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The infornmtion-theoretic formulation of statistical mec~~»cs is applied to an ideal gas transporting

energy without transporting mass. It is shown that the thermal state variables fracture into distinct
populations, thus exhibiting a radical sort of local nonequilibrium. The parbtion function is found in
exact form, for an arbitrarily large temperature gradient. In an approximation, it is shown that these
results reduce to the known ones for equjIhbrium, and near equilibrium. The same approximation allows

us specific equations for the temperature, pressure ten.sor„and the entropy of the system, in a
far-from~uilibrium case, in terms of the new thermal variables of the system. The general entropy
functional, and its variation, are discussed.

I. INTRODUCTION

In what follows a statistical-mechanical theory
is developed for a specific system arbitrarily far
from equilibrium; viz. , a stationary ideal gas
transporting energy without transporting mass.
A few notational conveniences w01 be freely in-
troduced along the way for the sake of economy. '

This system has received a fair amount of
study' "by more conventional methods —in the
near-equilibrium region —and it happens that the
approach of one group of workers is of special
relevance to us here. This approach is known as
the half-range technique. ' " %e will have more to
say on this in Sec. V, when we treat the near-
equilibrium case, and again in Sec. VI, when we
compare our final results. ' 2' For the present,
it will be worthwhile to comment on the difference
between this technique and the population splitting
that we will arrive at here.

The present analysis proceeded from the funda-
mental papers of Jaynes, 23'~ without further ref-
erence to the literature, perhaps to some advan. -
tage, and is self-contained. Only after completing
the study was a literature search made for com-
parison. Thex e should be no question then of a
mere grafting into the present analysis of this
prior half-range technique. Rather, the splitting
which we will arrive at here has been forced on
us purely by logical considerations. In fact, from
the theoretical point of view, the Proof of this
splitting is the central result of this paper, and
the entire subsequent analysis hinges on it. By
comparison, the half-range technique developed
by previous investigators has always been intro-
duced purely ad ho(:, and employed relatively
unsystematically. Moreover, with the exception
of Krook, it appears to have been conceived en-
tirely as a computational device, and no physical
meaning has been assigned to the half-range vari-

ables. Lastly, while the treatment of these prior
workers is for near-equilibrium, and apart from
the introduction of these half-range probability
densities, is based on the conventional linear
approaches, the present development is com-
pletely general and is tied in no soay to the severe-
ly limiting assumptions of a near-equH. ibrium
theory. %Mle we have no intention here of slight-
ing the work of these previous researchers, it
seems that these differences must be understood
if one is to appreciate the logical cohesion of the
present analysis, and the fact that it gives us a
perfectly general theory.

II. GENERALITIES

The macroscopic state of an arbitrary system
is completely characterized by some set of ex-
tensive variables fA, }, or equivalently by the
conjugate set of intensive variables (X, t. In terms
of these latter, let us distinguish the following
types of nonequilibrium:

Global (a) Spatial .dependence; &, —A., (r). (b)
Time dependence; X, —A. , (t).

Local. (c) The appearance, at the local level,
of Xs other than those conjugate to collisional
invariants; e.g. , &,(r, t) for /&3 (see below). (d)
Partitioning, at the local level, into populations,
y, characterized by different values of the inten-
sive variables; A.,(r, t)- Af(r, t).

Although the present section allows for each of
these types of nonequilibrium, in what follows we
will be mainly concerned with type (d). Type (b)
will be treated in a subsequent paper. Type (d)
is the most radical of the departures from equi-
librium, since it means that thermal exchange
(e.g. , equipartitioning of energy) is somehow
interfered with.

Ne mill assume some familiarity with the infor-
mation theoretic approach to statistical mechan-
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ics,"'4 so that the following variation on the con-
ventional argument need not be stated in full
detail.

It will be more convenient in what follows to
work in terms of velocities rather than momenta;
the corresponding graining factor for the phase
space should then be tx/m, and since this will
occur frequently in the equations, we will give it
a special symbol: ). Consider a system of N
particles, and let tx = (v„.. . , (1„)denote a point
in the microstate space. We are going to assume
that we have instruments allowing us to measure
the means of certain local observables, A, (!x, r),
for different regions y of the microstate space.
We find the correct probability density, o, (tx },
by maximizing

8 = -h (x, (tx)in(x, (tx) dtx/(!'"t)t!

subject to all the known constraints; that is, sub-
ject to

for all observables l, of all regions y, and points
r. Thus we must add to the integrand of (1) the
quantity

where the X(x(r, t) are the conjugate Lagrange
multipliers; we have allowed X, to be a vector,
without loss of generality, so as to have a more
compact notation. The requirement of normaliza-
tion can be included by setting 80=1. The condi-
tion for an extremum of (1) then requires that the
piecewise continuous function o satisfy each of the

y Euler equations"

(xln(x+(x A, +g 7(x(r, t) X,(tx, r)dr =0,
1

which yields

When this value of (x is substituted in (1), the
corresponding quantity is called the (generalized)
entropy, and will be denoted by S.

There are a couple of points which should be
made clear straight away. An arbitrary parti-
tioning of the microstate space into the set {y)
does not actually impose anything on the analysis,
since the corresponding {X,"(r, t)] will eventually
be defined purely in terms of the observables. It
may well be that these are such that the X"(r, t)
become the same for different regions y, and we

simply end up with a redundant, although correct,
description. In equilibrium, for example, all
(r, t) as well as y dependence become superfluous,
and the analysis reduces to the familiar equilib-
rium results. The converse, that nothing is im-
Posed by lumPing PoPulations together, is not
true, however. Secondly, different means for
different regions of a given, partitioning does not
necessitate that the conjugate ~~'s be different.
In the case of equilibrium, again, one can observe
many different mean energies appropriate to the
different regions of an arbitrary partitioning, but
the conjugate A"'s are all the same. This is per-
haps best understood in terms of the formal rela-
tion between the observables and the multipliers,
which follows.

The observables defined by (2) give the mean
contribution of each population y to the total mean,
&A, &(r, t}, as measured over the entire microstate
space, and contain a statistical weight for the
point p to fall within the region y. For some pur-
poses, it may be of advantage to work seithin a
given population; i.e., assume that p is already
there, and see what the various means are. For
example, the physical meaning of the Xs, and of
g, become clearer in these terms. To this end
we introduce conditional probabilities"; thus,
e.g. ,

where (x, (y) is the probability that the system
microstate is in the region y, and (x, (tx (y) is the
conditional probability for the occurrence of the
chosen microstate, given that we are already in
the region y. Then, denoting means within a popu-
lation by the subscript ~y, we have

in each region y, where

:-=exp[X, +1]= g I exp -g X)x(r, t)
2

Thus, in terms of the mean contribution of the
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populations, we have

(X,}„(r,t) =-b ln=/bXf

and in terms of means within populations

(A, }„(r,t) = »n-=-„/&X;I,

where the right-hand side is the functional deriva-
tive, as defined, e.g. , in Gelfand and Fomin. "

At this point we can make the following useful
definitions.

Definition &. We will call a scalar-valued func-
tion, A( p, , r), a generic variabl when it is de-
fined in such a way as to be independent of the
particular subspace serving as its domain.

Example (i). A =-,'mv „,' is a generic variable.
Its mean on the subspace y = (U,„) is (-,'mu'„} (r}.
Its mean on the entire microstate space is

Example (ii). A =(1/q„„)sin(q'„, q„,) is a generic
variable. Its mean on the subspace y
=(q„,q„=l -q„) is (1/q, „)(sin(q'„q,„)}„(r).Its
mean over the entire microstate space is

still do not furnish us with criteria for finding
these state variables. This is, in fact, an omis-
sion in, all the information-theoretic discussions
we have seen. No real distinction is drawn be-
tween observables, independent observables, and
(thermal) state variables. For example, it would
seem possible to add on to, or replace, the term
~, v' in the equilibrium distribution with X, v4 or
X, u' since (U') and (U'} are also observables.
Yet we know this does not give the correct equi-
librium distribution. In order to eliminate this
ambiguity, we propose the following criteria.

Criterion of sufficient information. The exten-
sive state variables correspond to generic vari-
aMes whose nonvanishing net means provide a
maximal set of mutually independent observables.
(These may be infinite in number, generall'y. )

Criterion. of simPlicity. Among competing candi-
dates for state variables, nature chooses that set
which, by some clear standard, is simplest.

We henceforth assume that (5) satisfies these
criteria.

Substituting (5) in (1) gives

'8=k ln" + X& ~ r, t dr

The last example illustrates that some ambiguity
will arise unless we orient the space so as to give
a definite meaning to expressions with multiple
subscripts; e.g. , does q'„, q„~ on the above y mean
q'„q,„or q,'„q„? We will limit the definition of
generic variables to those that take the coordinates
in a definite order; viz. , as cyclic permutations of
x, y, z. Thus, for the above y, q'„, q„, can only
be q'„q,„;q„q'„-, on the other hand, would be
q2z„q„. The sa.me remark applies to particle
order: we arbitrarily pick a given order, and
permute particles cyclically. (This will be irrele-
vant for identical particles. )

Definition 2. By the intensive state variables
of a system, we mean all the distinct nonvanishing
I.agrange multipliers conjugate to means of gener-
ic variables over all partitionings (yI.. (Owing
to the partitioning„ these will not all be indepen-
dent, in general. )

Definition 3. By the extensive state variables
of a system, we mean the observables conjugate
to the intensive state variables.

In the case of equilibrium, the system is gener-
ally completely isotropic, and so the state vari-
ables, as well as being global, correspond to
means over the entire microstate space. %'e

cannot expect this to be true, in general, for
nonequilib rium systems.

These definitions, while logically complete,

w»ch, by (8)»d (10) gives the entropy entirely
in terms of the intensive state variables; i,e., as
the functional @[IX)(r,t)H. If we now use (8) and
(9) in (12), we get

cr, y in=~+ X~& ~,/~„r, t dr

+ Z~, b)l», h))

=- Zo)(&)@(t ly)+&&e,

where we have made the obvious identifications.
We see that the entropy decomposes in a natural
way into a weighted mean of the entropies within
the given. populations, plus an "entropy of mixing"
term.

It is of interest to see how the various depen-
dencies affect the magnitude of @. One way of
doing this is to compare between systems with
different constraints in common; i.e. , we vary Is,
subject to these common constraints, to find
the curve f(A()~(r, t)) which maximizes(S.
(Whereas previously we found@ by finding the
curve o, (p. ) which maximized S.) Let us suppose,
then, that we are comparing between systems
which share some common set of net local ob-
servables (X, ) (r, t) =+~(X,.}~(r,t) Let the.
Lagrange multipliers be g, (r, t). Then the condi-
tion of an extremum requires that each of the
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l + y derivatives vanish: must be the case that

A.,"(r, t) =0 for all y

(14)

The functional derivatives of (12) are readily seen
to be

(is)

whence (14) becomes

X( (re t) g+( (ret)eS((e =0.

This means that among all those systems sharing
the above common set of local constraints (net
local observables), one system has the maximum
entropy for which all the other intensive variables,
Et I, ', vanish, and for which the microstate par-
titioning is superfluous for the remaining vari-
ables. Which is what we should expect. Similarly,
one can compare between systems with a common
set of net global, time-independent, observables
j, A, / . The variational derivatives then become

A.„"(r,t}a A," (r, t) for some ye y'.

This is actually true whether or not the (A, )&s
are themselves state variables. "'

III. STATIONARY CLASSICAL IDEAL GAS

y(= g vl (20)

where the sum is over particles, and the compo-
nents of v' are all the distinct products of the
form

In this case, the only observables possible are
functions of the particle velocities, and the inten-
sive variables of the system can only depend on
the particles at the chosen point:. (Whereas, in
general, one could measure a field, say in a
plasma, which would be a function of all the par-
ticle positions, and could be at a point in the
system where the particle density was zero )We.
will define a general moment vector, and assume
that some subset of these moments can always
be found as the state variaMes of the system. I.et

Af(r, t) G+, ,6„= ,0
U Ug

'' 'Ug
1 2 l'

(21)

E(W, ),(r, t) =S(C(Z,),}/SA~. (is)

true for all y, where the multiplicands E a.nd 6
are arbitrary nonzero functionals, then by sum-
ming both sides over y, we see that in the case
that the net observable (A, ) (r, t) vanishes while
the net observable (A, ) (r, t) does not, it clearly

where the G,. are the constant multipliers conju-
gate to the global observables. This means, then,
that among those systems having these observ-
ables in common, that system has the maximum
entropy for which the intensive variables conjugate
to all other observables, lt /', vanish, all micro-
state partitioning is superfluous, and in addition,
all space and time dependence of the remaining
As vanish. Which, again, is what we should ex-
pect. By introducing more complex conditions
to be held in common, via the I.agrange multi-
plier method, one can get a variety of conditions
on the As; inversion of the relations (10}then
yields the maximizing curve j(X,)z(r, t)}. How-
ever, such inversion may often be difficult to
accomplish in practice.

There is one final, general, thermodynamic
property which we will note here„since this will
be a central result for what follows. If ever we
have equations of state of the form

The exponent of (S}thus becomes

g PX&((l„)~ &'„-'. (23)

The independence of the particles then allows (S)
to factor into a product of one-particle probability
densities as follows:

o(!()=&' ll o, (v. , 4.),

where

,(,e= )=( 'exp(-QX, () e' '),
l

exp — X," r ~ v' '
1

(2s}

%'e have made use here of the fact that the equiva-
lence of the particles causes (y} to partition each
subspace (v„, (1„}in exactly the same way. The
independence of the particles then means that

Each v' will thus have (l +2)!/l!2! components.
The preceding comments can then be summarized
formally as

Af(r, t) A, (y. , r)-&t(r) ~ Qv', 'S(r —(1„).
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)(t(q„) in (23) depends on position only through the
one-particle coordinate, which is already given.
Thus y, in (25)„depends on the one-particle
velocity only.

A local, one-particle partition function can be
defined by

o, (v, r) =a, (r) v, (v~r)

so that, explicitly,

c,(r) =&(r)/t',

(29)

(( )=-(J»,(», )d»)(('

so that $ = f/(r)dr. Since = = Pj)()!, use of (24)
and {26), in (10) and (11) respectively, yields

(V' ')„(r}=-Ã8 lng(r)/sX()' = &n)„(r)&v) 'i~q{r),

(27)

&v) ')~ (r) =-s ingq(r) /she,

where g & ( r) = g J&g, (v, r}Cv/)', and g &
=—j g & ( r) dr

There is one further set of relations which mill
be useful in the following. Analogous to (7), we
can define a local probability density, ())(v)r), by

wUl be discussed.
We mill let the ideal gas of X particles be con-

fin.ed in a cylindrical volume, 2mRI. , between tmo

flat, parallel walls, held at the temperatures 7,
and T„respectively. The nature of the boundary
is important. By "flat" walls, me mean ones for
which the vibration of the mall molecules is in the
axial, z direction only. The cylindrical mall, on
the other hand, is perfectly adiabatic. If me wish,
me can interpret this a,s meaning that the mole-
cules of which it is composed are at O'K and have
infinite inertia, so that the gas particles undergo
perfectly reflecting collisions. In an actual ex-
perimental situation, if R»1., and the end walls
are constructed of elean, crystalline, surfaces,
relatively free of imperfections, the model will
be mell approximated in the interior of the cylin-
der.

%'ith this specific situation me are now prepared
to reduce (25) to a finite form. For a given total
number of particles„E, there are three external
constraints on the system: the volume, and the
two temperatures 1', and T, . We choose to write
these external constraints as

», (»I )=( '( )»»(t(-L(»(»)»' '}. (30)

We are nom in a position to obtain an expression
for the local entropy. Writing 8 = f S(r) dr, we get,
by substitution of (24) and (29) in (1),

A =fixed volume,

8 = fixed T~ + T~,

C =fixed T, -I,.

These, in turn, produce the following internal
constraints:

(34)

s(r) =&(„&(-„4+&s) (r) S, (vlr),

where

(31) A ~ m & n) (z), mass density

8 ~&g) (z}, energy density (36}
&n) (r) =No, (r),

z(„)(-,) 4 = -k&n) (r}ln[&s) (r)/e],

e, (v~ r) = kfa, (v~ r-) ln(r, (v~ r) dv/() .

(32)

Alternatively, if we now use (7), respecting the
preceding remarks on jy], we can get the finer
decomposition

s(r) =n(. ) (-, )4 + Q&~), (r)s, (vlr, r), (33)

where

n(„) (-„) 4 =-k Q&n)q(r) ln[&n)~(r)/e],

8, (vt r, y) = -k o, (v~ r, y) lnv, (v( r, y)(fv/{)'.

IV. ONE-DIMENSIONAL HEAT FLOW

We are going to present a very specific, some-
what idealized, model, and complete the analysis
in exact form for that model. Our results will
turn out to have greater generality than this, as

C ~&k,) (g), energy flux. (3V)

The implication here indicates a necessmyeon-
dition. This does not mean that the effects of (34}
are separable; e.g. , the temperature gradient
T, —T, mill clearly affect the spatial density, ete.
However, the independence of the constraints (34)
necessitates the independence of the net observ-
ables (35)-(37). These observables are the net
ineans of the generic variables rnid„&(r —q, },
—,')))+,5(r -q, ) U2(, and —,')))+„5(r—q, ) O'„. U „,,
respectively. Clearly, this is a maximal set,
since there ean be no more independent thermal
variables than independent external constraints.
Thus we have satisfied the criterion of sufficient
information of Sec. II, here. Moreover, these
are the lowest nonvanishing moments, as we mill
see directly. In accordance mith the second cri-
terion of See. II, me ean therefore expect the state
variables to derive from this set, possibly together
with the other low moment, m+„5(r-q„)U„, ;
i.e. , for an appropriate partitioning bj, the state
variables should be drawn from the set of means
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over subspaces y of these four generic variables,
and no others.

The further condition of stationarity implies
that net mass flux

m&V)(r) =0 (38)

f& &,( )+& & ( )]=-p ( ),

m[&V, &,(.)+ &V.) (.)]=0,

—,'m[(V, '&, (z)+(V,'& (z)]=a„const,

(40)

(41)

and that there be no gradients in the direction of
any fluxes. " The requirement of flat walls means
that there is no correlation between v„, v, , », ,
as such a correlation mould be generated at the
walls if at all, and conservation of momentum
rules out that possibility. Thus the variables are
separable. The symmetry of the system, separa-
bility of variables, and the condition (38), then
lead to the vanishing of all second moments ex-
cept (V„')= (V,'), and (V,'). Similarly, the only
nonvanishing third moment is (V,')= &Pi,&=&5&.

We nom make the following partitioning: Guided

by the symmetry of the system, me divide up the
velocity space into the regions [u,» 0], [v, ~ 0],
and [v„=(U,'+ U,')'~'j. We then have the following
observables, derived from (35)-(38):

—,'m(V„'& (z) = Z„(z),

—,'m[(v, '&, (z)+ &v.'& (z)]-=4„const.
(42)

(43)

This is a total of nine scalar observable, for
which me must introduce the nine conjugate La-
grange multipliers X,'(z), g (z), X,'(z), X", (z),
and X& (z). Of these, some should vanish, and we
do not expect, owing to (34), that any more than
three mill be independent. In particular, me
should expect that X", will be a function of A,s and

It also seems likely that the system mill make
do with only one of the pairs g, or A.,'.

The requirement of continuity of v means that
g'(z) =&, (z). We conclude that the one-particle
probability density must have the following form,
then:

cr, (v, r) =g 'exp[-(A. , (z)+A'(z)g, +A.,'(z)U, '

+X;(z}v„'+X,'(z)v, ')], v, (0.
(44)

By substitution in (26)-(28), and (33), the entire
thermodynamics of the system are exactly solved—
formally, and in principle. There is, in the first
place, a computational problem in that me are
unable to evaluate (26) in closed form. A little
manipulation gives

vh'exp[-), + (g )'/4Z, '1 ~ ~ (-1)"(2n)!I'[-', (2n —A, + I }] (~q P(x,')"-'
m'~" E ~ 3(2n-I)!h!n!2' (45)

which converges slowly in the general case, so
that any equations of state derived through (2'l)
and (28) become quite complicated. Furthermore,
for any such equations to be of practical value,
me must determine the relations between the Xs,
and their spatial dependence, which means it
might be simpler to do this first where possible.
As we mill see, it is still possible to dram some
important qualitative conclusions.

Proof of nonequilibrium of iyPe (d). The ob-
servables &V,'&z satisfy relations of the form
6(g(V!'&,)/6~~„= ~&V,"&,, for any I"=I'+I;
l, l', l" &1. Then, owing to (38), if we put &,"
successively equal to A', X,', and X,', in (18) we
obtain

6(t&v.&.)/6q 6((&v.& )/6q =(&v.').0 N». ,

or both identically 0, (46)

6(t'(V&, )/61,'+6(F&v& }/6A, = ((V,'&».O~X,'eh, ,

or both identically 0, (4'I)

6((&v.),)/6),'.6((&v,) )/6~; = &&V.'&»0 ),'~);,
or both identically 0, Q.E.D. (48)

We thus see that the requirement of no mass
flux is a severe restraint on the system, causing
all the intensive variables conjugate to the v, ob-
servables to fracture into two distinct populations.

Normalization further requires X,
' + 0& A, We

mill assume X,
' must be positive, as in equilibrium.

The positions of the maxima in (44) then depend
on A,'; e.g. , if A,'»0 Q, there will be a single
maximum (cusp) at u, =0. If A,'&0& V, the distri-
bution mill be bimodal. Nom, experiments in
scattering of molecular beams by solid surfaces""
indicate that for a wide variety of incident-beam
velocity distributions, and surface conditions, the
scattered beam is peaked in the forward v, direc-
tion before it undergoes further intermolecular
collisions. This appears to be because there is
a higher frequency of collisions with the wall
molecules mhen they are moving out than when
they are moving in, so the effectise velocity of
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the wall molecules is outward. " '0 Thus we would

expect forward peaks in the half-distributions
leaving the walls, in our system, at least through
the Knudsen layer. ' ' Beyond there, we should at
least consider the possibility that these peaks are
annihilated through collisions, although the frac-
turing described by (46}-(48}is propagated One
can satisfy the requirements (39)-(43) with a uni-
modal distribution, so this case cannot be totally
ruled out. In the following, however, we will only
consider the bimodal distribution, an example
of which is schematized in Fig. 1, for the case
of large heat flux. %'e do so for the following
reasons: (i} in the free-molecule limit, such a
distribution should hold; (ii) at higher densities,
in the ideal gas model, the effect of collisions
can well be imagined to be predominantly an ex-
change of U, momenta, so that the population dif-
ferences persist; (iii) in the case of the approxi-
mation which we will introduce directly, one can
prove fairly rigorously that if v, is continuous it
must be bimodal. "

The requirements on the A.s can then be sum-
marized

where erf(o.'}=2m '~'J~ e ' dt, and we have de-
fined a' =- vX,'/2(X,')'~2, which is positive, by (49).

In fact, if the observables (n)„(V,)„(V,),
are independent on the half-spaces U, g~0, re-
spectively, we should have, according to the cri-
terion of simplicity of Sec. II, that better than an
approximation, this is the partition function. %e
frankly suspect this is so. It would seem that if
one set of these variables, say for U, &0, is de-
pendent, then so should the other set be. But then
so would the net observables be, and we know this
is not so. %'e will not argue more strongly for
these being the state variables of the system,
at this point.

Ne now consider three limiting cases.

Equilibrium

In this case, the third external constraint of (34)
vanishes, (37) vanishes, n' of (51) vanishes, and
all spatial dependence vanishes. Then o, (r)
= &(r)/f, is just 1/V, where V is the volume here;
A' =0; &,

' =X; =m/2}tT; and (u,')~, =(u,') =-,'(u„').
Substitution in (31), or the equivalent formulas,
then yields the well known alternative forms for
the entropy

V. SECOND-MOMENT APPROXIMATION

Qur progress is greatly aided if we approximate
(44) by the union of two Gaussian distributions, as
illustrated in Fig. 2. This then leads' to the
further requirement

8 =Rk ln[(e' ' V/%)(2m nkT/h')'~'],

@=Pgg ln[es ~2(4m v/3h2)3~~ V113~~LII 5~2]

where we have defined the state variables%-=(n) ' =X, and li=--,'m%(u') '.

Pfe gr gquilSrium

(52)

(53)

0 & Z,'(g) & Z;(g). (50)

x exp[-A. , + (a')2J, L = r.
' + 5, (51)

The local partition function, (26), now becomes

g'(r) =[v"m3/2a'e (~')'"][1+erf(n')]

Everything can be gotten from (51) by putting
erf(a)=2m ' 'o. . Instead, we will adopt apertur-
bation approach here, and calculate the first-
order quantities, denoted by superscript (1), in
terms of the equilibrium quantities, denoted by
superscript (0). Thus

I IL

FIG. 1. Example of a bimodal velocity distribution,
given by (44), for a case of high heat flux.

FIG. 2. Second-moment approximation to the distri-
bution of Fig, . 1.
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()&) ) ( v, r) = ($")) ' exp[-dg -v, dL(,' -u', dZ,'

- u 'd)(" —~('& - Z('& v']
3 1 3

= (t&0&/g('&) [1 -dz, -v, dz,' -v,md~,'

-u„' d&(", ] a)(0) (v, r). (54)

%'e note that if we had used the original distri-
bution, (44), the expansion analogous to (54) would

be formally identical, owing to the vanishing of
all mixed moments, to a Grad's thirteen-moment
expression'~ for each half-space probability den-
sity. The theoretical basis would be quite differ-
ent, however. Whereas the set of moments for the
Hermite tensor expansion is infinite, and only
the complete set can, in principle, provide the
same information as cr„ in our case the only
moments that are necessary to consider are (39)-
(43). The information-theoretic approach, sup-
plemented with the two criteria of Sec. D, elimi-
nates all other moments in one blow. Higher mo-
ments will appear only artificial. ly, as a result
of continuing the linear expansion of (44) to get
more terms. The meaning of the coefficients in

(u ))(1) —(v ))(0) g (D&): dq& g (01% dy) ~o (d2)

(55)

g(0) 4 g (0)+ = (u I+))(0& (v J')(01 (u ))(0)
s

and we have simply made use of (29) and (30).
The net, N-particle local means are given by

(56)

this expansion are-, moreover, quite different than
in the Hermite tensor expansion. It is perhaps
also worth reminding the reader that whereas con-
sideration of two separate probability densities,
&r (v), &0), would appear as a relatively arbitrary
element in the standard theory via the Boltzmann
equation, this splitting appears here as a natural
and logical result of the information theoretic
analysis.

From our present expression (54), the local
means within populations, (u, ')(-, (r), are readily
found to be

( I' ')"' = (t'"'/5'")()t)'"f (v )'- '(I + (-I)' ) (I —d)(), —(u„')+ ' d~& )

-(u '")' )(dA'+(-I)"'d&(, ) —(u" ) ' )(d&('+(-I)'"dX )]

since (v, ')~", = (+I)) (u, ))~,). If we then define p
=-3(")/t"), nd&(-=-,'(d~'-d~-), and dX= ,'(dan+dr}, --
we can write (40) and (43) as

(61}in (60),

(n)(0) T((t)' LsT(, )/sz, (63)

m(V )"' =m(n)'0) P[- d q(u ~)'0) —bd)( (u ~)'0'] =0

(58)

m(y))(l & ) m(n)(0) P[ —d &( (v 4)(0)

—t),d~, (u, ')~( )] = y, . (59}

Substituting (58) ln (59) gives

4), =c,Pm(n)(0)(u, ')~(') t),d&„ (60)

where c, is a number of order unity. On the other
hand, defining the experimental temperatures
T(",) as (I/3h)m(v')~(), ), we find by substitution of
(58) in (55},

t)d&~ =c2 (T('&) T()))/hT(o)

where c, is also a number of the order of unity.
Now, we argue that the separation between T,'»,
at a given point, should increase with the local
temperature gradient, and also with the mean
free path; for small gradients, we can approxi-
mate this as a proportionality. Thus, substituting

where / here denotes the mean free path. Thus
we arrive at the standard result of kinetic theory. "

%e observe that, since (t)E is independent of z,
(60) says that the difference between dL' and dX,
is held constant at all distances between the ~alls.
By (58), we see that d X, is also independent of
distance, then, and by (49) this is the difference
of two positive quantities characterizing the popu-
lations. In this sense, the splitting of the inten-
sive variables is quantitatively preserved through
collisions. This is borne out by calculations of
these variables in terms of collision integrals. '

A more detailed treatment of the near-equilib-
rium case will be given in a later paper devoted to
the spatial dependencies of the thermal variables
of this system. Further comparison of the present
theory with prior work is given in Sec. VI.

Far from equiLibrium; synchronized heat flux

We consider the limiting case of "large" o,".
As we will see shortly, when o(' is large, (a'}'
becomes a temperature ratio which gives a mea-
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sure of the synchronicity of the heat flux; viz. ,
the ratio of the mean velocity squared to the ther-
mal noise. Perfect synchronicity would corre-
spond to a-~, and (v,P&, =(v,')~, . Values of
(a'}' of z, 1, and 2 give the area under the Gaus-
sian which is cut off by the ordinate as 16%, 8@,
and 8%, respectively, and fix the ratios of (v, )zz, /
(v,')~, at approximately —,', -'„and &, respectively.
Thus, even for an a of l, it is a fair approxima-
tion to take g' as the area under the entire Gaus-
sian curve for the x distribution. Then (51) be-
comes

mentum within some small volume bounded by the
planes z and z+hz, over some small, fixed time
interval 4t. In our case, this will be due entirely
to the thermal flux of momentum across the two
p1.anes. The flux out of the volume will be given
by the usual integrals over the complete half-
velocity ranges"; i.e. , the momentum transported
out of the volume is

oo

at Xmo', o, v, z+az dv g'

Nmv', o, v, z dv g'

and (28) yields then

-A'/213 =(ug)~, (r), (64)

(65)

(66}

Using the previous definition of experimental
temperature, we get

The net local density, (n) ( r), could be measured,
e.g. , by absorption spectrometry, so that (68)
affords a computation of the means &n), (r). We
note that if (n), = (n), then (40) necessitates
(u, )z„=-(v,)z, so that ( kSm/)( 'T- T) is then
just 1/k, —I/&, , which by (47) is nonzero. Thus
we cannot have both (n), =(n} and T, =T .

Pressure

As we saw earlier, the off-diagonal terms for
the pressure tensor vanish for this system. The
diagonal terms are readily found in terms of the
Xs by(64)-(66), and related to the experimental
temperatures via (6'7), providing equations of
state.

It is of greater interest to consider a "vector
pressure"; that is, the resultant force at a point
due to momentum transport, rather than the usual
scalar pressure. Vfe consider the change of mo-

which could be measured by an appropriate one-
sided thermometer, say a small thermistor, in-
sulated on one side, and appropriately stream-
lined. A cylindrical thermometer, on the other
hand, will measure a mean local energy per par-
ticle, and a mean temperature, which can be
written

(68)

= n tvR'[P '„(z +az) P„(-z)] . (69}

To get the flux into the volume, however, we must
exclude all those particles crossing the planes
with velocities large enough to take them com-
pletely through the volume element in the chosen
time interval b, t. (We can ignore collisions if we
take r z smaller than the mean free path. ) The
change in momentum due to the fluxes from the
rest of the body of the gas into this element is
therefore given by

~

jest

ht Nmv2o, v, z dv g'

0

-du/ht
N', v, (,* A*)d /$')

ntvR'[P'„(z-) -P-„(z + nz )] . (70)

To get the momentum change at a P/one during
AI;, we shrink hz to 0, whence the contribution
(70) vanishes. The instantaneous rate of change
of momentum is then given solely by {69)for
4z =0, divided by 2 t, and evaluated in the limit
4t-0. i.e. ,

Nmv', u, (v, z) dv/I)' — ~mv2o, (v, z) dv/11'
0 ~ oo

is the force acting across the plane at z due to
momentum transport. " The pressure difference
across this plane is then just I/vR2 times this.
If we were to place a thin vane of some thermally
insulating material at z, then if we assume elastic
collisions, and that the vane does not seriously
perturb the velocity distribution of the impinging
particles, the pressure difference across this
vane should be exactly twice the value gotten from
(71); viz. , across vane,

P'„(r) -P-.,(r) =2((n), (u, ')c, —(n) (v,')~ ).
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very pronounced, the peak separation being roughly
10' cm/sec. Many other combinations are possi-
ble.

By using (63)-(66), (7), (29), and (30) in (33)
and (34), we get for the local entropy s( r) = 5'(r)
+e (r), where

PEG. 3. Torsion pendulum for Inessurirg pressures
in the absence of a pressure gradient.

4'(r) = k)(n), In[(m've/k')'i'(I/X", )(I/X')' i']

—(n), ln((n), /e)j (76)

Heat flux

In the absence of A.,', we can write (43) in the
form ps —ps+ ps, with ps' =(mN/2F)s'g'/sA'sA, ';.
substitution of (63)-(65) then gives

=s-,'m(n), (U,)~, (3(U,')~, —2(v, P~, ). (74)

It does not seem possible to draw many conclu-
sions on the ~ populations solely on the basis of
(74). It is possible to get sizeable energy fluxes,
say corresponding to He at approximately room
temperature, in a gradient of 10' K/cm, and still
have the T' differ by as little as 10 ''K. In this
case however, the bimodality of Fig. 2 would be

Owing simply to symmetry considerations, all
other components of the "pressure vector" across
the z, or any other, plane must vanish in the
interior of the gas. By the requirement of sta-
tionarity, we do not have a time-rate of change
of anything, including momentum, whence (71) and
(72) must also vanish, for the present system.
This result could be tested for by using a torsion
pendulum such as illustrated in Fig. 3, from a
top view. This consists of a small rod to which
vanes of unequal areas have been affixed at oblique
angles. This is then suspended from its center
of mass by a fine quartz thread. According to the
preceding, such a pendulum should not turn. This,
of course, is not a test of the present theory, since
the argument just given is quite general and in-
dependent of the specific form of the probability
density. However, we can derive from this a
condition which the information theoretic analysis
specifically requires. If we had (n}, = (n), (40)
and the vanishing of (V2) would require, as dis-
cussed in the section on temperature, that ~3 A'3,

contrary to (4V}. Since T, =T would necessitate
that (n), = (n), we can, then, rule out these
possibilities entirely; i.e. , we must have both

(n), ~(n) and T, ~T

at all planes z.

or

S'(r) =kn'(r)1n(4e' '(mn/k')' (n'(r)) ' u'(r)

x[a,'( r}—m (n,'( r)).'/2n'( r}]' i'j

(76)

and we have defined the extensive variables n'

-=n'(U, )~, .
By a judicious application of Gibb's theorem

for the discrete and continuous cases to the various
terms in the integral of (76) over the volume, one

can see that the spatial inhomogeneity and parti-
tioning act to reduce the total entropy of the sys-
tem. More rigorously, and simply, if we com-
pare against a system with the same total energy
and particle number —e.g. , if we drop adiabatic
shields around the system after it has attained
the stationary state —then the entropy of the equi-
librium system that results will be larger, by
(1'?). Thus the energy flux acts to organize the
system. ' It is perhaps worth commenting that
this does not follow from the second law of thermo-
statics. This law, when stated in terms of the
entropy, characterizes the direction of evolution
between equilibrium states, upon the removal of a
constraint. " We are presently concerned with
the direction of evolution of a. highly nonequilibrium
system which is allowed to go to equilibrium.
Intuition aside, nothing meaningful can be said
about this until we have a. perfectly general and
meaningful definition of entropy, which is exactly
what information theory gives us. Since, for the
present system, all the information (except par-
ticle number, which is constant} is in the one-
particle distribution function, the H theorem is
applicable here, and also characterizes the direc-
tion of evolution upon isolation. " What would be
much more interesting, of course, would be the
direction of evolution between different nonequi-
librium, nonisolated, states upon the manipulation
of various external constraints. The H theorem
can tell us nothing about this. Methods such as
illustrated here in (16) and (1V) at least allow us
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a means of comparison once we know what the
two states in question are, and are perfectly
general.

The entropy minimum for this system cannot
be found by a variational procedure, since it
occurs at the end of the interval of definition of
s, for s(r) =0. By means of (64), (65), and (76),
this can be translated into a limiting relation on
the two measures of "synchronicity, " (~')', de-
fined above.

Vfe close this section by observing that the
limiting case just treated ma.y actually never
occur. Nothing thus far found indicates that this
is necessarily the high-flux limit. Vfe have chosen
it merely for ease of treatment.

VI. COMPARISON WITH WORK OF OTHERS

Holway" has dealt specifically with the applica-
tion of information theory to kinetic theory and the
evaluation of the collision term in the Boltzmann
equation. He went so far as to introduce second
moments, corresponding to the components of our
(21) for L =2, which were not collisional invariants,
as his informational constraints. But he did not
consider more general moments, or fluxes, and
his selection appears to have the same sort of
arbitrariness as the more conventional approaches.
He also appears to regard the resulting probability
densities which he obtains less seriously than
we intend here. He does not attach any physical
significance, e.g. , to the corresponding entropies.

On the non-information-theoretic end of things,
there has already been a fair amount of work using
half-range probability densities to treat this sys-
tem. This splitting was first introduced at the
boundaries, ' ' and gradually worked its way into
the intericr of the gas. ' " It was early recog-
nized that the probability density must be non-
analytic in v, in order to satisfy the boundary con-
ditions, and this limiting behavior at the bound-
aries seems to be often taken as outright dis-
continuity. ' "' While we have assumed through-
out the present paper that 0 must at least be con-
tinuous, we acknowledge that this is a question
to be considered. If we take the point of view that
0, is proportional to a particle density, it would
seem that this must be continuous. %hether that
continuity is best represented in e„or by drawing
some very steep line between a, (du, ) and o, (-du, ),
for small dv, , is open to debate.

It seems that Gross et a/. were the first to pro-
pose, as a computational device, the use of *'half-
range distribution functions" throughout the body
of a gas for a certain class of problems, and gave
a thorough treatment of this general method. '
This was then applied to the heat-flow problem

considered here by several workers. ' " Gross
and Zlerkng and Ziering use a llnearized form
of cr, corresponding to the expansion introduced
here, for small thermal gradients, in the second
part of Sec. V. Translated to our notation, they
have treated the two cases where the nonvanishing
As are the sets fX,

+ 0 A, X~ = A.",
+ a A., = X~ j and

solved the Boltzmann equation to obtain, among
other things, (n&(z), T(z), and ps(L/L, n.T)
Their second moment treatment, and the treat-
ments by several others, ' "do not seem to be
in accord with the information on. scattering by
surfaces, ""which would require g' x 0, at least
at the walls.

Lees" and Lees and Liu' have treated the case
for small AT, for both planar and cylindrical
geometry, and introduce a o, which appears to be
the same as our second moment approximation, 28

illustrated here as Fig. 2, although the parameters
they choose are quite different than ours. In
actual calculations, however, they revert to a
simpler form, corresponding to A,

' =0.
Qf the existing treatments of this problem, these

"half-range*' distributions have provided the
closest agreement with the experiments that have
been performed for small ATs and Knudsen num-
bers ranging from the free molecule limit to
continuum" ";e.g. , the second-moment distribu-
tion of Gross and Ziering, and that of Lees, give
the density distribution to within 3% of the ex-
perimental curve, and the heat flux to within 2@
of the experimental values. " Unfortunately, there
seems to be a dearth of data for higher tempera-
ture gradients, although theoretical results ex-
ist."""From our point of view, the improved
agreement with experiment, over more involved
calculations, such as Wang Chang and Uhlenbeck" s'
(which is still quite good) can be expected to carry
over to arbitrary AT, and has its reason in the
distribution functions being closer to the truth.
However, these workers seem reticent to ascribe
to these o's full status as velocity distributions,
and emphasize rather the computational advantage.
Lees and Liu, '0 e.g. , state that ".. . it must be
stressed that each individual function [o, (v~ +)]
has no explicit physical significance in general. "

Krook has written a particularly lucid account'
of the half-range treatment of the heat-flow prob-
lem, and goes so far as to identify moments of the
form (V'l, as the "state variables" of the system,
rather than merely intermediates in the calcula-
tion of net observables. He gives a nice discus-
sion of the effect of collisions on the two-sided
nature of the distribution function, offering some
argument for what seems to be a widely-held
assumption, '4"2 that collisions will remove this
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two sidedness, at least in the density-independent
fLux range (Knudsen number, 1/L «1). Although
we would agree that the effect of collisions is in
this direction, we cannot agree that for a system
of a given density, collisions will "attenuate" the
differences that exist at the walls. Even for small
ATs, the near-equilibrium calculation given here,
and those by Gross and Ziering' of the ~s in terms
of collision integrals for hard spheres, show that
the difference between these ~'s is qgantiiatively
preserved at all distances between the walls.
From these same calculations, we furthermore
see that, even for l/L-10 ', such differences
must remain finite, since the heat flux is directly
proportional to them.

Some of the major differences between the con-
ventional approaches to this problem and the
development given here are summarized in Table I.

VII. CONCLUSION AND EXHORTATION

The present paper has had the limited objective
of bringing the statistical-mechanical analysis
to the point where the phenomenology of this non-
equilibrium system could begin to be developed.
Our principal results are (44)-(49), (51), and

for those who would like to see what a specific
far-from-equilibrium entropy looks like —just
one —we have Eg. (76). What is perhaps the most
distinguishing feature to emerge from the analysis,
and which we might expect to carry over to other

nonequilibrium systems, is the development of
structure within the system, so that the new state
variables are no longer independent, as in equi-
librium. This is exactly analogous to the effect
of inhomogeneity: In that case, a single set of
global variables no longer suffice to adequately
define the thermal state of the system, but rather
each such variable becomes a prescribed function
of position. Just so here, the state variables,
besides being functions of position, depend further
on the region of the microstate space being con-
sidered. In retrospect, it seems rather curious
that in treating nonequilibrium systems people
would be so persistent in precluding the possibility
of such variety and functional organization within
the system.

The critical reader is liable to have two, related,
complaints about the preceding analysis: It is
neither quantitative, nor exhibits any specific
account of the dependence on density. 'M7e have
said, for example, that the A."s must be different,
but not hoav different. Again, aside from the
perturbation calculation made here, where we
introduced an ad hoe argument about the depen-
dence of T"(s) —T (z) on the mean free path,
specific mention of the effects of density are ab-
sent. In that specific case, the argument allows
us to show that for the free molecule limit, where
l =I., the distance between the walls, our analysis
gives ps ~(n), as it should, while in the high

TABLE I, Comparison of approaches to the heat-flow problem.

Conventional approaches Present information-theoretic approach

Start with Boltzmann's equation, whose rigorous
derivation is from Liouville's theorem. Strictly
valid only for isolated systems.

Approximate collision term in Boltzmann equa-
tion by linear operator. Good only for near
equilibrium.

Standard treatments generally involve one or
more additional assumptions of near equilibrium
along the way.

Chapman-Enskog procedure good only for small
ETs, continuous density, and (n), (V), and

(~), as state variables.

Grad's method assumes 0'& a local Maxwellian,
and expands about this equilibrium form. Trun-
cation of the expansion is arbitrary.

When half-space probability densities are used,
they are introduced ad Jgoc, as a computational
device; not interpreted as a particle density.

Completely independent of Liouville's
theorem, or Boltzmann's equation.

No approximations used for ideal-gas model.
More general applicability is limited only by
effect of collisions on the informational con-
straints; i.e. , the potential contribution to the
fluxes.

No Limitations as to the degree of non-
equilibrium.

Good for arbitrary 6T, and arbitrary density,
so long as the kinetic contribution to the
fluxes dominates. 0'& is found in terms of the
new, nonequilibrium state variables.

0& is limited only by what is known. It is
found ex@,:.::tly, in simple finite form.

e& (v [+) shown to he the necessary and natural
deco~npositon of o'~, relating it to the new
thermal state variables of the system. These
ot (v[+) give the particie densities.
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density limit that lo-(n) ', we have Ps indepen-
dent of (n}, as it is known to be. The model
chosen here, a gas of "hard points, " does not have
an excluded volume, and one might well expect
that, aside from some effect of the randomization
of the components of momentum upon collision,
density does not make any difference, and the gas
will always be essentially a Knudsen gas, in which
case all r dependence of the observables vanishes.
But the model chosen was for convenience, so that
the expressions (39)-(43), with o given by (24)
and (44), would be exact. The limitation on apply-
ing the present results to any particular real gas
rests entirely on how well the means given by
(39)-(43) are indeed approximated by kinetic
terms. For the inert gases, this should be a
pretty good approximation, and for He, which be-
haves very much like a hard-sphere gas over wide
range of temperature, it should be quite good, up
to as much as 10 atm. The further refinement
of the theory to give the quantitative dependence
of the observables on density and position will
of course necessitate an analysis of at least hard-
sphere collisions. This, and the subsequent de-
velopment of the phenomenolog. ,

r of this system,
will be the subject of a later paper.

In conclusion, we make some general remarks.
The development of the body of physics labeled
nonequilibrium thermodynamics has to the present
time been dominated by an understandable leaning
on the much easier, and better understood, equi-
librium theory, and an attempt to build from
there, for example, by perturbation methods, and
assumptions of local equilibrium. If one studies
real nonequilibrium systems —any chemical reac-
tion, or living systems, as the supreme example-
it does not take long to be convinced that the dif-
ference is deeper and more thoroughgoing than
these methods will ever be able to account for.

In his 1957 papers, "Jaynes clearly spelled out
the possibility of developing a completely general
statistical mechanics from the information theo-
retic standpoint. Since that time, it seems that
all work has been either abstract and formal, on
the one hand, or the treatment of specific sys-
tems which can already be handled by other means,
on the other. Largely, the problem seems to be

that even those utilizing the information theoretic
approach are unwilling to take it seriously in its
generality, and instead buttress their derivations
with Liouville's theorem at every opportunity. If
there is any question as to the applicability of
Liouville's theorem to real, "isolated" systems, "
there shouM be no question as to its inapplicability
to real systems whose raison d' etre is that they
are net isolated. The more practical minded, on
the other hand, seem suspicious of the physical
meaning of the information, theoretic entropy, so
that this has been relegated to the exclusive study
of mathematicians. "

In this, and the previous" paper we have at-
tempted to bridge this gap in the simplest instance
thought possible: a one-dimensional heat flow
through a stationary ideal gas. The phenomenology
as thus far developed already yields a decisive
contradiction with the conventional assumptions
for this, and like, systems, in (60) and (61), and
again in (73); according to the present analysis, the
"kinetic temperature"" is dtfferenl for molecules
moving in the ~z directions, respectively, in
these two cases. This can be readily checked
experimentally, as discussed above. Again, at
the microscopic level, the velocity distribution,
examples of which are shown in Figs. 1 and 2,
can be determined by several experimental meth-
ods, "as was previously suggested. " Voile the
significance of the specific results found here
hinges entirely on such experimental verification,
the analysis should be of heuristic value, in any
event, for those who think that information theory
is the correct foundation for statistical mechanics.

The major need at present, for the development
of any kind of truly nonequilibrium thermal phys-
ics, appears to be for experimental work to de-
termine the new thermodynamic variables, and
relations between them, for specific, well-defined
nonequilibrium systems.
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