperatures. For )&10 the error in
approximating the integral by 1 becomes progres-
sively larger, but the coefficients A~~ are very
small for these values of l. %e obtain now for
the temperature in direction 6

T+Cr(e) =(ac, ) '(2T/Cpp)~'

x P /trc~ (e)el(2wrs Art)-

In Fig. 5 we show some typical results for T
+~r(e) as a function of the reduced phase p,~ de-
fined by

P,~ =Q~t —2rKz .

The results are shown as a polar plot as a function
of g. The amplitude of the wave has been arbi-
trarily chosen to obtain a convenient polar plot
[i.e. , the Ar~ are not normalized according to
Eq. (44)]. The results are calculated for T =0.25
'K and assume dispersion curve C. Figures 5(a)
and 5(b) show results for first second sound with
wave numbers 0.3 and 10 cm '. For a very-low-

k, r'J,"nn, (e)ep'dp
J,"e's', (n', + l)p' dp

(56)

3n/2

This definition makes n.r(e) proportional to the
energy density of phonons travelling in direction
8. It also has the property that if the distribution
of phonons is actually an equilibrium distribution
characterized by a temperature T+ar [see Eq.
(18)], then C,T(e) is equal to nr We can sim. plify
Eq. (56) by relating the integral in the denominator
to the specific heat C. This gives

ar(e) = „, ~,(e)ep' dp
4n'

The value of r.r(e) associated with the wave ICg

may now be calculated using ~ as given by Eq.
(43). The result is

nr(e) =h '(2r/cpp)" g-a", z, (e)

5'/4

3n/2.

3'/$ .

(58)

Since the dispersion of the phonons is small, we
may make the approximation

(59)

3'/2

FIG. 5. Polar plots of the direction-dependent temper-
ature T+ 4+9) for first second sound E =0.3 cm (a),
andE=10 cm ~ {b), second second sound X=3 cm ' (c),
and third second sound E =3 cm ~ (d). These results are
for T =0.25 K.
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frequency second-sound wave, the angular de-
pendence of gT(8) is

(const. )(cos8+ I/W) .

It can be seen from Figs. 5(a) and 5(b) that, as
the wave number increases, AT(8) varies more
rapidly with 8 and becomes concentrated around
8=0. Figure 5(c) shows results for the second
second-sound wave. The distribution function
evolves with time in an interesting way. A bulge
grows at 8=0 (phase r/4 to Sr/4), which then
converts into a ring (phase ~ to 5n/4) Th. e ring
expands to larger values of 8 (phase Sv/2 to 2s
+r/4) and eventually fades away while a new bulge
is being formed at 8=0 (phase 2s+s/4 to 2w +Sr/
4). A sirhilar cycle is followed by the third sec-
ond-sound wave [Fig. 5(d)] but the pattern is more
complicated. The coefficients P~~ have been cho-
sen so that A~o~ is real. To see what this means
we note that the average value of bT(8) is

(aT)=-l J a (2Ad( o el

—(hc )-3(T/CpP)lj2AE tel( 7llc2e 9 t)r

Thus, the effect of choosing A~~ as real is to
make (AT) a maximum at phase zero.

between phonons and rotons could significantly
contribute to the over-all phonon-scattering rate.
Landau and Khalatnikov" have calculated the total
cross section for scattering of an xk~T-energy
phonon by a roton. Their result is

o=7xIO "(xT)' cm'. (6S)

At 0.6'K the number of rotons per cm' is 2x10'.
Hence„ the mean free path for a 3A~T phonon is
7 cm, and the phonon mean free time due to this
scattering process is 3 x10 ' sec. Thus, this
process is unimportant compared to the three-
phonon scattering mechanism. In fact, it is so
weak that for second sound in the frequency range
of experimental interest the rotons may take no

part in the wave motion. If the phonon gas has
a drift velocity p relative to the roton gas, it will
take of the order of 3@10 ' sec for the two gases
to reach the same velocity. Thus, if the fre-
quency of the second sound is 10 kHE or greater,
it appears that the rotons have very little effect
on the propagation of the phonons. This is con-
sistent with the very recent experiments of Dynes
et g/, " In a heat-pulse experiment at 0.55 K they
observed two separate pulses with different veloc-

D. Note on allotted range

of temperature

In the Introduction we mentioned that below 0.6
'K the phonons dominate the thermodynamic func-
tions. %'e used this fact to justify neglecting the
rotons. This argument needs some qualification.
At 0.6 'K the rotons contribute only about 2% of
the total entropy of the liquid. However, since
the roton entropy varies rapidly with temperature,
the importance of rotons is much greater as far
as the specific heat is concerned. At 0.6 'K C„„„
is approximately 10/00 of the total specific heat.
Because the momentum of the rotons is large in
relation to their energy, there is also a large
roton contribution to the normal fluid density
(-60/p at 0.6 'K).

The effect of the rotons on the propagation of
second sound is not entirely clear. In the limit
of very low frequencies where the two-fluid theory
applies, we may calculate the second-sound veloc-
ity using Eq. (1). At 0.6 "K including the rotons in
the thermodynamic functions gives c, =0.83~10'
cmsec '. This is a large correction, since, if
only the phonons are considered, c, =1.38x10'
cm sec '. The correction does decrease rapidly
at lower temperatures, however, and at 0.45'K
ls only 2%.

It might also appear possible that collisions

0.4 0.6

TEMPERATURE ( K )
I IG. 6. Attenuation of first second sound as a function

of temperature. The curves are labeled by the frequency
in kHz. Results obtained using dispersion curves C and
0 are shown as ( } and (—-), respectively. The
vertical bars denote the temperatures at which QT(~ =0.3,
and the curves are plotted up to QT.

~I

——1.
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plane. For a given real value of the frequency Q,
it is possible to solve the dispersion relation (41)
for the complex wave number K. The waves with
Im(ff') &0 can then be used to form a suitable linear
combination to satisfy the boundary conditions at
the surface of the heater. The temperature (n.T)
at a distance z into the liquid is then given by an
expression of the form

I l I I

0.25 0.4
TEINPERATURE ( K )

0.8

FIG. 7. Velocity of first second sound as a function
of temperature. The notation is as in Fig. 6.

ities, these arising from separate collective ex-
citations in the phonon and roton gases.

IV. ANALYSIS OF POSSIBLE EXPERIMENTS

In this section we will consider in detail a num-
ber of experiments that might be performed to
check the theory.

100

A. Response to a sine wave

A simple method for investigating the character-
istics of temperature waves in helium is to use
a plane heater whose temperature varies sinu-
soidally with time. The phase and magnitude of the
temperature osciQations in the liquid can then be
measured as a function of z, the distance from the

where K, is the complex wave number of the (th
wave, and a» are coefficients determined by the
boundary conditions. The dependence of (d, T)
on z is thus very complicated for small z, but
for large z only those waves with small attenua-
tion will make an appreciable contribution. The
two least-attenuated waves are first and second
second sound. %e define the attenuation n» and
phase velocity v» by

a, = -Im(K, )!2tt,

t, = II,/2tt Re(r, ) .

The frequency and temperature dependence of
o. „and v» for first and second second sound are
shown in Figs. 6-9. For first second sound, re-
sults are shown down to a temperature at which

QT~~ =1. The second second-sound results are
calculated only down to the temperature at which
QT.

~

=0.3, since at lower temperatures the ap-
proximation of taking only the first 16 angular
momentum states becomes inadequate.

It can be seen that the attenuation of the first
second-sound wave is considerably less that of

iz0
l~
~ 10-
R
LLI

2.0
0
M

Q I
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E
1.6

V
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LL ag Q

l.2

0.25

TEMPERATURE ('K} 0.2 0.25 0.35

FIG. S. Attenuation of second second, sound as a func-
tion of temperature. The notation is the saxne as in Fig.
6, except that results are shown only up to 07

~~

=0.3.

TEMPERATURE ('K }
FIG. 9. Velocity of second second sound as a function

of temperature. The notation is as in Fig. 8.



second second sound. Thus for large distances
from the heater, a single-exponential decay should
be observed. For smaller distances where the
second second-sound wave is not completely at-
tenuated, interference between the two waves
should occur. To get an idea of heber large an
effect this might be, we have to estimate the co-
efficients g, and g, for the two waves. This re-
quires some assumptions about the boundary condi-
tion at the surface of the heater. %'e have inves-
tigated two simple models. If the surface of the
heater is undamaged and very smooth, the radiated
phonons should all have momenta within a few
degrees of the normal to the surface. This happens
because of refraction at the interface. " %e there-
fore consider a model (the refraction model) in
which aT(8) at z =0 is

r T(8) = 46(1 —cos8)e ' "'

We have arranged this so that (ET), the average
of AT(8) over all angles, has unit magnitude. We
now calculate the g, coefficients to match this
boundary condition. This gives the interesting
result that, in general, g, and g, are of about
equal magnitude but have opposite signs. For a
50 kHz wave at 0.25 K, for example, we find

aT(8)=2e '"', 0 8«EE/2,

EE/2 &8.
(69)

%e call this the isotropic model. In this case g,
and g, are generally of the same sign. A 50-kHz
wave at 0.25'K has, for example,

g, = 0.9 +0.2a

a, = 1.0+0.3i .
The propagation of sine waves has been studied

ga=2 6-0.1&

g~ = -2.3+0.li .

The reason for this phase difference can be under-
stood from Fig. 5. Kith the boundary condition
(6V) the phases of the various waves must be such
that they each give as large a contribution as pos-
sible at 6=0. To achieve this we have to add a
phase shift of approximately m to the second sec-
ond-sound wave. The angularly-averaged tem-
perature Q, T) associated with this wave is then
of opposite phase to (n.T) for the first second-
sound wave.

The other model we have considered is intended
to represent the radiation of phonons from a rough
or damaged surface. %e assume that at z =0:
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B. Propagation of pulses

Consider again a plane heater with normal in
the z direction. In a typical pulse experiment the
temperature of the heater is raised for some
time r (typically between 1 and 50 p, sec). Phonons
are radiated and the temperature of a detector
at a distance d is measured as a function of time.
To approximate what happens in this type of ex-
periment, we assume that at time zero the tem-
perature distribution in the liquid is

z T(8, z) =f(8)5(z). (Vl)

We will let f(8) have the angular dependence of the
refraction or isotropic models of Sec. IVA. It is
then a problem in Fourier analysis to find a linear
combination of plane waves satisfying the initial
condition (71}. The angularly-averaged tempera-
ture (LT) at later times may then be calculated in
the form

(+T(z f)) g 5 ej(2rze Q&t)-
ling

where b~z are coefficients determined by the ini-
tial condition. "

We have made calculations of pulse propagation
for a variety of temperatures and propagation
distances. Some typical results are shown in
Fig. 10 for the isotropic model and in Fig. 11 for
the refraction model. " Results for the velocity
of the front (20% of peak height) and peak of the
pulse are shown in Table II.

In these calculations the magnitude of f(8) has

by Osborne. " Unfortunately, the experiments
were carried out at very low frequencies between
60 Hz and 2 kHz. This corresponds to wavelengths
between 10 and 300 cm. The waves were propa-
gated along tubes 2 cm in diameter and between
0.38 and 12.35 cm long. It does not seem possible
to compare the plane-wave theory we have devel-
oped here with these data. The main difficulty
is that the wavelength x is large compared to the
tube diameter d. To obtain the "free-space"
velocity and attenuation from the experimental
results requires very complicated and uncertain
corrections.

One final point should be made about sine-wave
experiments. The theory we have developed does
not apply at distances from the heater which are
comparable to the yhonon mean free path A~~

(Fig. 2). In this range of distances there will be
a substantial number of phonons that travel bal-
listically from the heater to the detector. For
a path length of 1 cm this places a low-tempera-
ture limit on the theory of about 0.15 K.

TABLE II. Velocities of the front and peak of heat
pulses as a function of temperature and propagation dis-
tance.

Velocity {104cm sec )

Detector
Isotropic modelTemperature distance

{'K) {cm) Front Peak

Refraction model

Front Peak

0.25

0.35

0.6

0.5
1

2

0.5
1
2

0.5
1
2

0.5
1
2

2.31 2,25
2.31 2,25
2.31 2.25

2,31 2.14
2.26 2,04
2.20 1.92

2.21 1.94
2.12 1.82
2.02 1.66

2 ~ 07 1.70
1.93 1.53
l.79 1.47

2.33 2.31
2.32 2.30
2.32 2.29

2.32 2.22
2.28 2.15
2.23 2.04

2.24 2, 06
2.16 1.93
2.08 1.77

2.10 1.82
1,96 1.62
1.81 1.49

been chosen so that

1

f =-,' f(8) d(cos8} =1.
-1

Since n.T(8, z) is a 5 function at the origin at time
zero, these calculations correspond physically
to the application of a very short pulse at the ori-
gin at time zero. To approximate what happens
for a finite-length pulse of arbitrary shape, we
could, in principle, simply add up the contribu-
tions from a number of sources of the form (71),
but retarded suitably in time.

It is necessary to treat carefully the infinite
Fourier spectrum of the 5 function in Eq. (71).
For large E the imaginary part 0, of the fre-
quency becomes large and negative for all of
the waves. Thus, to calculate zT(g, z) at, or
later than, some time t„ it is sufficient to con-
sider only those A values up to some maximum
K„such that (fl,

~
t, » I for all waves with this

wave number. In the present problem we are con-
cerned with times greater than the time at which
the front of the pulse arrives at the detector.
Thus, we may take t, = d/c, (d=detector distance).
The real part of the frequency for waves with
wave number K is of the order of v =c+ . Thus,
to be able to calculate accurately t;he response to
the 5-function source we require that our theory
for the dispersion relation be valid up to the fre-
quency v [see Eq. (51)]. It turns out that this is
a problem only at the lowest temperature (0.25 K)
and the smallest propagation distance (d=0. 5 cm).
To avoid this difficulty we have, for this tem-
perature only, replaced the 5-function source by
a Gaussian e "'~' with g =0.025 cm. This corres-
ponds physically to a pulse of duration approxi-
mately 2g/c, or 2 p, sec. In Table II we have cal-
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culated the velocity of the front of the Gaussian
pulses by using for the distance travelled the
distance of the detector from the fyogt of the pulse
at &=0.

The principle features of the results are:
(a.) The peak of the pulse has a velocity nearly

equal to c, at 0.25 'K (Table II). This velocity de-
creases with increasing temperature and is ap-
proximately equal to c,/&3 at 0.6 K. At first
sight it is tempting to view this variation of veloc-
ity as indicating ballistic propagation of individual
phonons at low temperatures and collective propa-
gation (i.e. , second sound) at high temperatures.
It must be remembered, however, that even at
9.25'K the small-angle mean free path for a typi-
cal thermal phonon is still less than 10 ' cm.
Thus, propagation over distances of the order of
1 cm cannot be truly ballistic. The pulses propa-
gate with a velocity close to c, because the colli-
sions are small angle, typically less than 5' at
0.25'K. On the basis of our results for the srnall-
angle mean free path, true ballistic propagation
is only to be expected below 0.1 'K.

(b) As the propagation distance increases, the
pulses broaden and the velocity of the front of the
pulse decreases. This occurs because the high-
frequency components in the pulse are attenuated
more (see Figs. 6 and 8) and because these com-
ponents have higher velocity (see Figs. 7 and 9).

(c) For the refraction model at 0.25'K, (AT)
becomes negative immediately following the ar-
rival of the main signal. A study of the terms in
the sum on the right-hand side of Eq. (72) reveals
that the main negative contribution to Q T) comes
from second second-sound waves. %e may there-
fore regard the negative region following the main
pulse as a pulse of second, second sound. The sign
of this pulse is opposite to that of the first second-
sound pulse because of the phase difference dis-
cussed in Sec. IV A. The negative pulse disappears
at higher temperatures because the first second-
sound pulse develops a positive tail and the attenu-
ation of second second sound becomes large. For
the isotropic model both pulses are positive. The
second second-sound pulse then arrives in the tail
of the first second-sound pulse. This tail is much
larger on the isotropic model than on the refrac-
tion model. Analysis of the sum in Eq. (72) shows
that the main contribution in the tail is from first
second-sound waves of low frequency. The distri-
bution functions associated with these waves vary
slowly with 8 [see Figs. 5(a) and 5(b)]. Hence, they
are much more strongly coupled to the source in
the isotropic model than in the refraction model.

(d} The velocities of both the front and the peak
of the pulse are greater for the refraction model
than for the isotropic model (Table II). This hap-

pens principally because the refraction-model
boundary condition couples more strongly to high-
K Fourier components, which have a higher veloc-
ity.

A large number of studies of pulse propagation
in the temperature range below 0.6 K have been
reported. ' " As we have mentioned in the Intro-
duction, these experiments all show that the pulse
velocity increases as the temperature is lowered,
but the various measurements of the pulse veloc-
ity are not in quantitative agreement with each
other. Some of the reasons for the disagreement
between the different experiments are the follow-
ing".

(i) Different experiments used different propa-
gation distances, and our results show that the
pulse velocity depends upon distance.

(ii) Most of the experiments involved the propa-
gation of pulses along tubes filled with helium.
Unless the tube diameter is much greater than
the propagation distance, there are complicated
changes in pulse shape arising from the reflection
of the pulse at the walls of the tube. These can
give rise to changes in the measured velocity of
the peak of the pulse.

(iii) Various ratios of source dimensions to
propagation distance were used. One would expect
that the velocity of the peak of the pulse should
decrease as the size of the source increases.

(iv) The details of the phonon distribution pro-
duced by the source are unknown, and are probably
different in the various experiments. Our calcu-
lations predict considerable variation in the pulse
velocity for different initial phonon distributions.

(v) A variety of pulse lengths and pulse shapes
were used in the experiments. A longer pulse
wi. ll be composed of Fourier components with
smaller wave numbers and according to our re-
sults should travel more slowly.

Because of these uncertainties„ it seems hope-
less to attempt a quantitative comparison between
our calculations and the experiments. An exami-
nation of the experimental results reveals nothing
that is inconsistent with our calculations, allowing
for the uncertainties associated with (i)-(v) above.
Experiments under better-defined conditions (i.e. ,
with a. large plane source, short pulses, and no
wall reflections} are currently being attempted. "
Even these experiments will still suffer from un-
certainties in the initial phonon distribution.

t:. Resonance methods

A standard method for studying second sound
above 1 'K is the resonance method. " This uses
a closed tube with a heater a.t one end. If the
frequency is sufficiently high, the two-fluid model



is a good approximation. This enables one to de-
rive simple boundary conditions at the walls and
end of the tube. These in turn enable the veloc-
ity of second sound to be determined from the
frequencies at which resonance occurs. Unfor-
tunately, at temperatures in the range of inter-
est hex e, the situation is more complicated. A
first second-sound wave at normal incidence onto
a plane surface mill not, in general„be perfectly
reflected, even if the surface is a perfect thermal
insulator and does not absorb phonons. Other
waves (second second sound etc. ) will be gener-
ated. The part of the first second-sound wave that
is reflected will suffer a phase shift, which, in
general, mill depend upon frequency, temperature,
and the details of the surface conditions. Because
of these difficulties, the resonance method does
not appear promising for studying the dispersion
relation of second sound. This conclusion is con-
sistent with the observations of Peshkov, ' who
found that resonance could not be observed below
0.5'K.

describes the state of the phonon system by just
two variables, the energy and momentum densi-
ties. These variables are chosen because they
are the only rigorously conserved quantities and
thus at low frequencies they will dominate the hy-
drodynamic behavior. We may regard the present
theory as a generalized hydrodynamics in which
the state of the system is described not only by
rigorously conserved quantities but also by the
most slowly relaxing nonconserved quantities.

It is interesting to try to understand the fre-
quency and temperature dependence of the attenu-
ation and velocity using the conventional theory
of relaxation processes. For a. system with a
set of relaxation times (T,.) the attenuation and
velocity of a wave with frequency 0 are

Q2T 2

c=~&y+ Q gg 1+@2~a .

V. DISCUSSION

Let us consider first mhy there are extra waves
in addition to ordinary second sound. To under-
stand this we note that ordinary second sound
exists as a propagating wave because energy and
momentum are conserved in collisions between
excitations in superfluid helium. In crystalline
solids momentum is not conserved (except in
special circumstances) and a temperature wave
with a real wave number has a purely imaginary
frequency. This suggests that the presence of
extra waves at low temperatures is connected
with the existence of additional conserved quanti-
ties. Of course, there are no additional quantities
that are exactly conserved. However, if there
exists a quantity that relaxes very little during
one period of the sound wave, me may regard this
as "sufficiently conserved". In the present case
quantities of this type are the amplitudes A» of
the n = 1 states with /» 2. Let us call the coef-
ficients A„,A„, etc. , the D-ness, F-ness, etc.
respectively. In this notation the total energy
of the phonons is proportional to the S-ness of
the distribution and this is a conserved quantity,
as is the P-ness. The D-ness relaxes in a time

Thus, if

Q»a„,

the D-ness may be regarded as a conserved quan-
tity in nearly the same right as energy and mo-
mentum. As 0 increases, extra quantities be-
come conserved and new propagating waves ap-
pear. We note that the two-fluid theory of helium

c,z is the lorn-frequency limiting value of the
velocity, and f,. and g,. measure the strengths of
the different relaxation processes. f, and g, are
connected by the Kramers-Kronig relation, and

if the relaxation is weak they are constants in-
dependent of Q. We try to use these equations
by identifying 7, with the lifetime of the I th n = 1
state. Thus we set

-1
7t )El~ o

The sums in (72) and (74) now go from 2 to ~. The
attenuation and velocity of first second sound may
be understood qualitatively in this way. At a given
temperature the velocity increases monotonically
with increasing frequency (see Fig. 7) as predicted
by (V4). Moreover, Eq. (74) predicts that the
velocity should start to deviate from its low-fre-
quency limit when 0 becomes comparable to the
inverse of the longest relaxation time. In the
present case this relaxation time is T, (=-x,2 ).
The numerical results for the velocity dispersion
do in fact show just this behavior, i.e., at each
temperature the velocity of first second sound
begins to increase from its low -frequency limiting
value when Qy, becomes of the order of unity.
Note that the velocity results do not show a se-
quence of clearly resolved relaxations associated
with each of the set of times (T,'f This is sim. ply
because the different relaxation times are suf-
ficiently closely spaced that the relaxation con-
nected with the Lth time has not been completed
before the (l+1)th relaxation begins.

When QT, is much less than 1 for all values of
l the attenuation is
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Q~ y0 7y o

y=2
(76)

where l, is the largest value of / for which Qyy +1.
The two terms in (VV) have opposing temperature
dependences and thus we are unable to use the
relaxation theory to predict the temperature de-
pendence of the attenuation. The numerical re-
sults (Fig. 6) give the attenuation decreasing as
T decreases in the low-temperature regime. This
implies that it is the first term that dominates
in Q7). Physically, this means that the relaxation
strength must be greatest for small l.

An observation of second second sound would
be very interesting. The most promising experi-
mental technique mould appear to be the sine-
mave method discussed in Sec. IV A. In principle,

Since the (7,) increase as the temperature goes
down, this formula should hold at low frequencies
and high temperatures. At 0.5 "K r, is 6 p. sec and
thus Qv, -l at a frequency of about 25 kHz. Hence
for frequencies less than this the attenuation should
be proportional to the (7,) and should increase as
the temperature is lowered. This is in agreement
with the numerical results (see Fig. 6). At high
frequencies and low temperatures, on the other
hand, the position will be more complIcated since
Q7y wi11 be greater than l for small values of /,
but less than j. for large l. Thus we may write

this technique can provide complete information
about the dispersion relation and attenuation of the
waves. A measurement of the relative phase of
first and second second sound mould give useful
information about how phonons radiate into helium
from a heated surface. If accurate measurements
can be made of the attenuation and velocity of the
waves, it might be possible to work backwards to
obtain information about the details of the phonon
dispersion relation. The theoretical predictions
for the attenuation and velocity are quite sensitive
to small changes in the assumed form of the
phonon-dispersion relation (see Figs. 6-9). A

similar experimental study under pressure would
also be of interest. The parameter y entering
into the dispersion relation is believed to change
sign before the freezing pressure is reached. "
When this happens, the three-phonon scattering
process that we have considered as the dominant
scattering mechanism becomes unaQowed. The
most important scattering processes will then
be either the three-phonon process in second
order, or a four-phonon process. This change
should be reflected in a considerable modification
of the dispersion relations for second-sound
waves, Evidence that the propagation characteris-
tics of heat pulses undergo considerable change at
high pressure has been reported recently by Dynes
et al, "
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