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In this paper we derive master equations for two or more systems coupled to each other,
perhaps strongly, by using a generalization of the usual projection-operator technique to
include time-dependent projection operators. The coupled systems may be either similar
or dissimilar and classical or quantum mechanical. Whereas the customary approaches to
coupled systems are best able to treat situations in which some of the systems are "baths"
with a specified density operator or phase-space probability density, our approach allows
us to treat situations where it is necessary or convenient to treat the coupled systems on
an equal footing. In our scheme the "relevant"' part of the full density operator is considered
to be the uncorrelated part of the full density operator and is a symmetric functional of the
reduced density operators of each of the coupled subsystems. The "irrelevant" part of the
density operator is then the part describing correlations between the coupled systems. Our
formalism is particularly useful where systems are coupled to one another predominantly
in a seJ.f-consistent fashion. First, we develop exact master equations for two coupled
systems, taking as our prototype the dynamical problem of quantum optics, where a spatially
extended collection of two-level atoms interact with a multimode optical field. We then
generalize our results to A' coupled systems, taking as our prototype the kinetics of a classi-
cal nonideal gas interacting through two-body forces, and derive exact master equations for
the system. We then consider as examples several approximate theories resulting from our
exact equations. In the case of the imperfect gas we investigate the low-density limit and
show how Bogoliubov's form of the Boltzmann equation emerges from our formalism, as
well as corrections due to Klimontovich. We consider as special cases of our exact quantum-
optical equations the equations in the first Born approximation, with and without memory,
and show how several existing quantum-optical master equations are contained in our general
results. As a second example in quantum optics, we consider the case where the predomi-
nant behavior of the system is described by the self-consistent-fieldor coupled Bloch and
Maxwell equations and derive a first-order perturbation description for deviations from
self-consistent-field behavior.

I. INTRODUCTION

The use of projection-operator techniques' '
to derive master equations has become increasing-
ly more common in recent years. Although pro-
jection-operator techniques are extremely gener-
al, they have been especially useful in problems
where systems are in contact with reservoirs or
where one is interested only in the diagonal matrix
elements of the density operator E(t) in some rep-
resentation. In these problems the degrees of
freedom of the reservoirs or the off-diagonal part
of the density operator are considered to be ir-
relevant, and the "irrelevant" part E, (t) of the
density operator is formally eliminated. One is
left with an exact equation for the remaining "rele-
vant" part of the density operator F„(t), which is
related to F( t) through a projection operator P

In a recent article Haake' has studied a wide

variety of problems involving coupled systems
using standard projection-operator techniques;
these problems have in common that one of the
coupled systems can be treated as a bath and its
degrees of freedom treated as irrelevant. How-
ever, in many problems involving coupled dynam-
ical systems, it is very convenient to have a
description where each of two or more coupled
systems is considered to be on an equal footing,
neither of them being an irrelevant part of the
system, In this paper we will derive ma. ster equa™
tions for coupled dynamical systems where the
irrelevant degrees of freedom are not the dynam-
ical degrees of freedom of one of the coupled sys-
tems, but rather the correlations between the sys-
tems, produced by the interaction. Moreover, we
will allow for the possibility that the reduced den-
sity operjtors of the subsystems possess off-
diagonal matrix elements. Such a view is partic-
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ularly profitable in situations where a self-con-
sistent treatment of the interacting systems is
important or where the subsystems are strongly
interacting and neither of them can be considered
large or reservoir-like. For example, such situa-
tions arise (i) in quantum optics, where optical
fields interact with a polarizable medium and
either optical feedback or propagation is an im-
portant effect; (ii} in the kinetic theory of imper-
fect gases; and (iii) in the theory of inhomogeneous
plasmas, where a description of self-consistent
effects is desired.

One advantage of this approach will become
apparent. Although the rigorous .master equations
are equivalent to master equations using other
projection operators (and to the Liouville equa-
tion}, a much better description of the system is
possible in a suitable low order of approximation
using the coupled-systems approach. A disad-
vantage of the approach is that our projection
operators will become time dependent; however,
this disadvantage is not serious.

First, we will consider two coupled systems to
demonstrate the general approach and derive the
exact master equations. To be specific, we w'ill

usually speak in quantum-optical terms, where
an optical field is coupled to a matter system con-
sisting of polarizable two-level atoms. However,
the approach applies equally well to many other
systems. Then we will consider a case of H cou-
pled systems, namely a classical imperfect gas
of N molecules interacting with one another through
an arbitrary force law. Ne will show that, in the
low-density limit when the force range is short,
one obtains the Boltzmann equation of Bogoliubov, '
and we will consider corrections to it. Finally,
we will return to our general quantum-optical
master equations and consider two different ap-
proximations to them.

Hence, turning to the problem of two coupled
systems, or the quantum-optical case, we divide
the system into. relevant and irrelevant parts such
that the relevant part is an uneorrelated state of
the two coupled systems. Thus we may write for
the complete density operator E(t},

F(t}=F (t)+F~(t),

where

F(t) =R(t) p(t), E, (t) =E(t) —R(t) p(t} (1.2)

and R and p are the reduced density operators of
the field and matter, respectively, defined by

R(t)=Tr E(t}, p(t)=Tr~F(t).

The symbol Tr denotes a trace over all degrees
of freedom of the matter and Trz a trace over all

those of the field.
Uncorrelated states of matter and field are

familiar from the well-known and important self-
consistent-field approximation (SCFA) for inter-
acting radiation-matter systems, where the cor-
relations are identically zero for all time; that
is, F(t}=0, so that

F (f)=R(t) p(f) (1.4)

-=-'fa-'[R, F(f)],
and take traces of the equation over matter and
over field variables to obtain equations for R(f)
and p(f), respectively I.n this equation the superi-
or dot stands for 8/sf, and H is the total system
Hamiltonian. The resultant coupled equations for
R and p constitute the SCFA. If the matter is com-
posed of two-level atoms, the SCFA leads to the
Bioch-Maxwell (BM) equations of quantum optics
for the first moments of R and p.

In the general case, even though the system is
initially in an uncorrelated state E(0) =R(0)p(0)
and the part of the density operator describing
correlations E, (t) =E-Rp vanishes initially, cor-
relations will develop in time through the inter-
action so that E,(t)a0 for t&0. Consequently, one
needs to develop coupled master equations which
include coupling between 8 and p, not only through
the self-consistent field (SCF}but also through
dynamically induced correlations. The projection-
operator formalism provides a convenient means
for doing this by allowing us to express the dy-
namical correlations in terms of the uncorre)ated
part of the density operator, leading to exact
closed coupled equations for R(t) and p(t)

An interesting feature of our approach to coupled
systems is that it requires a time-dependent pro-
jection operator. Time-dependent projection
operators have been used by several authors. ' '
One of the subtleties in deriving master equations
with time-dependent projection operators P(t) is
that the projection operator does not commute with
the time-derivative operator e/st on the left-hand
side of the Liouville equation, Eq. (1.5), but rather

[P(t), s/ef) = -P(f). -

In our ease, however, we will see that the projec-
tion operator we shall choose behaves more like
a time-independent projector in this regard, since

One does not normally use the projection-operator
formalism to obtain the SCFA. One need only sub-
stitute Eq. (1.4) into the quantum-Liouville equa-
tion for F(f}, which can be written in tetradic or
Liouvillian form'

F(t) = iLE(t)-
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P(f) F(t) =0, (1.7) P(t) =R(t) Tr~+ p(t) Tr R-(t) p(t) Tr, (2.3)

so that P(t) effectively commutes with 8/st when

operating on the full density operator.
In Sec. II we introduce the projection operator

and derive the exact coupled equations for R and

p. In particular, we mention the quantum-optical
ease where R and p are the field and matter density
operators, respectively. Then in Sec. III we gen-
eralize the formalism to the ease of N coupled
systems and apply the resulting master equations
to the kinetics of a nonideal classical gas. In the
low-density limit we obtain the generalized Boltz-
mann equation, ' as well as corrections to it due
to Klimontovich. '0 In the following two sections
(Secs. IV and V) we return to the quantum-optical
case and discuss two different approximations to
the exact master equations. In Sec. IV w'e treat
the field-matter interaction in the first Born ap-
proximation (FBA) and show the important role
played in the treatment of optical interactions by
non. -Markoffian effects. %'e also discuss how
coupling atoms or field strongly to a reservoir
leads to Markoffian behavior. In Sec. V we present
a perturbative treatment of fluctuations about the
SCF and show how the coupling between field
fluctuations and polarization fluctuations is modi-
fied by the presence of a strong average field.
%'e conclude in Sec. VI by comparing our work to
that of others.

where Tr-=Tr& Tr, in terms of which

F(f)-P(t)F(f), F(t)=[1 —P(f)]F(f). (2.4)

P(t, )P(t, )=P(f,-),

[1-P(f„)][1-P(t.)1 -=1 P(t,-),

P(t, )[1-P(t )]=—0,

(2.5a)

(2.5b)

(2.5c)

for arbitrary t, and t, . Letting &, =t, in Eq.
(2.5a}, we find that P'(t) =P(t), —so that P(t) is
indeed a projection operator.

Ãe are now ready to derive the equation of mo-
tion of F„(t) by operating on the Liouville equation,
Eq. (1.5), with P(t) Since.

P(f) =R(t) Tr, +p(t) Tr

[R(-t)p(t)+R(&) p(t)]», (2.6)

Eq. (1.7) is satisfied. Therefore, using Eq. (1.6),
we have

P(f), —„F(f)=0. (2.7)

From Eqs. (2.7), (1.2), and (1.1), it follows that

From Eq. (2.3), one can derive the simple proper-
ties"

F„(f)= a(t) L,F„(t)-~P(t) L,F, (t)-. (2.8)

II. DERIVATION OF MASTER EQUATIONS

a=a +a' =a +a&+a', (2.1)

where II is the matter and H& the fieM Hamil-
tonian. As we mentioned earlier, the derivation
holds equally well for any two coupled systems.
Substituting Eq. (2.1) into the right-hand equality
in Eq. (1.5), we see that the tetradic operator f.
is also a sum of matter, field, and interaction
terms,

The full Hamiltonian H of our system is com-
posed of a free part 0' and an interaction part
O'. In turn, 8 is the sum of the free Hamiltonians
of each of the coupled systems, that is

To eliminate F, (t) from Eq. (2.8), we require its
equation of motion, obtained by operating on Eq.
(1.5) with the projection operator 1 -P(t), namely

F', (&) = -i [1 P(&)]f.F, (-&) i [1 P(f}—]f F„'(f}.-
(2.9}

By integrating Eq. (2.9) and substituting the result
into Eq. (2.8), we obtain the master equation for
F„(t),

F (t}= -iP(t) f.9(t, 0) F (0) —iP(t) f,F„(t)

dt 'P(t)f 9(t, f ')[1 P(t ')]IF(t '), -
0

(2.10)

I =I +I'=I +I~ I', (2.2)

The first task in applying the projection-operator
formalism to our coupled system is to define the
projection operator I' which will perform the
projection onto F,(((), the relevant part of F(t),
indicated in Eqs. (1.1) and (1.2). Although there
is more than one operator that will a,ccomplish
this projection, it is advantageous to have one
which is symmetric in matter and field variables.
Thus we choose F, (0) =0. (2.12}

i(ii) rg( Ja"i,i-i-=(i")(r)-, (a.(((

T being the Dyson time-ordering operator.
We will ignore the first term of Eq. (2.10), since

this term vanishes for the usual case where the
system is in an initial state without matter-field
correlations, in which case F(0) =R(0)p(0}, or
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P(t)L. =L P(t)-I. p(t)Tr. [1 -R(t)Tr, ]

(2.13}

and an analogous expression for P(t) I &, where
we used Tr I. =-Tr&L,&-=0. Vfith the use of Eq.
(2.13) and its analog, noting that 9(t, t ')[1-P(t ')]
is a sum of projection operators of the form
1 P(t) ac-cording to Eqs. (2.11) and (2.6b), and

employing

Tr,[1-P(t)]-=Tr [1-P(t)]-=0, (2.14)

we find that

The vanishing of the initial correlations is one
aspect of the asymptotic condition in Bogoliubov's
method of deriving kinetic equations. ' Important
examples of such uncorrelated initial states for
systems of many bvo-level atoms coupled to reso-
nant fields include (i) the state where every atom
in the sample is in the excited state and the field
is in the vacuum state and (ii) the state where all
atoms are in the ground state and a specified field
impinges on the sample.

Next we show that both operators I in the inte-
gral of Eq. (2.10) can be replaced by L'. We
replace the first I by I' with the help of the rela-
tion

t
p(t) = i-I p(t) i-(L')~, p(t) — dt 'Tr~I, '

p

x9(t, t ')~, , I, 'R(t ') p(t '), (2.18a)
t

R(t) = iL-, R(t) —t(L'},R(t) — dt ' Tr I, '

0

x9(t, t ') z, , L'p(t ')R(t '),

where we have defined

(2.18b)

(L'), = Tr [L'R(t)], (L'), = Tr [L'p(t) ],
(2.19)

n. , L' = L' —(L—')~, —(L') (2.20)

[1 P(t ')] —L'R(t ') p(t ') =n, , I.'R(t ') p(t ').
(2.21)

Equations (2.18) may be written in a slightly more
symmetrical form by replacing the first I.' in the
integral by b, , I.'. This replacement" is possible
by the relations

Tr~(L'},-=Tr (L')~, =-0,

[Trq, (L')~,]=[Tr, (L'}-„,] =0,

P(t}I.'9(t, t ')[I-P(t ')] =-O. (2.15)
along with Eqs. (2.21) and (2.14). The final form
of the general coupled master equations is then

[1-P(t')]I„E(t')=0. (2.16)

When we substitute Eqs. (2.12}, (2.15), and (2.16)
into the master equation, Eq. (2.10), we obtain

E (t}= iP(t)LE (t) -— dt 'P(t)L'
4p

x9(t, t')[I-P(t ')) L'F„(t '). (2.17)

When we express F„(t) and P(t) in terms of
R(t) and p(t), use Eqs. (1.2) and (2.3) and the rela-
tion TrL'=-0, we can express Eq. (2.1V) as the
sum of two parts,

R(t}p( t) +p(t) R(t) =R(t)6 (t) +p(t) 6~(t),

where 8 and 6& are operators in the subspaces of
matter and field density operators, respectively.
Operating on this equation with Tr& yields an equa-
tion for p(t), while operating with Tr„yields an
equation for A(t) Thus Eq. (2.1V.) is equivalent
to two coupled master equations for p and A,

Moreover, the second operator L in Eq. (2.10) can
be replaced by L'. With the use of Eq. (2.13) and
its analog coupled with

[1 P(t)] E,(t)-=[1 —p(t) Tr ]E„(t)

=[1-R(t)Tr, ]E„(t)=O,

we obtain

C

p(t) = iL~p(-t) i(L')q, p-(t) — dt'Tr~n, , I, '
p

x9(t, t ')c,, L'R(t ') p(t '), (2.22a)

R(t) = -iL, R(t) -i(L'}.,R(t) — dt ' Tr.t, L'

x9(t, t')t, , L'R(t ') p(t '). (2.22b)

If Eqs. (2.22} are truncated by neglecting the
last term on the right-hand side of each, the equa-
tions of the SCFA result. Thus the last term in
each equation contains corrections of all orders to
the SCF equations brought about through dynamical
field-matter correlations.

So far Eqs. (2.22) are formally exact equations
for the time evolution of the coupled system and
as such are no simpler than the Liouville equation.
To make use of Eqs. (2.22), we must approximate
the final term of each equation in some suitable
fashion. Typical approximations introduced at
this stage in the development of master equations
are the Born approximation, the Markoff approxi-
mation (MA), and the Boltzmann (or low-density)
approximation. %e note that although the two
coupled systems have been treated quite symmetri-
cally so far, it is by no means necessary to con-
tinue treating them so, and the approximation
introduced need not change both of Eqs. (2.22) in



TIME-DEPENDENT PROJECTION-OPERATOR APPROACH TO. . .

a like manner.
Later in this paper (Sees. IV and V) we will

apply E(is. (2.22) to the treatment of two different
quantum-optical problems, where the interacting
systems are an optical field and a collection of
polarizable atoms. Some of these problems re-
quire that we couple either field or atoms to a
reservoir in addition to their mutual coupling.
Because of this complication, we first show in
Sec. III how our formalism may be generalized
in a straightforward fashion to the case of N
interacting systems and apply this generalization
to the treatment of the kinetics of an isolated sys-
tem, namely an imperfect classical gas. In the
low-density limit we obtain the Boltzmann equa-
tion for the gas in the form first obtained by
Bogoliubov' and examine higher-order corrections
to it.

where

(Ã&, (N(, (3 3)
n &qa ~pa 8pa &qa

and so forth, the braces denoting the Poisson
bracket.

In terms of E(ls. (3.2) and (3.3), the Liouville
equation is

(3.4)

where E„ is the N-atom probability density func-
tion. Since we wish ultimately to make a density
expansion, E„ is normalized to V" rather than to
unity,

III. GENERALIZATION TO N COUPLED SYSTEMS:
KINETK THEORY OF A NONIDEAL GAS

The approach in See. II, dealing with two coupled
systems by projecting onto uncorrelated states,
can be generalized to the case of N coupled sys-
tems. Ne may think of the N coupled systems
as being N atoms in an imperfect gas interacting
through a two-body force, although the develop-
ment is much more generally applicable.

In this section we will proceed classically, al-
though it would still be possible to proceed quan-
tum mechanically, as in. Secs. I and D. %'e do
this for a twofold purpose: (i) to show that the
classical and quantum problems are completely
analogous and that techniques developed for the
one apply e(lually to the other and (ii) to make
contact with Bogoliubov's derivation' of the Boltz-
mann equation and Klimontovich's corrections to
it,"in the low-density limit of our general equa-
tion.

The Hamiltonian of our system is

H(„( = Q EP„+Q H„'((, (3.1)
a&8

where H„=—p'„/2m is the free Hamiltonian of the
(((th molecule and H„'8 =

'(H( ~ —(l(l((~) is-the two-body
interaction energy between molecules e and p.
The parameters q„and p are the center-of-mass
position and momentum for the nth molecule, and
m is the molecular mass. %'e assume that the
force has a range x0«V'~', where V is the volume
of the system. Corresponding to this Hamiltonian
we have a I iouvillian

0 II (N) =L(N) +L(N)

or

V' d1 V' dNE =1 (3.5)

E, =V d 8+1 '''V dÃEN, (3.6)

normalized to V'. In particular, the single-mole-
cule probability function is then

E=-V ' d2 ~ V ' dNE (3.'la}

and is normalized to V,

V ~ dlEi1 t =1 (3.Vb)

Ne define a projection operator which projects
out of E„a relevant part corresponding to the
uncorrelated SGF probability density function,
and, once again, we see that the projection opera-
tor is time-dependent,

F(( =FN.„(t)+FN ((t },

where

(3 3)

(3 9)

where d1 represents the sixfold integral dq dp„
and so forth. %'e define reduced probability density
functions

N

L((((& =Z L'((
R a&8

(3.2)
(3.10)
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By analogy to Eq. (2.3), the projection operator
required is

P(t)-=Z ii'(E(d, t}f ",')

N

t}(LIn) -=Z t) rL'8
a&8

dG
d,L' =-L' — L' ~ E, n', t

(3.16a)

(P ()ii (E,(-, t)f —"), (3.11) L '., F, ( tt', t)
dP'

(3.16b)

the prime on the product meaning that the factor
P = a is to be omitted. It is easily verified that
this expression for P(t) satisfies the properties
of time-dependent projectors [Eqs. (2.5)] as well
as Eq. (2.'I). Moreover, except for normalization,
it is strictly analogous to the projector of Eq.
(2.3) when %=2. As in Sec. II, we find the equa-
tion for the relevant part of E„,"

F„„(t)=P(t) L(„)9'"'(t,-~)E„,(-~)

~ P(t)L,„,E (t} f„,dt'P(t)L, „,

where

x 9'"'(t, t ')[1 -P(t ')] L(„,F„„(t'},

(3.12)

v (tt }'"v'dd, v( 'dt-="[1-P(t")}r.,„).
gl

(3.13)

By integrating over 2, . . . , tv', using Eqs. (3.V)
and (3.9), and neglecting initial correlations,
F„,( ~) =0, we o-btain an equation of motion for

E(1,1) (r;, (tv 1)v- f.dr-L,'. -E, (d, t)) E(1, 1)
t

+ dt'V d2'''V ' dNP t L

&& 9 ( ) ( t, t ')[1 -P ( t ')]L,„,Q F (ot, t ').

(3.14)

In deriving Eq. (3.14) we have used the relations

However, since we wish ultimately to compare
our equations with those of Bogoliubov and Klimon-
tovich, we will find it advantageous to proceed
somewhat differently. We use the analog of Eq.
(2.13),

P(t)L —:L P'(t}—I' Q 11 E(v, t)f—
8

x 1-E, p, t dP (3.1't)

along with Eq. (2.5c) and the relation

ii'( f—') ((-p(r)} -=1}, (3.ig)

(tv-1) t' 'df v, , d)'Lfddv"v-''
N

x dNQ&N' t t' 1-P t' L&» E e t'.
(3.i9)

Before performing a density expansion, to com-
pare with the equations of Bogoliubov and Klimon-
tovich, we perform one additional transformation
on Eq. (3.19). Differentiating Eq. (3.13) leads to
the equation for O' N',

to replace L„by L„' only in its first appearance
in Eq. (3.14}. In Eq. (3.17}the prime on the P
sum means that the term P = e is omitted, and the
prime on the y product means that the factor y = p
is omitted. Moreover, we may use the symmetry
of L,» under permutation of the molecules to
write our general master equation for sF, /st,

E(r, t)=(L;,(P 1)v- fd)L„E(d, t))E(l, t)

d1 Li~=-0, d1 d2Lx2 -=0 (3.15) 9 (tt t )[1 P(t )]L( )t )v(3 20)

the volume integral in phase space reducing to a
phase-space surface integral, which vanishes
because of the short range of H' and Eq, (3.5), the
normalization condition.

At this stage, we may proceed in a parallel
fashion to the development in Eqs. (2.13)-(2.22)
'to obtain a nonlinear equation for F, (a, t) similar
to Eq. (3.14) with L(» replaced by tL)L(„) and

h, .I.',» in its first and second occurrences; the
fluctuation in L&» is defined by

then Eq. (3.19) can be written

E,
' (1, t) = L + (tt —1 }1' ' fd',d l.,', E, (d, t)) E,(1, t }

d2 , d3—(tv' 1) rtt' —L' }
—~ ~ ~

~ ~

dt)) s9(") t t'(tÃ t)9 t) t II F( t) (3 21)

When we integrate the last term of this equation
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P, (1, f) =L,'s;(1, f)+(I&('-1) itm —L,', —"~ 9&"&(f, f -~) II s,'(a. , t —7)+(x-1)d2, d3 dN ~
" d2

T~oo 0f 0

—~ ~ 9("&(f I-~}— E (a I-v)d3 dN g 8

V y y gt J, y (3.22)

by parts, the integrated part evaluated at f ' = t cancels the preceding term in Eq. (3.21)—that is, the SCF
term —and the master equation reads

after changing the integration variable from t ' to
7=-t —t'.

To simplify Eq. (3.22) further, we assume we
are in the kinetic regime, describing phenomena
whose time scale T satisfies

Nr,'/V «1 (3.23b)

leads to the Boltzmann approximation. The last
two terms of Eq. (3.22) are first order in this

|nt rel

Here 7~, is the duration of a collision, and v„,
is the time between collisions. Thus v. ( =r, /&&

and r..( = 1/&), where && is the average molecular
speed and l =—(4''N/V) ' ie the mean free path
%e introduce an expansion in powers of the density,
or more precisely, powers of Nr ',/V m v. , /7„& .
Keeping only the lowest order term in the expan-
sion in the limit

P (t) L'„=L', g'Z (&3, f)
dP

B
(3.24)

the prime on the product indicating P& y. %hen
we consider that V '" "fd3 JdN is at the left
of the function 9'"', we may ignore all terms con-
taining 1.0 unless 0. =1 or 2, and all terms con-
taining L'„8 unless (o.', P) = (1, 2), according to Eqs.
(3.15) and (3.23b). Performing the integral over
the coordinates 3, . . . , N, we obtain, instead of
Eq. (3.22),

parameter already since V &j&f2L,', -r,'/V. Now

we look at the expression for O'"', Eq. (3.13).
First, any term containing P(t)L'&„& is negligible
because it involves expressions like V 'Q fdnL'8
and hence is down by an extra factor of Nro3/V.
Second, many of the terms in P(t) Lo(„& can also be
neglected, since by Eqs. (3.11) and (3.15)

E, (1, t) =L&DF&(I, t)+ lim d2L,', 9"'(f, t —7') E&(l, f —T)E,(2, t —r)+ ( d7 (fd2L,'2
N —1

+~ &)o

1 1 y

where'4

x9&"(f, t ~) , z(l, f ~—)F,(2, f-T), (3.25)

'((&)&-v)=- e , uTxa( (((; x"-(.', '+z()+i,"')j—r:z( )j-( ~'
g T

(3.26)

At this stage, we note that 9"' is not the usual
two-particle time-development operator, which
we call G")(~). From Eq. (3.26) the former satis-
fies

39(2)(t, I -~) =9&"(I, t ~)[L„, g„,(f —~)j, —

BG (T)
G& )( )L

BT

whose solution is

G(2) (7 }= e(~& "~2'~&a"

(3.29)

(3.30)

(3.27)

where L&» is given by Eq. (3.2) with I)&'=2 and

Equation (3.27) may be transformed into an integral
equation which shows clea, rly the relation between
8(» and a(~), na~e~y

9(2) ( ~ t &} G(2) (&)

(3.28}
w 0

d~'9&2&(f, f -~') ,L(&t &r')-
on the other hand, the latter satisfies Eq. (3.27)
with Z&» =0, Iterating this equation once, one obtains

(3.31)
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and momenta. Following Bogoliubov, we define
the constants"

), )i(2,.t —T') V ' (d) ~ () 2)),

(3.32)

P"'(1,2) =- limG"'(7) p„,

Q"& (I, 2) -=IimG" &(r)fq„+P„~/mj,

(3.36a)

(s.s8b)

Z (1, t) =I.O, Z (1, t)+ —d2 I,,'P„(t), ( 3.33)

where

e„(t)= iim9&2&( t,-t 7)z(1, t—7)z, (2, t—T)—

(3.34)

and we note that the first term of 4'„starts with
a zero-order contribution in r/v„), whereas the
lowest-order contribution of the second term is
already first-order.

We will now show that 4,', ', the zero-order term
in the expansion of +y2 leads to Bogoliubov's form
of the Boltzmann equation. ' Later we will show
that the first-order terms 4,'," lead to Klimon-
tovich's corrections. ' Using only the first, term
of Eq. (3.32), we have

4„(t)-=limG" &(&.) E&(1, t —~) E,(2, t —r). (3.35)

Before expanding E, in a Taylor series in Eq.
(3.35), we note the effect of G"' on the coordinates

where (1—2) indicates a similar term with 1 and
2 interchanged. Higher-order iterates will not
be important, as we will see soon.

We now note that Eq. (3.25), with 9(2& given by
Eq. (3.32), still contains a power series in r/7, .&

and ~ (/v„& . Both BE,(1, t)/st and I &DE, (1, t} are
-E, (1, t)/v„&. Moreover, every f&fr leads to an
additional power of ~ or v (. Thus Eq. (3.32) may
be looked upon as a power series in ~/~„& . The
first term neglected in the equation is -(7'/v„&)'.
Similarly, the successive terms in the expansion
of & (1, t —7) about E&(1, t) constitute a power series
in 7/v. „&, which we will write later. To implement
our series expansion we write Eq. (3.25} for t)t»1
as

= limE, (Q"'- P&2&~/m, P"', t —v)

&{a,(q&" i&"~-/m, P&'&, t 7), (s-.sv)

where m is the molecular mass. Setting 7 =0 in
the right-hand side of Eq. (3.37) and substituting
into Eq. (3.35), we obtain the zero-order part of
q'&2 ( t),&6

yjl(0&(t) P (Q(2& P(2) t) P (Q(2& P{2& t) (3.38)

Substituting Eq. (3.38) into Eq. (3.33) yields exactly
Bogoliubov's form of the Boltzmann equation [Eq.
(9.1 t) of Ref. 5]. It differs only in form from the
usual spatially inhomogeneous Boltzmann equation,
as shown in Bogoliubov's subsequent development.

The next step is to examine corrections to Eq.
(3.38) which are first-order in 7/&„(, that is
4&&,"(t}.While these terms do not follow from a
strict density expansion of the master equation, "
Klimontovich pointed out that they play an impor-
tant role in the description of the kinetics of a
nonideal gas. In fact, in the case of a spatially
homogeneous system, they restore the conserva-
tion law for the total energy of the molecular sys-
tem, in contrast to the usual Boltzmann equation,
which conserves only the kinetic energy. To ob-
tain 4,',", we must substitute both terms of Eq.
(3.32) into the first term of Eq. (3.34), but only
the first term of Eq. (3.32) into the second term
of Eq. (3.34). The result is

where + =1, 2. These definitions assume implicitly
that the force is sufficiently short range and the
density sufficiently low that the colliding particles
may be considered to be asymptotically free, an
assumption we have already made in Eq. (3.23)
above. Thus we can write

e„(t)= lim E, (@"-i,"'T/m, i,"', t —T) E (q"'- i"'7/ mP"' t —7)'

—lcm dv''C' 'v' I, E I, t —7 E 2 t —7')+ 1 2 t~

+ d& G"'(~)—E, (1, t —r) E& (2, t —7'),
0

(3.39)

where we have made use of Eq. (3.37). We also wish to expand I'& in powers of T/7;„ in Eq. (3.39}. In the
last two terms we may write E, (1, t —T) =E&(1, t), and so forth, while the first term requires the expansion
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of F, to first order in 7/v„[,
p(2)~««*&-p, ~~ ~&& &-,[=[i-,(—', ' '

)]~«[ & p* &[ (3.40)

Performing these expansions and integrating the final two terms of Eqs. (3.39) by parts, the result is

p(2) g p(2}
4&«)($) Iim7 + & + 2 F (q&» P&2[ t)F (@&2[ P&2) [&)12 g t fg g~(2} fg ~~(2) 1 1 & 1 & 1 2 y 2

T ~on

7.G&2[(q)(LO+Lo)F (I t)F (2 t)( + &fq. ~ G&a (~)(L 0&+L )o2F (&I f)F&(2 f)
8

+~6&2[(~)—,F (1, t) F, (2, t)i,"— &I« —G&'[(r) , F,—(I,f) F, (2, t).8 8 8

0
(3.41)

Since L,'= -(p, /m}8/sq„we find that the first
term of Eq. (3.41) is canceled by the second and
fourth terms, when we use Eqs. (3.36) and keep
only zero-order terms in v/~„[. The surviving
terms of Eq. (3.41) may then be combined to yield

tion leads naturally to the correction terms of
Klimontovich. Here we have proceeded in an en-
tirely different manner than that in which he de-
rived them, which involved truncating the Bogoliu-
bov-Born-Green-Kirkwood- Yvon (BBGKY) hier-
archy through a binary-coLlision approximation,
whereby F,(1, 2, 3, t) could be expressed in terms
of F,(1, 2, t) and F, (1, t).

xF, (1, t)F, (2, t). (3.42)

F', (I, t) =L,'F, (1, f)+S, +a„
where

(3.43a)

Substitution of this result into Eq. (3.33) yields
a term which can be reduced to Klimontovich's
correction term I, [Eq. (39}of Itef. 10], the final
result being

IV. FIRST BORN APPROXIMATION IN QUANTUM OPTICS

One of the ways of simplifying the rigorous Eqs.
(2.22) to a more manageable form is to retain only
terms linear and quadratic in the interaction I ',
enabling us to neglect the interaction completely
in the propagator 8(f, t '). By Eq. (2.11) the un-
perturbed propagator is

g = d2I ~ g (2) P(2) ~ p (2) p(2)

(3.43b)

X ——L,, —L 2 El 1, t I'1 2, t (3.43c}

are obtained from q'&&o[(f) and 4',&,"(f), respective-
ly." The discussion of the way in which the term
82 affects the conservation laws will not be repeated
here, since it is adequately treated in Ref. IO.

In summary, we believe that the derivation of
the Boltzmann equation using Bogoliubov's method
carried out here provides important net insight
into the connection of Bogoliubov's functional
techniques with projection-operator methods. Our
choice of the relevant part of F(t) to be a product
of single-molecule distribution functions in Eq.
(3.9), along with our assumption that F„,(-~) =0,
is the counterpart of Bogoliubov's asymptotic con-
dition. Moreover, we have shown how our deriva-

An additional simplification follows from the rela-

tionn

9 (t t'}[1-P(t')]=e-""'-' '[I-P(t')] (4 2)

Equation (4.2) follows from Eq. (4.1) by expanding
the exponent in a series, using Eq. (2.13) and its
analog for P(t) Lz to obtain either P(t "), Tr, or
Tr& on the extreme right of any term containing
P(t"), and then taking note of Eqs. (2.5c) and
(2.14}. The resulting approximation is referred
to as the first Born Approximation (FBA) with
memory. ""In this paper we will not attempt
to provide a justification of the FBA with memory, "
but we will examine the equations of the FBA with
memory for the important special case of the
quantum -optical Hamiltonian.

Our system consists of a continuum of plane™
wave radiation modes e""' "))') interacting through
a dipole interaction with N two-level atoms. The
&th atom is at position X~ with upper and lower
states ) w)„separated in energy by I&d, . In this
case we have
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H =
2 ~ ~~-

2 So,
e=l

H~ =Q KQ, (o,', a,, + —,'),
(4.3a}

tion relations

[Z,',Z;]=S. . . [Z;,S„]=2P; „,

[S„,f';] =2P,',„. (4.6}

H'= — drP r E r

-)fZ (&[ I'usa +[[a I'asa )
Age

where P(r) is the electric-polarization density,
E(r) is the electric-field amplitude,

(4.3b)

s =-I+& &+I-I-& &-I=[o', o l,

cr'=f~&

~PgQ ~ X~OP g —
~fifo X~@

Cf3 K 0I ~

The operators in Eq. (4.5) satisfy the commuta-

In the expression for Hz, a~, is the usual creation
(annihilation} operator for the mode with wave
vector k and polarization index s. In writing the
second form of H' we have used the rotating-wave
approximation. The coupling constant p,„is de-
fined by

hp„= P"-~ e„(2vgA, /V)'~'. (4.7)

where I —= &+(er(-} is the transition dipole moment
and e„ is the polarization vector of the (k, s) mode.

When we substitute Eq. (4.3) into Eqs. (2.22),
use Eqs. (4.2) and (2.21), apply the commutation
relations, Eqs. (4.6}, and perform the traces,
we obtain

R+ iQ Q, [a,'a, , R]+i Q (y, &P,+&.[o[,R] —H.c.)

(4.8a}

=-Zu, J d " ""[u &a;m'), ,[o, , '[&&&t — )11+&.ca&,'m.'), ,[,, [oY &&&),&[
l~m 0

&S, &, ,[a,na, R(t —7)]}+ H.c.

p+ ,'i «[,[S„-p]+i g ([[.,&a,}[&,', p] —H.c.)
rf C«c """"'I[ [I'[I'„P (i ~)n-f;1

g J p l, m 0

"(W'&&«'«& .Cf', [&.', p(i-&}]]+p &n, & .&, ,[S", , [Z', p(i-7)]])+H.c., (4.8b)

where &( ~ ~ ~ ~ )&-=Tr~ ( )Rp, tilde denotes an
interaction-picture operator, and n, 6=6 —&6[&.

The left-hand sides of Eqs. (4.8) contain zeroth-
order and linear terms in p, and constitute the
SCFA, or equivalently the BM equations. On the
other hand, the right-hand sides of Eqs. (4.8) are
quadratic in p. and contain stimulated absorption
and emission terms, as well as spontaneous emis-
sion terms. For example, the first two terms of
Eq. (4.8a) describe coherent and incoherent spon-
taneous processes, while the last term describes
induced processes. The nonlocal time dependence
in Eq. (4.8), which constitutes the memory part
of the FBA with memory, is the mathematical
representation of the retardation effects present
in radiation-matter interactions. In a future
publication we will show that Eqs. (4.8) are capable
of explaining the experiments in which Skribano-
witz et al.22 observed strong coherent spontaneous

emission or superradiance from an inverted sam-
ple of HF gas. The retardation introduced into
the coherent spontaneous emission terms, as
well as the presence of stimulated absorption and
emission terms, serves to explain the ringing
which they observed.

In most quantum-optical problems, in addition
to the atom-field coupling, there are usually in-
teractions with matter and or radiation reservoirs
which lead to dissipation. The only changes that
occur if we add interaction with reservoirs to the
system described by the Hamiltonian of Eqs. (4.3)
are to add operators (5R/5t}„, and (5p/si) „, de-
scribing the reservoir damping to the right-hand
sides of Eqs. (4.8) and to change the time depen-
dence e"~0 "~" in the kernels of the integrals to
e"' o "&' "", where v ' is the fastest dissipative
relaxation time introduced by the reservoirs.
However, if the relaxation time due to the reser-
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voir is faster than the relaxation time due to the
atom-field coupling treated in the FBA, we obtain
the FBA without memory, that is, the FBA in the
Markoff approximation. In the Markoff limit Eqs.
(4.8}become local in time; that is, all arguments
t —7 in density operators are replaced by the
argument I, . Furthermore, for t& v ' the upper
limit in the integral j,dv e' " o "d' ""is replaced
by infinity, and the value of the integral is
[t ((d, —0,)+ v] '. We refer the reader to Ref. 23
for an analysis of the theory in the Markoff limit
and a more complete derivation of the master
equations.

The only comment we make here is that we ob-
tain the usual superradia. nce master equation"
from Eqs. (4.8) in the Markoff limit when the radia-
tion field is required to be in the vacuum state.
Then the R equation becomes unnecessary, and
the SCF terms vanish, as do the induced emission
and absorption terms. The resultant supe rradiance
master equation is

P+ z t(d(otSOP] =g Ii( IC((lp( Pp(]+II c
1

(4.9}

C, =v5 (~, fl, )=—v6((v-, —II, ) —iS'((d, —II, ) '.

Bonifacio et a/. "have derived an equation for a
collection of atoms coupled to a lossy single-mode
field. They required that the field loss rate domi-
nate the atom-fieM coupling and obtained a theory
whose Markoffian limit can be derived from Eq.
(4.9) by setting all C, equal to zero except for the
one exactly resonant mode (0, =~,) for which C,
is replaced by v ', v being the loss rate of radia-
tion from the single mode.

Recently, Sasada' has shown that the equations
of Ref. 25 have interesting non-Markoffian behavior
for times short compared with v '. This non-
Markoffian behavior for times short compared
with v ' should not be confused with the more gen-
eral long-time, non-Markoffian behavior of the
FBA with memory, Eqs. (4.8a) and (4.8b), which
persists for times t& v '. Since Sasada (as well
as Bonifacio et at. ) uses a single-mode model,
he cannot treat the spatially dependent retardation
effects that are contained in the multimode Eqs.
(4.8a) and (4.8b).

V. PERTURBATION ABOUT THE SELF-

CONSISTENT FIELD

In this section we discuss a different approxi-
mation to the general master equations for a
system consisting of an optical field coupled to
polarizable atoms —that is, another special case

of Eqs. (2.22} with a Hamiltonian given by Eqs.
(2.1) and (4.3). In this approximation we assume
that a strong coherent field is present initially,
while the atomic population may or may not be
inverted. (The situation where the atoms are
strongly polarized with no field present initially
is also allowable. } In other words, we consider
the case where the predominant behavior of the
system is described by the SCF or BM equations,
while deviations from the SCF equations represent
small effects, which we will treat in the FBA.

%'e can express this approximation quantitatively
if we rewrite the Hamiltonian and I iouvillian of
Eqs. (2.1) and (2.2) as

H =Ho (t)+a,'(t)+t, H',

I, =I.'.(t) +I,,'(t)+t, L, ',

(5.1)

H'. (t)= H. +(H'-&, ,

FPq(t) = Hq+ (H-'&

t, H'=-H' -(H'&, , -(H'&. ,

(5.3a)

(5.3b)

(5.3c}

The Liouvillians are defined by analogy with Eq.
(1.5), and the subscripted angular brackets are
defined in Eq. (2.19); the definition of 6, I, ' follow-
ing from Eq. (5.3c) agrees with that given in Eq.
(2.20}. The Hamiltonian H' +H't by itself generates
the SCF equations, composed of all but the time-
integral terms of Eqs. (2.22). Thus we use the
abbreviations

H~(t) = H' (t)+Hq(-t),

1,~(t) = I,o (t)+f.,'(t).- (5 4)

The approximation we wish to consider is that in
which the deviations from behavior described by
the S&»re sm»I, «t ts li«'Il«III ~II, tn some
sense.

Vfe now proceed to implement this approxima-
tion in Eqs. (2.22) by expanding them in a Born
series and keeping only the first term (FBA).
Since the time-integral terms of Eqs. (2.22) are
already second-order in s, I-', we may replace 9
by

(5.5)

This result can be simplified further by noting
that any term with P(t "}in Qscp does not contribute.
The proof uses Eq. (2.21}and is completely paral-
lel to the proof of Eq. (4.2). Thus we can write

9scF(t, t ')td. ,
' I(t P'}R(t ')

=G,pt, t')t(, I.'p(t')H(t'), (5.8)
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(5.7)

x t, .L'R(t ') p(t '), (5.8a)

and Eqs. (2.22) become in this approximation

to allow for the possibility that atoms or field
are coupled to a dissipative reservoir, as dis-
cussed in Sec. IV. The operators R(t r-) are the
interaction-picture density operators at time
t —7 corresponding to the Schrodinger-picture
R(t —7) and p(t -7), where the two pictures coin-
cide at time t and the unperturbed time-develop-
ment is due to H~{t). Thus we have

R(t -7)=Gi(t-, t —7)R(t —7)

=KG(t, t —7)R(t '—r) UG (t, t —r),

xt, ,L'R(t') p(t') (5.8b) (5.11a)

Note that Cscp operates on matter and field vari-
ables separately; that is

p(t r) =-G'(—t, t —v) p(t —7)

=U'(t, t —T}p(t —~) U' (t, t -~)„(5.lib)

where

(5.9a) where U& and U' are the unperturbed time-develop-
ment operators, satisfying

(5.9b) (5.12a)

(5.9c}

%'e now consider specifically the model of N
two-level atoms coupled to an optical field with
Hamiltonian given by Eqs. (4.3). We will further
specialize to the case where the atoms interact
with a single field mode. " In this case the effect
of the time-development I iouviliian Gz(t, t ') on
the field operators a' in L' is to cause them to
develop from time t ' to time t like radiation oscil-
lators driven by a c-number polarization current
(d)G(P'), . However, the driving current in this
case is not an external current, but the current
determined self-consistently from the solution
of the coupled master equations. In like manner,
the time-development I iouvillian GG (t, t '} acts
on the atomic-polarization operators in L' causing
them to develop like two-level atoms subject to
driving field {a'),, which is, once again, deter-
mined self -consistently.

In order to show explicitly the effects of the
mean field and mean polarization on the time de-
velopment, we rewrite the master equations
[Eqs. (5.8)] in Hamiltonian form. They take the
form

e(t)= —ilr [tt (t)e(t)) ~ (e'e/et)„, —X, '( dt e "'

x Tr, [t,ff', [~, ,ff'(t, t 7), R(t-7) p(t --~)j],

(5.10)

with a similar equation for R(t). In Eq. (5.10}
we have changed the integration variable to 7
-=t —t'; we have also included the term (5p/&t)„,
and the factor e "in the kernel of the integral

Uo (~t t) oU(t t) 1

(5.12b)

(5.12c)

Finally, we have defined the effect of Uz~(t, t ')
-=Uz ( t, t ') U' ( t, t ') on observable s in Eq. (5.10)
by

=U~(t„ t —r)6Us~~(t, t —v). (5.13)

+H.c.+c number, (5.14)

the c number being of no consequence since its
commutator vanishes. Thus to simplify Eq. (5.10)
further we must (i}solve Eq. (5.12a} and use the
solution to determine tt, , Ta (t, t —v) and (ii) solve
Eq. (5.12b) and use the solution to determine
t), ,&r'„(t, t —v). Procedure (i) is simple to carry
out, since the interaction with the average polar-
ization only shifts the operator a by a c number
and this c number cancels out when we subtract
the average value of a, as required to obtain

,a (t, t —v)=a (t, t —v) —(a (t, t —v))z,
Thus A, ,a develops in time only due to H&
=lfQ(a'a +-,'), and we have

nd Ta {tet —T)=E( Ta 8 (5.15)

The calculation called for in procedure (ii) is
slightly more complex. It is most easily carried
out in the "rotating frame, ""defined by the trans-

According to Eqs. (4.3b), (4.5), (2.20), and (1.5),
for our single-mode case,

TH'(t, t —v)=ape'"'" tdn, , a(t, t —v)ada (t, t —7)'
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formation

U'. (t, t v-) =u".(t, t v—}e (5.16)

It follows from Eq. (5.12b) and the algebra of the
matter operators in Eqs. (4.4)-(4.6) that U" satis-
fies

sU"„ t, t -v ,'i-v-s(t, t-v) Q((re, Q-}vs 2[@. (a ), ,e '""e'"'"~a'+H.c.]l,87

whose solution is

U" (t, t —v) = II T exp(--,'i[(re, -Q)vs (trrp-(t, t v)-v) (I, v)a'+H c.)]). (5.17)

In Eq. (5.17) we have defined

t
n, p(t t —v)e"'""' "-=2p dt'(o'), ,t- 7'

(5.18}

(ak) —(ak) ev jar (5.19a}

ny and y are real, (a'), is the slowly-varying
part of (a'), , where the optical-frequency time
dependence has been removed,

v) (t, v) —= exp(i[k X~ —Qt —}t(t,t —v)] t (5.19b)

is a phase factor. Carrying along the analogy"
with paramagnetic resonance, we see that
~p(a ),( is the instantaneous Rabi frequency and

rp(t, , t ') is the turning angle of the two-level
atoms, or electric pseudodipoles, from time t'
to time t due to the nutation at the Rabi frequency.
Making use of the algebra of the matter operators,
we may use Eqs. (5.16) and (5.1V) to write

U'(t, t —v) = Q( cos'g(t, v) —irt '(t, v}sin-,'g(t, r) [ares n, &p(t, l -v-)(q (t, v)cr" +H.c.)]fe "r2r'""&,

(5.20)

rtr(t, v)=[n&v'v2 6 +p*(rt, t —v)l'r',

4u =- cu —Q.0

From Eqs. {5.13}and {5.20) we find

a„'(t, t —v) =e '"'[G„(t,t —v)g„'+G„(t, t —v)q„*(t, v)s„+G, (t, t —v)rl '(t, v}cr„],

where

G„(t, t —v) =- co'-s,
'

(rttt, v) —
rIt '(t, v)d re'v' i s'-,'nt(tr, v) irt '(t, v)-L~v sing(t, v),

G„(t, t —v}=—-ig '(t, v) hrtr(t, t —v}sin-,'rt(t, v)[cos-,'r)r(t, v) ttr tuvrlr '(-t, v) sin-,'g(t, v)],

G„(t, t —v) -=rt '(t, v) ny'(t, t —v) sin' ,'y(t, v). -

Combining Eqs. (5.10), (5.15), and (5.22), we may write the master equation

P(t) = ig '[H'„(t), p(-t)1+-(6pi«)...

(5.21a)

(5.21b)

(5.22}

(5.23a)

(5.23b)

(5.23c)

dv e Try [Jl e + kra~ ng a +H.c.,
o

x[tr e'"' "&(G„(t,t —v) S, , '
avt*+(t, v) G„(t, t —v) a, ,s

+q„*2(t,v)G, (t, t —v)n, ,o-}~, , a-+H.c., ft(t —v)P(t —v)]j. (5.24)

If we were to perform the indicated trace over
fieM degrees of freedom and compare with Eq.
(4.8b}, we would find that we have all the terms
of Eqs. (4.8) suitably generalized to include reser-

voir coupling, with e " o .""replaced by
G„(t, t —v). In addition, we would have two new
sets of terms appearing —namely those arising
from the terms containing G„and 6, in Eqs.
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where Q = [ikey&r'+ (2p.a}']'t'. This would enable us
to rew'rite 6,+, and so forth, as functions of v

alone; for example,

G„(t, t -v}=cos'—,'Qv —Q '4''sin'-, Qr

-iQ ~hsinge. (5.27)

Our time-development operator U'(t, t '} would
then be the same as that of Refs. 29 and 30. They
showed that this operator has three poles when

(5.24). We will not carry the solution of the non-
Markoffian equation (5.24) and the corresponding
equation for A(t) any further, our purpose having
been only to indicate how our formalism is useful
in treating perturbatively fluctuations about a
strong SCF. %'e will treat this problem in more
detail elsewhere.

The auxiliary problem in our formalism of
determining the time-development of a two-level
atom due to the interaction with the SCF is related
to a problem which has been studied by Newstein"
and by Mollow. " These authors studied the be-
havior of a two-level atom subject to a near-reso-
nant external driving field. If the envelope of our
field were of constant amplitude e and phase P,
then we would have

(5.25)

(5.26)

Laplace transformed on t; when ~w =0, one of
these poles is at zero frequency and the other two
are displaced by Hp. a, the Rabi frequency. These
correspond to coherent swinging of the atoms be-
tween the upper and lower states at the Rabi fre-
quency during the dissipation time v . Our gen-
eral problem is more comp1. ex in that the field is
self-consistently determined and can include, for
example, the reaction of the atoms back on the
driving field. In addition, our formalis~ de-
scribes, not a single atom, but a collection of
N atoms, and can describe spontaneous emission
effects -N' (superradiant emission) from a sample
driven by an externally applied or self-consistently
determined driving field.

As a final point in this section, we note the form
assumed by our coupled master equations in the
Markoffian limit, where memory effects are
strongly suppressed. In this case, where v is
large enough that 8 and P do not change during a
time v ', we may make the replacements in Eq.
(5.24), R(t —v)-R(t), P(t-~)- p(t), t, , -t r,
and let the limit of the ~ integration go to infinity.
We may also make the substitutions indicated in
Eq. (5.25) where e =or(t) and &t&

= rtr(t), since (a')r
does not change much during the range of ~ which
is important. With this interpretation of &, Eq.
(5.2V) and the corresponding Eqs. for G„and G,
hold. %'e may then perform the 7 integration in
Eq. (5.24) with the result

p(t) =ill '[H (t), p(t)]+(6p/6t)„, -g Try[pe'k'"&b, , cr'„tk, rr +Hc , [pe'k ."~(c„(t)tkrcr„'+r}„*(t)c„(t)tkrs„

+r}*'(t)c, (t)e, rr ja, a +H.c., R(t)p(t)]], (5.26)

and

(t) = er [k x&r- r&t 4(r&]- (5.29)

(5.30)

C„(t)= (tk~'+ v'+[2po(t)l'j '

x {v[1 + —,
' (2prk(t)/v}']+-,' in j. (5.31)

The effect of the strong driving field a(t) may be
seen in both the absorptive and dispersive parts
of Eq. (5.31).

The quantity C„(t) is the analog of C, of the FBA
without memory of Sec. IV; see, for example, Eq.
(4.9) or Eq. (2.34) of Ref. 23. On the other hand,
C„(t) and C, (t) are quantities without analog in
the usual first-Born-Markoff theory. The explicit
form of C,„(t) may be obtained by substituting
Eq. (5.21) into Eq. (5.30), namely

VI. COMPARISON YfITH OTHER %PORK

The number of articles using projection-operator
techniques to derive kinetic equations is numerous
and diverse. However, we will comment on a few
of the more recent approaches that serve to put
ours in perspective. In the general approach to the
treatment of open systems by Haake, ' the kinetic
equation for the system density matrix is obtained
by formally eliminating the "bath" degrees of
freedom. The time-independent projection opera-
tor used is

BfCf Trbgth 1

where B„f is a time-independent operator which is
a function of the "bath" coordinates and whose only
restriction is that its trace is unity, that is,
Trb„„B„,=1. Haake stresses that the formalism
is correct for any B„f and the selection of B„f
should be based on the physics of the given system
and "bath. " However, he points out that in cases
where the system and "bath" influence each other
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strongly B„f should be determined self-consis-
tently. If we consider the A(f) of Sec. II as the
"bath" density operator and p(t) as the system
density operator, then the stationary solution of
Eq. (2.22b) for R is just the self-consistent deter-
mination of B,.f that Haake requires in Ref. 4.

In Ref. 7 Robertson derived an exact kinetic
equation for the density matrix of an arbitrary
system. Recently, Kawasaki' generalized and used
the results of Ref. 7. Robertson assumes that the
density operator is a generalized canonical density
operator depending on a finite number of operators
whose average values are thermodynamic vari-
ables, or that local equilibrium prevails. Our
derivation is similar to Robertson's in that both
of our projectors are time-dependent operators
satisfying Eqs. (2.5) and the form of his equation
for E„ is the same as ours. Our equations are
fundamentally different from each other because
our different choices for the breakup of E~ into
relevant and irrelevant parts lead to very different
projectors P(t). Robertson assumes a generalized
canonical form in order to have a description in
terms of hydrodynamic and nonequilibrium thermo-
dynamic variables. In Sec. III we assume a product
ansatz for the relevant part E~ „of the N-particle
density operator E„ in order to have a description
of the kinetic stage in terms of the single-particle
density operator E,.

Another recent paper by Ochiai' attempts to
achieve a description of the kinetic stage. He
uses an exact analog of Robertson's projector
P(t) as a basis for a general approach to the clas-
sical N-body problem by (i) replacing the n macro-
scopic operators of Robertson by the microscopic
operators 5(q —q„)&(p —p„), one for each particle,
and (ii) requiring that the relevant part of' E„
should depend on time only through its functional
dependence on E, instead of specifying the form
of the N-particle distribution function as the gen-
eralized canonical distribution, . Thus Ochiai
hoped not only to obtain a kinetic equation for E,

xJ'~' (6.1)

To compare this operator with our projector we
assume a product ansatz for E„„,Eq. (3.9), so
that

Substituting Eq. (6.2) into Eq. (6.1) yields

(6.2)

(6.3)

Comparing Eq. (6.3) with Eq. (3.11)we see that
Ochiai's "projection operator" is only the first
term of our projector. Thus even in the case
where a product ansatz is assumed for the func-
tional dependence of E~ „on E„ the operator
P'(t) of Ref. 9 is not a projection operator.

In Secs. Iv and V we have shown that our ap-
proach lends itself naturally to the problem of
quantum optics, where the self-consistency of
the radiation-matter interaction is important. %'e

were able to obtain previous results for kinetic
equations as the limits of our equations, and more
importantly we were able to derive new equations
which are useful for the investigation of some of
the unsolved problems in quantum optics.

but also to determine the actual form of
E„,„[1,2, . . . , N~F, (t)] itself. However Robert-
son's P(t}was a projector and satisfied Eq. (2.5a)
only because he assumed the N-particle distribu-
tion function was a generalized canonical distribu-
tion. There is no analogous requirement in Ochiai's
work and in fact Ochiai's P(t) does not satisfy
Eq. (2.5a) and hence is not a projection operator.

In our notation we can write the P(t) of Ochiai
as

, ( )
V ~ (' d&' &E„„[I„.. . , E)E,(a', t)] TT'
nr ~ J~ V 6S,'(c', f)
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could be replaced by any other time t.
3It is convenient to choose the initial time to be to = -~
rather than to =0, as we did in Sec. II.
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vich calls I3, vanishes for a homogenous system.
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to Ref. 10 for details.

SP. N. Argyres and P. L. Kelley, Phys. Rev. 134, A98
{1964).

20F. H~e, Z. Phys. 223, 364 (1969).
The FBA with memory is difficult to justify rigorously.
See, for example, Bef. 20. However, the retention of
memory allows one to describe important physical
effects that are absent in the Narkoff approximation,
such as the frequency dependence of the electrical con-
ductivity.

2~N. Skribanowitz, I. P. Herman, J. C. MacGillivray,
and M. S. Feld, Phys. Rev. Lett. 30, 309 (1973).

23R. H. Picard and C. R. VVillis, Phys. Rev. A 8, 1536
(1973).

4Q. S. Agarwal, Phys. Rev. A 4, 1791 (1971), and ref-
erences therein.
R. Bonifacio, P. Schwendimann, and F. Haake, Phys.
Bev. A 4, 302 (1971); Phys. Bev. A 4, 854 (1971).

26T. Sasada, J. Phys. Soc. Japan 35, 33 (1973).
2~One way of achievtng this is to put the atom in a reso-

nant cavity, as in the single-mode laser.
SB. P. Feynman, F. L. Vernon, and R. N. Hellwarth,
J. Appl. Phys. 28, 49 (1957).

29M. C. Newstein, Phys. Rev. 167, 89 (1968).
308. R. Mollow, Phys. Rev. 188, 1969 (1969).


