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The self-trapping of light pulses is considered using the classical nonlinear wave equation
of Chiao, Garmire, and Townes, modified to include nonlinearities up to sixth order in elec-
tric field. A phenomenological approach is adopted in vrhich the nonlinear coefficients are con-
sidered without reference to a specific molecular self-trapping mechanism. It is found that
filament formation can occur only over a narrow range of values of the nonlinear coefficients,
The method can be used as a criterion to test the validity of various self-trapping mechanisms.

Self-focusing and self-trapping of giant light
pulses traversing a transparent medium are gov-
erned by the wave equation with a field-dependent
refractive index. The exact form of the nonlin-
earities depends on the details of the specific mo-
lecular processes which give rise to filament for-
mation. Many processes, some very sophisticated
and unusual, have been invoked in order to account
for the observed behavior.

In order to identify the molecular processes
which play an important role in self-trapping, it
is important to study the behavior of a light beam
in a nonlinear medium without appeal to any par-
ticular mechanism of nonlinearity. Such a phe-
nomenological treatment, based on the classical
nonlinear wave equation, was initiated by Chiao,
Garmire, and Townes in 1964.' A different ap-
proach has been given by Kelley and by Javan
and Kelley, ' by Akhmanov et al. ,

' by Maier et al. 4

and by others, where self-focusing rather than
self-trapping is discussed.

In the present paper we extend the method of
Chiao et al. to the case where nonlinearities higher
than order two are included. ' As early as 1966'
it was recognized that it is necessary to consider
nonlinearities higher than e,E in order to obtain
some knowledge of the diameter of a self-trapped
beam or light filament, In Ref. 5 a nonlinear elec-
tric permittivity of the following form vgas pro-
posed to describe the formation of filaments in
liquids and isotropic solids:

Q =Qo+Q2+ +&4@ +$6+

where e, =rP, is the electric permittivity of the
medium at the optical frequency in the absence of
an electric field and e„e„and e, are nonlinear
coefficients. F. is the external electric-field in-
tensity expressed in this paper in electrostatic

units. In the case where E is the electric field of
a powerful laser beam traversing a liquid or solid
medium, and if the relaxation time associated
with the response to this field is slow compared to
the inverse optical frequency, then the time aver-
aged form of Eg. (l) should be used:

E eff = 60 + p 62EO + I 64EO + l6 66EO,
2 3 4 ~ 6

where F, is the amplitude of E and c,ff = n', & .
In w'hat follows we utilize the wave equation of

Chiao, Garmire, and Townes to which two higher-
order nonlinear terms with coefficients o, and P

are added:

ding+ ]
+E llt2 y~E25 + PE lkv —0 ($)dr ~ r* dr*

Here E2 =E2(r*) is the dimensionless amplitude
of E(r) =E,(r) cos(k,z —&uf), and r and r* are the
actual and dimensionless radial distances from the
filament axis, respectively. The nonlinear coef-
ficients e and P are given by

3~& E,

5 ~6 E~ 10
8 z2 E~ 9

The basic procedure for calculating the eigenfunc-
tions E~(r2) for cylindrical filaments is the same
a,s in Refs. 1 and 5, and the paper of Qustafson
et al. ' The dimensionless distance r~ is defined

r*= rr,

zr (I/
2 k, 2)1/2

where k„ the propagation constant along the beam
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FIG. 4. Electric-field
intensity E*(0) on I;he axis
of the filament, half-inten-
sity radii r&~~2 and fo E*~*
dc~ as functions of o. , with
P =0. All quantities are
expressed in dimension-
less units.
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Fig. 3, where three eigenfunctions are plotted for
the cases a=-0.1, 0, +0.1, and P=O. For each
curve we show E~(0), the value of the fieM ampli-
tude on the axis of the filament, and E"(r~„), its
value at the point r =r~„, where the light intensity
E*' drops to haU its maximum value.

The power P fed into the beam is given by

yQ pQO

p
16man,

This integral has been evaluated for different val-

ues of a and p. In Fig. 4 the quantities J,E* r*dr~,
E"(0), and r,*&, are plotted as functions of a for
p=0

In order to calculate the filament diameter D, de-
fined as twice the diameter at the half-maximum
intensity point, particular values for the constants
C„C„and C, must be chosen. For different val-
ues of a and P the eigenfunctions of Eg. (3) are
computed numerically. E*(0), j,"[E*(r*)]'r*dr*,
and r,*„can then be calculated from these eigen-
functions. Prom the computed value of E~, E, can
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FIG. 5. Filament diame-
ter D in p.m as a function
of the power P in MW fed
into the beam for the set
of C coefficients shown in
Fig. i.
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be obtained using Eq. (4). I' can then be obtained
from Eqs. (2) and (12) and from this r„, can be ob-
tained by means of Eq. (6). The filament diameter
D is defined as D =2D», =4m», . The power fed into
the beam can be calculated from fo"E*'v~dr*. In
this way plots of D as a function of P are obtained.

Two families of curves of the functions D(P) cal-
culated for n, =1.5 and +=0.7 p, m, are plotted in
Figs. 5 and 6 using the dependence of (e,s/e, ) -1
on E', shown in Figs. 1 and 2, respectively. The
reasonable value of 1&10 "esu is chosen for C„
leading to minimum filament diameters of between
4 and 15 p, m, in good agreement with experiments
for various liquids. Figure 5 (C, &0, C, &0) corre-
sponds to the case where the nonlinearity is due to
the optical Kerr effect, where anisotropic mole-
cules are oriented in the electric field of a light
wave. ' In this case self-trapping starts from
slightly below threshold (P,„, Fig. 5), whereas in
the case shown in Fig. 6 (C4&0), it starts from
immediately above threshold.

In the case shown in Fig. 5 the eigenfunctions ex-
hibit very peculiar behavior. Above certain values
of the power P there are no converging solutions of
Eq. (3), and consequently not all the power can be
trapped in a single filament. This situation corre-
sponds to the end points of the curves in Fig. 5.
Beyond these points only part of the available pow-
er can be fed into a single filament, and it is plau-
sible that under these conditions many filaments
could be formed. In contrast, the curves of Fig. 6
are all continuous in the power region of interest,
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and no such end points occur until power levels of
many hundreds of M'W are reached.

Another peculiarity of the case considered in
Fig. 5 is that as increasing power is fed into the
beam the filament formation starts immediately
with a very small diameter of a few p, m. This is
seen in Fig. 5 for different values of Cs, and also
in Fig. 2 of Ref. 5 for different values of C,. At
the minimum value of the power at which the fila-
ment starts, which is somewhat smaller than the
threshold power P,» there exist two types of so-
lutions. In the first type the filament diameter
rapidly diverges with increasing power. This type
of solution is nonstationary. In the second type
the filament diameter tends to a minimum value
as is actually observed in the experiments.

The importance of the C, coefficient in the pro-
cess of filament formation can be seen in Fig. 7
for the case C, &0, Cs&0, corresponding to a non-
linearity due to orientation, and in Fig. 8 for the
case of C, &0. Evidently, in both cases C, must be
positive, and with increasing values of C, both the
filament diameter and the threshold power de-
crease.

It is important to note that converging solutions
exist only over a rather narrow range of values of
the nonlinear coefficients. Thus, the order of
magnitude of these coefficients expressed in esu,
should be

FIG. 6. Filament diameter D in pm as a function of
the power P in M%' for the set of C coefficients shown
in Fig. 2.

FIG. 7. Filament diameter D in pm as function of the
poorer P in MW for different values of C&, mth C4
= 1 x 10 24 esu 4 and Cg = —1x 10+~ esu.
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for the case C~ & 0.
%e may also look at the self-trapping effect in

a quite different way, viz. , by assuming a parti-
cular molecular mechanism for self-trapping,
which gives rise to a. nonlinear refractive index
of a particular form. By expanding the corre-
sponding ~ in power of E', one then obtains a set
of coefficients which may be eoropared with those
found in our phenomenological treatment. This
could constitute a criterion to test the validity of
any particular mechanism of interest.

Free orientation of anisotropie molecules as a
self-trapping mechanism has been ruled out in
this way. This mechanism 18 only possible if less
than 2% of the moleoules exhibit this type of be-
havior. ' Nevertheless, the very ingenious recent
experiments of Reintjes and Carman' in Nct do
point to molecular orientation as the dominant
mechanism of self-trapping in different Kerr li-
quids.

How can the effect of molecular orientation un-
dergo such a drastic reductions The answer to
this question was given by Gustafson and Townes, "

Pth*1, $ M% P..&M%

FIG. 8. Filament diameter D as a function of the
power P in MW for different values of C&, with C4
=- 1& 10 24 e su+ and C& = 0.

who showed that the nonlinear response to internal
pressure reduces the orientation effect by a factor
of 10 in liquid CS,. Quite recently it was pointed
out" that another factor-of-10 reduction was ex-
pected because of the interaction between dipoles
induced by the electric field of the light wave, "
resulting in enhancement of the lattice vibrations.
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