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In a previous paper, I have presented a general theory of the optical pumping of atoms by
a polarized multimode-laser beam, in the presence of a magnetic field. Equations of motion,
valid at arbitrary laser intensities for the density matrix of the atomic system, have been
obtained. In this paper, these equations are exactly solved for a linearly o-polarized laser
and levels having small angular momenta. More precisely, I consider the laser transitions
J~ =1-J, =0, Jf, =1 J,=1, and JI, =1 J,=2. Two particular results are emphasized: (i)
For J=1-J=O and J=l-J=1 transitions and for the J=2 level of a J=1-J=2 transition, the
laser-induced Hanle effects keep a Lorentzian shape, independent of the laser intensity.
For the J=1-J=1 transition, it is shown that the depolarizing relaxation processes play a
leading part in the coupling induced by the laser between the transverse alignments of the
two levels. On the other hand, the power broadenings of the Hanle effects are shown to be
similar. For the J=1 level of a J=1-J=2 transition, the Hanle-effect shape presents a
departure from the Lorentzian one, owing to a coupling with the laser-induced hexadecapole
moment in the J=2 level. (ii) The populations of the levels exhibit a "zero-field saturation
resonance" which is due to the coupling with the Zeeman coherences. These resonances,
which reproduce the Hanle effects of the transition, can be observed on the z-polarized
fluorescence from the levels. In general, these resonances appear as a saturation effect,
i,e. , they reduce the laser-induced fluorescence of the levels in zero magnetic field. How-
ever, for the J~=l —J, =2 transition, the J, =2 J&=2 ~ fluorescence presents an anomalous
behavior; the saturation resonance increases the zero-field laser-induced fluorescence.
The theoretical study shows the prominent part played by the value of the J~ =1 level lifetime
in the interpretation of this anomaly. Other results, such as the laser-induced depolariza-
tion of the fluorescence, are also obtained. All the theoretical predictions have been ex-
perimentally checked and will be presented in forthcoming papers.

1. INTRODUCTION

In a previous paper, ' which will be referred to
as I in the following, I have presented a general
theory of the optical pumping of atoms by a multi-
mode gas laser. I.et us recall the principal as-
sumptions.

The laser is resonant for the 6-a atomic transi-
tion (h upper level, a lower level). Every level
has a Zeeman structure completely determined by
its angular momentum J 8 and its Landd factor
g8(J3=a or 5). The atomic levels are populated by
a, dc discharge which introduces a global population
only. The atoms are submitted to a dc magnetic
field H, parallel to the Oz axis. They are described
by means of their density matrix ~ which is de-
veloped on an irreducible tensoria, l set;

The atomic relaxation is assumed to be isotropic;
there is one relaxation rate I'z(k) per tensorial
order.

In order to avoid the usual perturbation theory,
we have introduced in I the so-called "broad-line
approximation" (BLA). BLA is valid when the
width of the "Bennett hole"' created by one laser
mode in the velocity distribution of the excited
atoms is comparable to (or broader than) the spac-
ing between modes; in these conditions, the atom-

. e p . do . tdePe d'o th et 'ty, a d
the multimode-laser irradiation is equivalent to a
broad-line excitation. BI.A leads to a set of equa. -
tions coupling the velocity-averaged density-ma-
trix components and valid at arbitrary intensities
of the laser field. These equations depend on the
electric field through an unique parameter y which
is proportional to the laser intensity and which
can be interpreted as a, laser-induced transition
probability [Eq.(I-46)J.

In I, I have analyzed the nonlinear effects which
can be deduced from a perturbation development
for any values of the angular momenta, , of the mag-
netic field, and of the laser polarization. In this
article, I present the exact calculations for a linear
o polarization (that we shall take parallel to Ox)
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and for small J values; mox'e precisely, I com-
pletely calculate the nonlinear effects for the fol-
lowing transitions: 1-0, 1-1, and 1-2.

Moreover, condition (I-68) (I'&«a+) is assumed
to be valid, and I consider the case of weak mag-
netic fields only, when the density-matrix modula-
tions are off resonance. Then, in the steady-state
operation, Eqs. (I-50) and (I-51) are reduced to a
set of equations coupling the time-independent
components (P =a or 5):

,bl, qi =eqb.
~3 6b.,

r&t ata» a»+ e qt[ytIGqtqt I g9qt I
yttqt I I

ft I+If I t I Plff I I yt I+(-}:Gq q" &q-] (4)

The geometrical coefficients G and 8 are defined
by (1-19) and (1-21}. n is the laser-off populations
inversion (I-24). ~s is the P Zeeman splitting,
and e, are the standard components of the laser
polarization. Let us remember that (a) p rePre
sents the laser-induced change of the density ma
frix (the laser-off populations have been elimina-
ted), and (b) ~t;q, appeared in the source term of
the equation of motion of the optical coherence
,~'q', [see (1-28)]. „Iq', is ProPortional to the am
pli«de of the optical k' multipol-e moment created

by the Laser beAeeen a and b.
~en the laser modes are free running, Eqs. (2)-

(4) are valid whatever the magnetic field may be.
Qn the other hand, when the modes are phase
locked and when the Lan& factors are equal, the
results obtained in this paper may be easily ex-
tended to the strong fields case, with the help of
equations (I-83) and (I-84). By solving Eqs. (2)-
(4), we shall study the quantities which can be ob-
tained in fluorescence measurements, in particu-
lar the following: (1}The density-matrix comPon
snts in zero magnetic field They appear in. the
anisotropy degree of the zero-field fluorescence
[the exact definition of this anisotropy is given in
Sec. E of Itef. 3, in particular, Eq. (68)]. (2) The

(I"&(k}+tQ&us)spq= 6&,Q(b, a, k) p + f, (2)

where

.&'q = -y Z ( -)"':bdq"q[e, .bt'q'
It tq tq

+( )b+b'+q+1 sy Ib' ]

(3a)

Ot+
bLq y 2 baGqtq[8 q abCq'+ ( ) + '+ "e,*bb&-q" l ~

atqt~

(3b)

transverse alignments p~, The variations of their
real, part with the magnetic field give the Hanle
effect .(3) The longitudinal components (i.e., the
populations of the sublevels) which are observable
on the m-polarized fluorescence.

[I'b(0) —rb.]bpb(24+1}' "+I'.(0)zb(2 J.+1}'"= o.

Since the laser-induced population change of the P
level is sp', (2Zs+I)'t', (5) expresses the conserva-
tion of the total population inside the a and b levels:
All the atoms leaving one of the two levels due to
the laser interaction must go into the other level.
The y~, term takes into account the excitation rate
of the a level. by spontaneous emission from b.
The other relations between the longitudinal com-
ponents could be deduced from a detailed analysis
of the laser-induced exchange rate of the subl. evel
populations for each set of Zeeman sublevels
coupled by the laser.

%'e shall see that, contrary to ~q, the ~&q.
components represent a set of independent vari-
ables [i.e., they are not coupled by simple linear
relations similar to Eq. (5)J. That is the reason
why these components have been kept in (2) and
(3): They will be an important intermediate step
in the search of the solution.

A. Zero magnetic field

Taking the Oz axis along the laser polarization,
we can set Q =Q' =Q"=0 in (2)-(4). On the other
hand, as it has been shown in I, 4' must be odd,
and 4 and 4" must be even. If we call o the density
matrix such as expressed in this quantization axis,
Eqs. (3) and (4) become

I' s(k} bob, =5 s,e(b, a, k),o', + sg", ,

0 ik'4g4=2X ~~~oo ~4

k ~ o 4th . At
b~O 2~ ~ ba~OO ab~O I (Vb)

II. GENERAL %AY OF SOLVING THE
EQUATIONS OF MOTION

In order to solve the equations of motion, it is
important to point out that the density-matrix com-
ponents do not represent a set of independent vari-
ables. For instance, linear relations exist be-
tween the longitudinal components ~o. The most
simple relation may be deduced from the fact that
ebb(28b+ 1)' = — ebb(2 J,+ I)'tb. This implies
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kt o ktktl ktt () ktktt ktt
abto ~8 6ll~l + ~ (bi@00 bQO 00~00 aoo ) '

ktt

(8)

Eliminating Ocr between Eqs. (6)-(8), we easily ob-
tain

ktgt, ~t n
M o ab&0 =

~8 60 1
gt

where
o r-ktk o r ~ tk o,ktk o ~i tk

+2 ~ ba~Oo bazoo u~oo ~~oo

ktko
abcvoo bacoo—8(b, a, }1) („)F (~)

The solution is obtained by inversing matrix M, .4
As it has been mentioned in I, for J =1-J=O and
J =1.-J=l transitions, 4' can be 1 only, andMo
has an unique matrix element Mo". In these cases,
all the density-matrix components are proportion-
al to y,bgo' and show the same variations with the
laser intensity. For a 4=1-4=2 transition ~g
exists in addition to,bgo'„and Mo is a 2~ 2 matrix.
The various density-matrix components do not
undergo identical variations with the laser intensi-
ty. To come back to our ordinary framework (la-
ser polarized along the Ox axis), we must perform
the rotation which brings Oz on Ox. The transfor-
mation formulas are'

b 0 )&b Q&/0 [(&+ta)!(& 0)!] &b
20[(a+q)/2]! [(1 —q)/2]!

k' ktk k'
bkQ =7" a ~ (ba faQ+ 1, Q abt Q+1 bafaQ-a, Qab(Q 1)-1

kt

and

abgQ ~6bl 1(5Q 1
1 5Q I 1)

~ra ktt -1 ktk+ ~2 ~ (abGQ', Q'+1 aPQ'+1 ab'faQ', Q'-1 aPQ ~ 1)-

Mr ktk
+~2 ~ (ba~Q', Q' +1 bPQ'+1 ba~Q', Q'-1 bPQ ~ -1) .

ktt

(16)

To solve Eqs. (2) and (14)-(16), we shall eliminate
first the longitudinal components, which do not
precess in the magnetic field, in order to obtain
a set of equations only coupling the transverse
components which describe the evolution of the
Zeeman coherence owing to the magnetic field.

2. Elimination of the longitudinal comPonents

Using the symmetry relations of coefficients C
and introducing a quantity proportional to the real
part of

Kkt+1
b (-) k k

(abri + abel

Eqs. (2) and (14)-(16) become (for Q =0 and Q' = 1)

F.(&)4=2~ Q (-)' ac'-1'0

e(b, a, k) 1 bib b. (18 )
(Q) ba 10

b

B. Nonzero magnetic field

The standard components of a a, polarization are
given by

1 b(k) bP0=2Y p baG 1+
kt

(18b)

e, =0 and e„=+1/v 2. (12)

As it has been shown in I, owing to the symmetry
relations of the C.

" coefficients and to (12), k, h", Q,
and Q" must be even in (2)-(4). On the other hand,
for the optical coherences, Q' must be odd, and 0'
may take all the integer values between 1 and J',
+Jb. Then, it is easy to show the following sym-
metry relation:

.bt"Q = (-)"uC'Q' (13)

With the help of (12) and (18), Elle. (8) and (4) be-
come

k n ~ ~ ktktt ktt kt I, ktk
~860'1 ~ [ba~-10 bPo ( } ab~-lo aPO ]

kt t

Q [( )b' 1 .b'b~'~b'' ~ lgb'b" gb'']

where BkQ is the real part of pQ,
.

(19)

8RQ= &~NQ+ NQ ~. (20}

Eliminating ~0 between Eqs. (18}and (19), we ob-
tain

( a6QQ2(-) (abGQ+1, Q.b&Q+.

X ktk k'
abcQ-1, Q ab~Q-l~ t (14)

g f!t"'X'= ~6„,—g [(-)"b'.~.b»"'~t"
gt kt t

+00~1." Pb ] (21)
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where
ktk g~g t l~ktk 1~l tk gt ktk y t g~k

Mk'1' 6 2 ~ la -lola~-10 +( )k~+I ak~-1 oak~ lo
( )k e(h h}

ak~-lola~-lo
I', (h) I.(h) ' ' I", (h)1',(h)

(22)

M is a square matrix of dimension J, +J~. As M„M is symmetrical when the 6- a spontaneous emission
is negligible. We suppose that we can calculate its inverse matrix, and we call it p. /tl, where tl is the
determinant of M . Then, the solution of (21) is

(23)

4 and p.
' ', taken as functions of y, are polynomials of degrees respectively equal to J, +J, and J,+J, —l.

Z. Equations of motion of the transverse comPonents: Hanle effects

Using (2), (14)-(16), and the relation

kts

we obtain the following equations of motion for ~",:

(24)

a kk kk' k[Il(h) + 2'1 O1k] kpk ='r ~ (lahkQ ~ ~ apo~i khaki kpQ
~ t)

kt t qt t~2

To simplify the formulation, we have reintroduced
the geometrical coefficients jgkzkt, which are de-
fined by Eqs. (I-62) and (I-63). In the right-hand
side of (25), two different contributions appear:
The first contribution corresponds to the direct
laser-induced coupling between the transverse
components. This coupling is proportional to y.
The second term corresponds to an indirect cou-
pling between the Q = 2 transverse components
through the longitudina/ quantities. Since these
quantities are real, this coupling involves the real
part of the transverse components only. The sec-
ond term also includes the source term, propor-
tional to the laser-off population inversion n.

For the a level, the coupling by spontaneous
emission from b to a must be added to these two
contributions. For Q & 4, yk+ is not directly cou-
pled to the longitudinal components, and the second
term of (25) does not appear. The equations of mo-
tion are

sRQ(H} = sRQ(0) sfQ(8) . (27)

In zero magnetic field, &I.Q(0) is equal to 1, and,
in strong fields, sIkQ(~) vanishes. sI.Q(II) repre-
sents the "normalized Hante effect "On the othe.r
hand, since RQ(0) is defined in zero field, we may
calculate it by means of Eqs. (6}-(11).

transverse components. In this case, Eq. (26} does
not exist, and Eqs. (25) are reduced to one (1-0)
or two (1-1) equations. We shall see that an ana-
lytic solution may be obtained. For the J,=1-J,=2
transition, there are three Eqs. (25) (~ok, ~a, and

kpo) and one Eq. (26) (&a). The only way to solve
these equations, for all the magnetic field values,
is by means of a computer calculation.

The variations of the transverse components with
the magnetic field give the well-known Hanle ef-
fects. In the following, we shall use the notation
(fcr Q ak 0)

[I'k(h)+@olkjkpQ =y g (kahQ'Q. ia pQ. i —khQ'Q ~ I gpQP. )
kts ASS

(26)

(and similar equations for level a).
To obtain the expression of the transverse com-

ponents, Eqs. (25) and (26) must be solved simul-
taneously. For the J = 1-4= 0 and J' = j.-J= j. transi-
tions, the transverse alignments are the only

3. 'Saturation resonances" of the sublet, els
PoPulations

%'hen the transverse components have been cal-
culated, the longitudinal ones may be expressed by
means of (18) and (23). The longitudinal compon-
ents, i.e., the populations of the atomic sublevels,
exhibit variations in the zero magnetic field region
which are proportional to sRa(H). These variations,
which appear from the fourth order in the laser
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fieM only, will be called "saturation resonances. "
X,et me point out that it is not necessary to solve
(25) and (26) to obtain the relative amplitude of the
saturation resonance. As it can be seen in Eqs.

(18) and (23}, it is sufficient to determine the ib

matrix and to calculate the zero-field components
BRb(0). For instance, the amplitude of the satura-
tion resonance on level. b is given by

bPO( ) bPo(0) v 33&b&l'b ~ ' bbG iop-[( ) ba lb bRb (0}+ ab~lb b b (0)]
uo("} (28)

C. Conclusion

In Sec. II, we have presented the way of solv-
ing the equations of motion. In Secs. III-V this will
be applied to 4=1-J=O, J =1-J=l, and 4=1-J=2
transitions, respectively. For each case, the geo-
metrical coefficients b' Gee& and e(5, a, A.') [Eqs.
(I-19) and (1-21)]will be calculated using the nu-
merical values of the 3-j and 6-j symbols which
may be found in tables. ' ' Numerical applications
of the theory to the laser experiments in neon will
be performed with the help of the experimental val-
ues of the relaxation times of the neon levels. ' "

fll. TRANSITfoN Jf, =1~J,=O

I

X' is given by [Eq. (21)]

M "x' = (s ——~,')/Ws. (33)

[r,(2}+2i ub J bp,
' = ——,p',2 3 2

2

3+@~/r, (2) " sr, (2) +'
(34)

~'b is calculated with the help of Eq. (34) and its
complex conjugate;

A. Hanle effect of the b level

The equation of motion of the transverse align-
ment is given by [Eqs. (25) and (33)]

For a 1-0
duced to the
as it can be
components
independent
netic field;

transition, the optical coherence is re-
electric dipole moment (k' = 1). Then,
seen in Eq. (18), all the longitudinal
of the density matrix are proportional,
of the laser intensity and of the mag-

where

ro(2} = rb(2}

ny I',(2) + —,
'

y —2i bob

3+ ox/r (2} [r'(2)]'+4~l (35}

-I ~(0) ~'o =&Srb(0) bpoo = v 6r, (2) ~', = (2y /WS)x',

(29}

where

[1+@/srb(2)][1 + (q+ 1)y/Srb(2)]
1+qy/srb(2)

(36)

M" = I+qy/sr (2), (31)

where we have introduced a. dimensionless param-
eter

g = —,
' + 2l', (2}/SI',(0) + 21",(2)/r b(0) . (32)

r.*(o}= r.(0)[1—l b./rb(0)] '

As it has been pointed out in Sec. II, the relation
between ~p', and ~,'expresses the conservation of
the total population during a laser-induced transi-
tion between levels a and b. Qn the other hand, the
proportionality between the population and the
alignment of 5 comes from the fact that the m, =1
and m~ = —1 sublevels are equally excited by the
laser, while the m~ =0 sublevel is populated by the
depolarizing relaxation processes only. For in-
stance, if these processes do not exist [I',(0)
= I,(2)], relation bpoo =v 2 bpbo may be easily obtained
from the fact that there is no laser-induced change
of the m =0 population.

Matrix M [Eq. (22)] is reduced to one element;

The Hanle effect, which is described by the varia-
tions of @', with &~, always keeps a I orentzian
shape, independently of the laser intensity. This
has been experimentally verified very well. " The
variations of its width with the pumping rate y are
shown on Fig. 1 for q =4.75 and rb(2) = ll MHz.
For weak laser intensities, the power broadening,
which is equal to —, y [first term in the right-hand
side of (34)], is proportional to the laser-induced
transition probability. This corresponds to the
fourth-order contribution in a perturbation develop-
ment [see Eq, (1-77)]. For strong laser intensities,
the power broadening becomes lower than —,

' y.
Since bR', is equal to b(bp', +bp ', ), the bR', term m
Eq. (34) implies a restitution of a part of the Zee-
man coherence. This restitution through the long-
itudinal components appears from the sixth order
in the laser field and involves a diminution of the
alignment relaxation rate compared with the fourth-
order relaxation rate.

The bA', term of (34) also implies a coupling be-
tween p', and p', . This laser-induced coupling of
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bp', with the component precessing in the opposite
direction changes the phase of the Zeeman coher-
ence and shifts the frequency of evolution. In the
ordinary magnetic resonance, this kind of coupling
induces a resonance shift (Bloch-Siegert effect" ).
Here, since p', and p', are both resonant in zero
magnetic field, the resonance is not displaced.
But the phase shift changes the relative amplitude
of the real and imaginary parts of the coherence.
In the ordinary Hanle effect, the absorption curve
has the same amplitude as the dispersion curve.
Here, their ratio is equal to

4I', (2), 2ny
k 2 3M11~3 (43a}

A. Zero magnetic field

In zero field, the laser creates an optical dipole
moment only (k' =1). As it has been shown in Sec.
IIA from Eqs. (6)-(11), all the density-matrix
components are proportional to y,g'„.

I', (0),p', = -2v2 r, {2),p',

[I's(2) + 3r]/rs(2) .
It becomes higher than one from the sixth order in
the laser electric field.

B. Saturation resonance of the populations

M" =I +&y[2r(0)+r'] .

I',*(0) is given by (30) and I',"(2) by

I',*(2)=I', (2)[1+y,/21'„(2)] '.

(44)

(38)

where

g=r/[31. (2) (n 1)~]

and bL', is the normalized Hanle effect;

(39)

The sublevels populations are proportional to X'
(29). Using (33) and (35), we obtain

B. Hanle effects

%hen the magnetic field is different from zero,
the laser may create, in addition to the optical di-
pole moment, an optical quadrupole moment
{A."= 2}, which is connected to the apparition, for
high laser intensities, of the quantity X' (l7). The
M matrix (22) has four components:

(46)

I,'(H) =[I +[2&v /y'{2)]'} ' (40)

As it has been experimentally observed, " the pop-
ulations exhibit a resonance which has exactly the
same shape as the Hanle effect. The relative am-
plitude of this resonance, 8, is a homographic
function of y."At high laser intensities, 8 is equal
to (g+1) ' (0.17 in the conditions of Fig. 1).

and its determinant is given by

9 36 4 18 * 21'.(2)r, I2))'

(47)

IV. TRANSITION Jb=l~J, =I

In this section, me shall use the following quan-
tities which have the dimension of a time:

]NH z)

r(0) = +
1 1

I'~ {0) I', (0) I', (0)I'» (0)
(41)

1 1 y,
r, (2) r, (2) 2r.(2)r', (2) ' (42a)

(42b)

1 1 yb,
I" (2) I', (2) 2I",(2)I' (2)'

1 1 yb
I', (2) I.(2) 2r, (2)r, (2)

' (42d)

These quantities will appear in the matrix elements
of Mo and M.

FIG. 1. Power broadening of the b Hanle effect for
a Jb=1-J, =0 laser transition. Continuous curve: exact
power broadening, y b (2) —l'b (2) . Dashed line: fourth-
order broadening, ~Iy. The relaxation rates are, in MHz,
1",(0) =9, I'b(0) =3,7, and Fb(2) =11. This approximately
corresponds to 1 torr of neon for the 2s2-2p& neon transi-
tion (A, = 1.52 p) .
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The inversion of M is obvious, and me straight-
forwardly obtain for X' [Eq. (23)]

72

2E

~j 2 2
+I2 P»+»tt2)

1

2+v 3 12

+ 1+y +y ~ 8,'+.8,'.(48b
2r (0)

In zero magnetic field, ~»2 is equal to Sp', and is
given by Eqs. (43). In this case, eliminating ~,'
between (43) and (48b), we may verify that X'
vanishes, independently of the laser intensity, On
the other hand in strong fields, @', vanishes, and
X' is proportional to v,'. The optical quadrupole
moment disappears when ~,' =0, i.e., when

I', (2) = I',"(2}.

This particular case mill be considered in a de-
tailed way later on (Sec. IV D). The equations of
motion of the transverse alignments are given by
[Eq. aS)]

[I',(2}+2i(o,],p', =-h»p', --,p',

+-,R,'+ -~(-X'+X'}, (50a)

[r(»2) 2+i (o]»~2»=-- ~22+y»tt2+ ~(X'+X').
(50b)

As it had been shown in I, there is no direct laser-
induced coupling between the transverse alignments
[„I»,",=0, see Eq. (I-78)]. Eliminating the imagi-
nary parts of p,' between Eqs. (50) and their com-
plex conjugates, and using relations (48), we ob-
tain tmo coupled equations for, R,'and, g', :

8"""""""8"-'r(2)", "=-8~1.I" 4'l2

() 2 )" (2 ) )', (2 ) 2 )', (2 )I' (2 ) )

et), r, (2) I'.(2) I'.(2)l",(2}
(52b)

Qa )', (2) r'. (2) 4r. (2)r', (2))
'

X„ is obtained from y„by permuting a and b.
In Eqs. (51), there are two different couplings

between the alignments: (i) the coupling induced
by the t) - a spontaneous emission [y„ term in
(5la)] and (ii) the laser-induced coupling (~„and
y}(„terms). Since rs(2) is larger than r&(0), Eqs.
(52) show that generally X», and X„» are positive.
The only way for g„and y,„to be cancelled out is
that

I 8(2) —rq(0} -ye and y„«y() .

sitions represented by the dashed lines of Fig. 2 is
not coupled to the set of continuous lines. The 5
transverse alignment, which corresponds to the
Zeeman coherence between the m, =-1 and m, =+1
sublevels, is only coupled to the population of the
rn, = 0 sublevel, whatever the number of absorptions
or stimulated emissions of laser photons may be.
Then the alignments of b and a are not coupled, for
any laser intensity.

%hen depolarizing relaxation processes exist
[ra (2) & 1 8(0)], a coupling is induced in three steps:
(a) An interaction with a laser photon couples the
coherence between the m, = —1 and m, =+1 sub-
levels to the populations of these sublevels. (b)
These populations are transferred into the m, =0

This particular case of a zero coupling mill be
studied later. The existence of a coupling can be
interpreted with the help of the diagram of the tran-
sition (Fig. 2).

When condition (53} is fulfilled, the set of tran- FIG. 2. Diagram of a J=1-4=1 transition.
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sublevel by a relaxation in-duced transition. (c)
A. second interaction svith Ike laser couples the
m, = 0 sublevel to the Zeeman coherence of level a.
This coupling involves two interactions with the
laser; this is the reason why the first term in the

perturbation development of ~„is proportional to
y'. In order to study the quantitative importance
of this coupling, we introduce the normalized align-
ments L,'(8) [Eq. (27)] in (51). Using relations (43},
we obtain

[y.'(2}]'+4&a'. .L', (FI ) y ~y 4&v.~««L,'(8 ) M,"
I', (2}++«y I',*(2) 6 ' 2 [I',(2) ++«y][I'«(2) ++«y] I'«(2) n 4 12 (54a)

(54b)

y'«(2) =([1'e(2)+~«y][1'8 (2) +~«y X 8 8]Pt' (55)

y Xs,a&" 61'«(2) M"[I+y(-'r'-~r')]' (57b)

It is possible to verify that, in zero magnetic field,
the solution of (54} is,L', =,L', =1

y«s ~E I «(2) + s y X««

21'«(2) g, I', (2) +~«y
(56)

To find (56), we have assumed that «L', (~)= [y«~(2)/
2&v«]' [see later Eq. (59}]. In the experimental con-
ditions of the 6401-A neon line [see caption of Fig.
3: y«, =0.2 MHz and I «(2) =6.6 MHz], the coupling
in zero field or in strong field are nearly equal to
1.5%, independently of the laser intensity.

2. Laser-induced couP/ing

Neglecting the transfer by spontaneous emission
[y„=0 in (54a}] and introducing the following cou-
pling coefficients,

y X,p&" 61,*(2) iaaf[ Iy+(-'r'+~r')] '

Coupling by spontaneous emission

This coupling is of the order of y«f21'«(2) in zero
field and, in strong field, of the order of

we may reduce (54) to the compact shape (6, o =a
or t«)

2(are '
L2(if)

I +a „« ~L, (H)

y8(2) 8 ' I+a e

(0~ 2 2~a
8 I.,(0) = 1+ ~( )

(59)

ys(2) is the effective relaxation rate of the trans-
verse alignment. If, in a second approximation,
we reintroduce the coupling, then the Hanle effects
no longer keep a Lorentzian shape

Figure 3 shows the numerical importance of the
coupling coefficients for the 640I-A neon line. For
high laser intensities, the asymptotic values of
e„and e„are equal to 2.3% and 4.2%, respectively

Since the coupling is weak, we can neglect it, in
a first approxixnation. Then the Hanle effects have
a Lorentzian shape of half-width ys(2};

0.01

2

10 IINH I.'

FIG. 3. Laser-induced couplings between the align-
ments of a J~=1-J,=1 transition. The relaxation rates
are, in MHE, r, (0) =8.4, r, (2) =10.1, r (0) =4.4, r (2)
=6.6, and y~, =0.2. This approximately corresponds to
1 torr of a 10@-90/ neon-helium mixture, for the 3s2-
2g neon transition P, =5401 A).

E

1D 20 30 lNHz

FIG. 4. Difference between the Hanle-effects widths
for a J& =1-J,=1 transition. Continuous curve: F,{2)
—I'~(2}. Dashed curve: y, (2}—y ~(2) (experimental
conditions of Fig. 3 with, in addition, g, =gq).
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(0)L 2 (~
I2 (H) (((}12(H) &(b ((( 2 ( )

8 2 8 2 (60)

In general, the widths of the a and b Hanle effects
are not very different. In fact, since the couplings
are weak, the deviations from a Lorentzian shape
cannot be observed; this has been verified in ex-
periments using the 6401-A laser line of neon. '

3. Pozeer-broadening of the Hanle effects

The fourth-order power broadening is obtained
from a perturbation development of (55);

y8(2) —I'8(2) = ~y (62)

This broadening, which is proportional to the

pumping rate, is the same for the two levels. As
a rnatter of fact, this equality between the power-
broadenings is nearly maintained in the exact
theory [Eqs. (55) and (61)]. Figure 4 shows the
difference between the Hanle-effects widths for the
6401-A line; yI(2) -y~b(2) and I'~(2) —I', (2) are

Now, the half-height half-width is given by

I s & s[g ys(2)1'(' s (2 ) = 7s (2 ) ( —
(

,
(2 )(, ( p (2 )(,) . (((( )

I'b (0) bp, = —I',*(0),p', = +~ yX', (63a)

I', (2) ~,'= — ~ (X' —3X'),

X
(2 2 1 + ybS +y 1

ybl(

3v 2 2I', (2) W2 21'b(2)

Equations (63), combined with (48), show that the
populations of the levels exhibit zero-field reso-
nance, which is the sum of two contributions pro-
portional to the Hanle effect of the a level and of
the b level, respectively. For instance, for the b

level, we obtain

practically independent of the laser intensity. Ex-
perimental equality of the power broadenings has
been already observed. " Experimental tests of
Eq. (61) and subsequent measurements of y have
been performed and will be presented in a forth-
coming publication. "

C. Saturation resonances

The longitudinal components are obtained by
means of Eqs. (18);

y &+[br(0) —1/61, (2)]y bl22(H) I+[r(0)+I/I', (2)]&y,I2(H)
3&&6 2I'. (2) 6M" I' (2)

y 3M'" I'*(2)

This resonance may be observed on the m compo-
nents of the fluorescent lines emitted by the laser
levels. For a fluorescent line b -g, the intensity
is proportional to'

(65)

where A, =-1, —,', or -~« if J, =O, 1, or 2, respec-
tively. The relative amplitude of the saturation
resonance, [I,"(~) —I,"(0)]/I,"(~), is given by

1 -A I'b(0)/21'b(2)
M» I+yb r2-A, [r'b(0) /21'b(2)][I +y/21'. (2)]

'

(66)

Equations (64)-(66) show that, in general the shape
and the amplitude of the saturation resonance de-
pend on the fluorescence line, contrary to the case
of a J=1-J=0 laser line. This is due to the fact
that population and longitudinal alignment are not

proportional. Experimental verifications of these
theoretical results will be published later. "

D. Particular cases

There are two particular cases, for which the
Hanle effects are exactly Lorentzian.

2. Equality of the relaxation time~ of the tu(o

alignments

Equation (48b) shows that, in strong magnetic
fields, X' is proportional to 7.,'. The optical quad-
rupole moment has the same sign as I",(2) —I'f (2).
When I', (2) and I'f (2) are equal (49), this moment
vanishes. Then, in strong fields, all the longitud-
inal components of the density matrix are propor-
tional, independent of the laser intensity.

If, in addition, the Landh factors are equal, it
is possible to show that the two Hanle effects are
proportional. Indeed, when I,*(2)=1,(2) and &u,

=(((„ the exact solution of (54) is given by

,1.,'=,I.,'=[1+[2~ /I'(2)]'] -,
where

I,'(2) =yb(2)(1+e ) 't'

= [I'b(2)+~by]

fl Y «/2
1+kg@ 7' 0 +1 4I,{2)

(68)
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The Hanle effects always keep a Lorentzian shape,
independently of the coupling of the transverse
alignments. Equation (6V} involves the facts that

,R', (ff) =- Q', {FI}, and subsequently that X' vanishes
vrhatever the magnetic field may be. All the longi-
tudinal components are proportional to X' and ex-
hibit a Lorentzian saturation resonance of shape

,I.', and of amplitude

a', (0) r 2r6= — ' =
( )

1+—r(0)+
( )

. (69)

In this case, the saturation resonance does not de-
pend on the fluorescence lines.

2. Takeo-relaxation-fimes model

When conditions (53) are fulfilled (one relaxation
time per level, and no coupling by spontaneous
emission), the transverse alignments are not cou-
pled. The Ha, nle effects are Lorentzian, and their
widths are given by y~(2) [Eq. (55)]. On the other
hand, the intensity of the m fluorescent line b -g
is given by [Eqs. (63) and (46)]

n —.ft', (5()

y,v 8 1 + —,
' y(I/y, + I/2y, )

'

lf Jg =0~ and

alignment only in the excited levels. These quanti-
ties appeared in the second-order terms ("linear
response"). On the other hand, if the transition is
a J,=1-4,=2 one, the laser may induce ~~& com-
ponents in the atomic density matrix. These are
the components of an electric hexadecapole mo-
ment, which is created in the a level from the
fourth order in the laser field. There are four
quantities vrhich precess in the magnetic field:
alignments of levels a (,p', ) and I) (~p,'), and hex-
adecapole moment of a (,p,', ~',}. The equations
of motion are very complicated, and we shall be
obliged t:o introduce a great number of notations.
In order to simplify the presentation of the theory,
these notations have been put together in Appendix

16

A. Zero magnetic field: Anisotropy ratio

of the fluorescent lines

In Appendix A, we define the times T(0}, r(4},
and r,' [(Al)-(A4)]. Matrix I, may be expressed
as a function of these quantities (A5). The inver-
sion of this matrix is easily performed and leads
to the following values of the density-matrix com-
ponents [for a v polarization of the laser; Eqs.
(6)-(»)]:

n +g', (H)
&2 2r,~& 1+br(1/w, +1/2r, )

' (71) r:(0).c;= -Wr~ r, (o),c,'

if ~e =1.
These results can be interpreted with the dia;-

gram of Fig. 2. If there is no relaxation-induced
transfer between the Zeeman sublevels, the set of
dashed lines of Fig. 2 and the set of solid lines are
decoupl&. For each set, the diagram of the tran-
sitions is similar to the one of a J =1-J=O line; in
the same way as it is for this line, the Hanle ef-
fects have a Lorentzian shape. Indeed it is easy
to show that, when (58) is fulfilled, Eq. (55) for
y~(2) is exactly equivalent to Eq. (86), where —,

'
y

is replaced by &y. Qn the other hand, the intensity
of the m-polarized fluorescent line 5-g is propor-
tional to the population of the m, =0 sublevel, if
J =0, and to the populations of the m, =+ 1 sub-
levels, if J, =1. Subsequently the J,=1-4~=0 fluor-
escence is connected to the Hanle effect of a only
(by the solid lines), and the Z„=I-J', =1 fluores-
cence is connected to the 5 Hanle effect only (set
of dashed lines). This explains why the saturation
resonance is proportional to,R', in (Vo) and to
+,' in (Vl). For the fluorescence emitted by the
a level, the arguments are reversed,

T(4) 6 T

3~&5 35 25

nyu2 8y 1 1
15n,& 35 I",(4} r.(2)

s~
(5n, i )5 (',(4) (',(2) -my„}

"4":=-75 nS'~75', (VM)

r,*(2)= r.(2)[1 -y,./Ior, (2)] '. (73)

The density matrix for a o-polarized laser in a
zero magnetic field is obtained from (11);

p,'(0)v-,' = —p,'(0) = —,'c,',
p', (oH~= —p2(0)/~10= 3p:(0) = ko:

(74a)

(74b}

where ~ is the determinant of M, [polynomial
quadratic in r, see Eq. (A6)]. I',*(0) is given by
(80) and I' f(2) by

V. TRANSITION Jf, =l~J, =2

Up to now', for 4=1-J =0 and 4=1-J =1 transi-
tions, the laser irrad ation induced population and

These components may be analysed with the help
of the zero-field anisotropy of the laser-induced
change of the fluorescent lines. This anisotropy
is defined by the zero-field ratio bebveen the
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anisotropic part of the fluorescent line, which

is connected to the transverse alignment, and the
isotropic part, connected to the population and to
the longitudinal alignment. (For a precise defini-

tion of the anisotropy ratio, and the way of mea-
suring it, see Refs. 3 and 8-10.) Using (V4a), we
obtain for the anisotropy of the P- o. fluorescence
[Eq. (5) of Ref. 10]

(P=a or 5).

For J = 1-J= 0 and J' = 1-&= 1 transitions, p', and

p,
' are proportional, and the anisotropy does not

depend on the power of irradiation. For a J = 1-
J = 2 transition, owing to the fact that, in addition
to the electric dipole moment, an optical octopole
moment (,~pe ) is created at high laser intensities,

p,
' and p', are not proportional. For each laser

level, p02/poo exhibits homographic variations with

y. Subsequently P depends on the laser intensity;
the degree of polarization of the fluorescence de-
creases with increasing laser intensities,

For the a l{.v{.l. This depolarization of the fluo-
rescence is very weak because the ratio ~,'/, p,

"
is not very dependent on y. Indeed, if I', (4) = I',(2),
then, p' ' p' is reduced 4$ when y grows from zero
to infinity. Figure 5 shows the variations of the
anisotropy for J,—Jz = 2 and O', —J& = 1 fluorescent
lines (experimental conditions of note"). The

anisotropy is practically independent of the laser
intensity, as it hns been observed experimentally
(Fig. 6 of Ref. 8).

For the b level. The variations of p', /p'„with y
are shown in Fig. 6. Since bp,'/bp', is very small,
the anisotropy ratio 3„is fairly well proportional
to, p', /, p,', independently of the fluorescent line

IJ, =0, 1, or 2). Depolarization of the fluores-
cence, similar to the one predicted by Fig. 6, has
been observed experimentally' " (for instance,

see Fig. 4 of Ref. 9). At strong laser intensities,

,p,'/, po becomes proportional to I",(2)-I', (4) [see
(72b)]. In particular, in the case when I',(4) &I',(2),
the anisotropy is reversed, at high intensities.
Since the anisotropy is very sensitive to the dif-
ference between the quadrupole and hexadecapole
relaxation rates of the g level, the study of the
variations of Rb with the laser intensity must allow
the measurement of I',(4) [I',(2) may be obtained
from the width of the a Hanle effect]. Experiments
on this point, using the 6328-A neon line, are in
progress. "

B. Hanle effects: Laser-induced hexadecapole

moment in thea level

%hen the magnetic field is different from zero,
we must use Eqs. (25) and (26). Quantities X'
verify the matrix equation (21):

(76)

0.04 ~

Jf- 2

$00 200 NHi
100

V
200MHz

FIG. 5. Zero-field anisotropy ratios of the Fluores-
cent lines froxn the a level, as functions of the pumping
r ate [Jb = 1-J, = 2 laser transition; experimental condi-
tions of note (Ref. 16)j.

I"IG. 6. Alignment to population ratio for the b level
in zero magnetic field I,Jb ——1-J,=2 transition; experi-
mental conditions of note (H,ef. 16)].
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where matrix M is given by Eq. (Av). Then, X is obtained with the help of the inverse matrix )),/a [(A8),
(A9)] and, when replaced in (25), leads to the following equations of motion for the transverse components
of the density matrix:

5y . , 2y M21, y("'42' '" P' ski' iO '" 'P"35rS P' 5~ P4

2 +2 ~ 22 2 ~ 22 2+ )I 42 4

10~ a+210 ea o 5))21 ba n +70&3 aa P

ski ~" " "3o ' '"' ' p' slav ~"s &'

=30":-5~21"-& )& 30"-&"":-IO~V"-&'&:

35&3 ' svv'' "' 3s ' 10&7

=15~VX'. +70~( -X"..). 2
—10~7( -X",.), a+28 ( -X".,) J4, (

ski p"s'p' iomv&" ""s' ' (V7d)

where the coefficients X are given by (Aio) and
(All).

In the left-hand side of these equations, we have
put together the effects of the relaxation proces-
ses, of the magnetic field, of the spontaneous
transfer of alignment from b to g, and of the direct
laser-induced coupling between the transverse
components. The right-hand side contains the
excitation term (with n) and the indirect coupling
through the sublevels populations (R terms). We
shall note that (77a)-(Vvd) correspond to the equa-
tions of motion of,p'„,p'„@'„and,p'„respective-
ly; indeed, at weak laser intensities, when the
laser-induced couplings are small, each of the
equations determine the corresponding density-
matrix component.

In general, it is not possible to find the analytic
solution of Eqs. (VV)." First we shall calculate
an approximate solution which gives a straight-
forward physical interpretation of the observed
effects. Second, an exact computer calculation
will be presented, and its results will be compared
with the approximate solution.

Appro.

~impute

solution

a. Hanle effec& of a. An important point is that
the alignment of 5 is much smaller than the align-
ment of a (this is the well-known fact that the
optical pumping of a J =1 level using a J =1-J=2
transition is not very efficient). 8 9 This may be
verified in zero magnetic field by means of Eqs.
(72). On the other hand, the hexadecapole mo-
ment (,p', , ~4) is also small compared to the align-
ment of a. Subsequently, in Eq. (VVa), the laser-

induced couplings of ~ p,', ,p,', and ~4 with, p,'are
weak. For instance, we can define the importance
of the zero-field coupling ~p,

'—~,'by the ratio

2) /sv 21+~21)„/10 ))p', (0)
I'.(2) +~r ~,'(0) (78)

2 +23~ 22 (0) 2

10~3 Xo+21() ( X o) ~ (

This equation and its complex conjugate lead to
a Lorentzian shape for the g Hanle effect;

(,),(jf
ny&7 [I.(2) +~@]X'„
10& [y,'(2)]'+4(u',

'fp )))) = "'))))))(',) —~,,4~,, '',,

The width is given by

(80a)

(80b)

5y 23)' 1 Xo)'4 (81)'l)')=(~ )"'44 '
4)O )4)

''
a

The variations of y', (2) with ) are shown in Fig. 7
(continuous curve) for the experimental situation

This ratio may be evaluated using ('l2)-(74). With
conditions of note, "it has a maximum value of
3.3%, when ) is equal to 40 MHE. The, p44and

~2 couplings are maxima when y is infinite, and
are respectively equal to 2%%uo and v%%uo. In the same
way, we can neglect the couplings with, /22 and

,R4~, which are of the same order of magnitude,
and (VVa) is reduced to

I', (2)+ ~ +2i~, ",)p,'5y
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the exact zero-field solution.
placed by

u on. (80a) ls then i'e-

(0)ff2(H) p2(0) {OIL 2(H)a a 2 a (8

where, p', (0} is the exact zero- 'xac zero-field solution (83)

10
0 144 154NH x

FIG.. 7. Power broadenin of thng o the f2, kfanle effect (J~=1-

urve: approximate solution y~(2)
- ree Hanle effect). Dashed curv:

puter calculation.
as curve: exact com-

of note. " However, we mu

fail at strong laser intensities. Indee
zero-field value of (80)

'is

(0) z(0} nY!7 X a

ioW 1'.(2}+Ay -ky(1 — "}'
Xaa

while the exact value
'ue is [Eqs. (72)-(74) ]

10F",(2}+W 35 I' (4)1.4) 1,( )2- ~~i,.

(82)

~', (0}=—

As a matter of fact "~ '(0)
(83)

laser intensities, while the exa,
,p, goes to zero at strong

's . is is due to the fact that
when y is infinite. Sub

a X, vanishes

intensities th
sequentl ay, at very high

' ' s, e couplings with
are not negligibl
ny,

' (thou h th
e compared to the

and ~~

ug ese couplings are weak corn
he source term

compared to

c e erma, we can consider [~,'(0}—~0~ ' 0

o an, when y is equal to 100 and

p
'

ly. For these values ofz, r spectivel
e approximations are fairl v

that the H nl
r y val1d. Assuming

e a e-effect sha ep given by (80a) is cor-
, we can "renormalialize 1ts amplitude with

(o).1.,(H) =]1+[2(u,!y'.(2)]'j '

A. Ja.aser-induced hexad eca o e moment i

y the laser in thece g4 is created b
1s process can be und

help of the dia ra
understood with the

e 'agram of the transition (Fi . 8
instance, the stimul t d

' ' of
g -polarized hoton

m a e emission ofof a linearly
p oton creates coherence b

m, = ~2 sublevel f
ce etween the

tween the w =
s rom the Zeemman coherence be-

e m, =+1 sublevels throu hg
y solid lines in Fi . 8 .1g. . This cor-
e creation of,p', fromrom p, . In the

a(, p,'and 4
m e Am =2 coheoherence in level

n, p, , the absorption of a
duces ~m =4

o a laser photon in-
coherence (for instance

m, — —m, --2 to coherence m =0-
a

a

To solve 77dVd), we shall neglect the
terms. Indeed on th

c e,p, and ap
n e one hand, the 4

tion is never more th
,p, contribu-

ore an 101 of the ' cog, contribu-

, 4
' '

portant at highel and p ls im 0

fourth ord '
th

on y, ecause it a earpp ars from the

(72d) is reduced to
neg ect it compared with ,p, . Then

1',(4) +—+4i&u, ",'p,'(H) =,P, = ~2,P', (8}.

(3

FIG. 8. Dia ram o' gram of a J=l-J'=2 transiti~ — nsl on with the
ion probabilities.

FIGIG. 9. X ariations with the ma netic
part of the hexad l md r 'ecapole moment ' dm uced by the laser in

-J, —2 transition. experunental condi-
MHz]. Con-; pumping rate =100

approximate solution. D
exact computer solution

ashed curve;
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Obviously, since the approximations leading to
(86) are rather crude, (86) is no longer verified
by the zero-field solution (V2). However, as it
has been done for,p2, (86) may be "renormalized"
by replacing y/5~ by [I',(4)+-,'y]~, (0)/~2(0).
where, p,'(0) and @,'(0) are the exact zero-field
solutions. Using (80b) and (84), we finally obtain

(0}1+4'~ /[I' (4)+'y]
(87}

e = ~v 3,p,'(0)/~', (0},

Eq. (77b) becomes"

(88)

-10 10

H

2OOooss

FIG. 10. Hanle effect of level b, in the same conditions
as those of Fig. 9. Continuous curve: approximate solu-
tion. Dashed curve: exact solution.

The variations of ",'R', (ff) with the magnetic field
have been represented in Fig. 9 (solid curve) when

the pumping rate y is equal to 100 MHz. In the
same figure, the dashed curve gives the exact
solution as obtained by a computer calculation
(see Sec. VB2).

c. Hanle effect of b. In order to obtain the shape
of the b Hanle effect, we must solve the equations
of motion of the 5 transverse alignment, (VVb).

The principal difficulty comes from the fact that
this alignment is very small at high laser intensi-
ties [see Eq. (72b) and Fig. 6]. Consequently, in

(77b), we cannot neglect the various couplings with

the, p'„,p2, and @,' components; their contribu-
tions are as large as the direct excitation. Since

,p,
' and, p,'have been previously calculated, the

only component to determine is g,'.
When I', (4} is equal to I', (2), ~2(ff) and, p2(H),

both corresponding to a ~m =2 Zeeman coherence
in the a level, exhibit similar variations with the
magnetic field for weak laser intensities. %'e shall
assume that ~2(H) m~d, p', (H) are praportional„
uhatevex the intensity ppggy bg. On the other hand,
X2,'and X",, have close values [we shall see later
that they are exactly equal when there is no de-
polarizing processes; I'8(k) = y &]. Then assuming
X",~

= y,"~ and introducing the following parameter,

Ãp 2 j' 22 p Y

-30 X, 30 ( —X„)b ~ -5~21 ( -X.,}( + }.~ .

Using Eq. (80b) and eliminating the imaginary part
of,p', between (89) and its complex conjugate, we
obtain

ny, y 2i(u, ,
)

y(1 + e)
30 ' 5 I', (2) +sb 'P' 5v21

x 1+ z2 8(dtI &y g2(rr)
Xgb [F (2}+5 )[F (2)+7 ]

e 2~

When the, p', and, p,
' terms are neglected in (90),

,R', has a Lorentzian shape of width y', (2). This
"uncoupled" Hanle effect is strongly power broad-
ened by the laser; for y = 100 MHz, the power
broadening of b is 3 times that of level a. This is
due to the strong probability of the transitions
issued from the m, = +1 sublevels on the one hand,
and on the other hand to the weakness of the co-
herence restitution through the sublevels popula-
tions [,R', term in (89}]; here, this is possible
through the m, = 0 —m, = +1 transitions only, and
the relative transition probability is 1 (see Fig.
8).

The ~m =4 coherence of a is transferred to the
b level through the m, = +2- m, = +1 transitions.
This transfer involves the second term of the
right-hand side of (90). Since, p', (0) is negative,
this contribution has the same sign as the direct
excitation. The resonance induced by this coupling
is very narrow, because, p,'evolves at 4 times the
Larmor frequency.

The am =2 coherence in level a (,p.', , ~,') is trans-
ferred to 5 through either the c' transitions (m,
=-2-m, =-1 and m, =0-m, =1), or the 0 transi-
tions. This coupling has the same sign as ~2(0),
which is negative [last term of (90)]. The cor-
responding resonance will appear as a dip in the
Hanle effect.

By putting (84), (85), and (87} in (90}, we obtain
the approximate shape of the Hanle effect. This
is shown in Fig. 10 for y =100 MHz (continuous
curve}. Qn the broad uncoupled Hanle effect, a
narrow central resonance appears because of the
~m =4 coherence of g, and a broader dip because



of the sm =2 coherence of 0. The exact solution,
obtained by a computer calculation, exhibits the
expected shape but the contrast of the resonance
is smoothed (dashed curve of Fig. 10).

Z. ComPuter calcglgtion

The previous calculation has allowed us to ex-
hibit the principal features of the solution, and
to analyze its physical interpretation. But we have
obtained results which are essentially qualitative.
A quantitative comparison between theory and ex-
periments is possible with the exact solution of
(VV) only. This solution has been obtained by
means of a computer calculation. %ith the help
of the 4x4 matrices I', Q, X [Eqs. (A13)-(AI5)]
and of the column vectors p, ft, and A (A16)-(A17),
Eqs. (77) may be written a.s a compact expression

(I +fQ)p =nA+}tR.

(92) is equivalent to two sets of coupled equations:

FR - Q Im(p) = nA + XR, I' Im(p) + QR = 0, (93)

where Im(p) is the imaginary part of p. Then the
formal solution of (93) is

R=n(I' —}(+Ql 'Q) 'A.

The inversion of matrices I' and I' —}t+Qi' 'Q)
have been performed by a computer for each value
of y and of the magnetic field. Let us analyze the
results concerning the Hanle effect.

a. Hanle effect of a. The computer solution
shows that the couplings of,p,', ,p» and ~p', with

~,' are too small for implying any important de-
viations of the Hanle-effect shape from a Lorent-
zian one. Vixen y = 100 MHz, the deviations are
lower than 1% of the total amplitude of the Hanle
effect. This result agxees with the fact that the

FIG. 11. Shape of the b
Hanle effect, for different
values of the pumping rate
~Jb 1 ~a 2 transition;
conditions of note (Ref, 16)l.
The vertical scale is the
same for the different
curves. The zero-field
alignment of b, ~p22{0), is
maximum for y =13.2 MHz,
and vanishes at high laser
intensities (see Fig. 6).
This explains why the Hanle
effect amplitude decreases
with increasing y.
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experiments have always shown a Lorentzian
shape for the Hanle effect of a J = 2 level optically
pumped by means of a 4 = 1-J = 2 transition (see
Refs. 8, 9, and 17 for the 6328-A and 1.15-p, neon
transitions). Nevertheless, the couplings induce
a change in the Hanle-effect width. The power
broadening is reduced, and the apparent relaxa-
tion rate of the transverse alignment, I', (2), such
as obtained from the exact solution, is smaller
than the one deduced when the couplings are ne-
glected, y'(2) (see dashed curve of Fig. 7)."

b. Hanle effect of 5, The results of the com-
puter calculation are shown in Fig. 11. At very
low laser intensities, the couplings are vanishing,
and the Hanle effect approximately has a Lorent-
zian shape (curve 1, y = 10 MHz). When the laser
intensity grows, the couplings with ~22 and ~4'
become important. At first, the, p44 coupling is
the only one visible and implies a narrow central
peak on the top of the Hanle effect (curve 2, y = 50
MHz). The, p2' coupling cannot be observed be-
cause the Hanle effects of levels g and b have near-
ly the same widths. Afterwards, when the b

Hanle effect is more power broadened than the
Hanle effect of g, a dip appears because of the

~2 coupling (curve 3, y =70 MHz}. The dip be-
comes deeper and deeper with increasing laser
intensities (curve 4, y = 130 MHz). This behavior
of the Hanle-effect shape has been observed in
recent experiments. "

C. Saturation resonances: Anomalous behavior

of the J,=2 ~Jf=2 7t'-polarized fluorescence

Using (18}and (76), we obtain the following ex-
pressions for the longitudinal components of the
density matrix:

where coefficients ( are polynomial functions of

y [see Egs. (A18)-(A20)]. The populations of the
levels exhibit resonant variations in zero field
which are connected to the real parts of ~'2 . .P2',

and, p2'. These saturation resonances may be ob-
served on the m fluorescence of the levels. For
the b level, the intensity of the fluorescence is
given by (65). For level a, the intensity of the
fluorescence a-f is proportional to

~qf s)PO +f gPO~~ y

where A~ =-1,1, or -& if Jf = 1, 2, or 3. The varia-
tions of the a-f fluorescence with the magnetic
field are proportional to

where 8L,"(ff) is the "normalized Hanle effect"
[Eq. (27)] and coefficients 6 are determined with
the help of the zero-field components [(72)-(74}]:

y ]V -A~[I'.*(0)/I".(2)]g'.
~ 300f', (2) ~'+~,[r.*(0)/r. (2)l ~'.

1+4y[1/&.(4) —1/1'. (2}1
&0

t -wf[f.*(0)/1.»]~"..'
1001,*(2) t. +v'5A, [r,*(0)/r, (2)]t',

„1 Ay{1/f.(4) 1 [f.(2) -hy. ][

2y t."+~,[r*.(0)/1",(2)]t.". ~,'y

700r.(4} t'+~, [r*.(0)/r. (2)]t'. n,
'

(97c)

5&" gives the amplitude of the 85i', ~2 contribution to
the saturation resonance, relative to the laser-
induced change of the fluorescence in strong mag-

z",(0),&', = —~ r ~(0),p',

0 + O,g~A, O.R

20 2 40 4

y&2 n
1~(2) aPo= 3O~ -~g &~+~ ~~2

~7 a 2 ~7 (aQ g2

(95b)

2bo coo INH x

y~42 n ., 2 (",,
30' 73 ~' 7&3 b '

2 ~ 42 g4'7~7 &
(95c)

I'IG. 12. Amplitude of the saturation resonance on the
J,=2- J&

——1 fluorescent line for a J~=l-J, =2 laser
transition jconditions of note {Ref. 16)]. The continuous
curve gives the total amplitude. The dashed curves rep-
resent the relative contributions of, p2 (curve 1), ,p2
(curve 2), and &p2 (curve 3).
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FIG. 13. Amplitude of
the saturation resonance
on the J, =2 J&=2 fluo-
rescent line (same nota-
tions as those of Fig. 12).

-0.)0-

netic field. The total amplitude of the saturation
resonance is

g = /~~+/'~ +g~

When S~ is positive, the saturation resonance is
in the opposite direction to the laser-induced
change of the fluorescence and reduces it in zero
field. This is the result obtained for the laser-
induced fluorescence, in the case of a 8', = 1-J,= 0
or a J, = 1-J,=1 laser pumping. Here, it is also
verified for the J,=2- J~ =1 fluorescence. As
it is shown in Fig. 12, S„is always positive (solid
curve). The dashed curves 1, 3, and 3 give the
relative contributions of g'„P,', and ~EP„r spec-e
tively. Since the alignment of level a is much
larger than the alignment of level 5 and the hex-
adecapole moment of level s, g,' provides the

leading contribution, and the saturation resonance
practically has the same shape as the Hanle effect
of g.

Q,' also provides the leading contribution to the
saturation resonance of the J,= 2 —J& = 2 fluores-
cence (Fig. 13). However S~ exhibits a curious
behavior as a function of the laser intensity. S„,
which is positive at weak laser intensities, be-
comes negative when the laser intensity grows.
We obtain the surprising result that the saturation
resonance inc~eases the laser-induced change of
the J,= 2 -J~ = 2 fluorescence in zero magnetic
field. This anomalous behavior of the saturation
has been experimentally observed on the 6328 A

and 1.15-p, neon laser lines. " %'e shall see in
Sec. V 0, that this anomaly, which is due to high-
er-order nonlinear effects, is closely connected

FIG. 14. Amplitude of
the saturation resonance
on the fluorescence from
level b [conditions of note
(Ref. 16)].
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to the transit time of the atom in the 5 level.
For the J,= 2 -Jf = 3 Quor escence line and for

the fluorescence emitted from the 5 level (j'a=i
=0, 1, or 2), the behavior of the saturation

resonance is similar to that of the J,= 2 —Jf = 1
fluorescence; 5 is also positive and the shape of
the resonance is practically the same as that of
the Hanle effect of a. However, the saturation
amplitude is rather smaller for these lines than
for the J,=2-4&=1 line (see Fig. 14}.""

D. Two-relaxation-times model

%hen there is one relaxation rate for every level
[I' &()t) =Zz [ and no spontaneous emission (ya, =0),
the equations may be simplified. In this case, the
set of transitions represented in Fig. 8 by continu-
ous lines is not coupled to the set of dashed lines,
and each set may be solved separately.

l. Hanle effects

The coherence between the m, =+1 sublevels is
given by

4, +~r+2a~. ) Z~- = -kaayx. +Ay(1 -X.) &,
(100)

where gl 1 is the real part of p~
As it was evident in Fig. B„g, „which is con-

nected to the set of dashed lines only, is not cou-,
pled to the other Zeeman coherences. The cou-
pling diagram is similar to that of a J=1-J=0
transition, and, subsequently, g, , exhibits
Lorentzian variations with the magnetic field. In-
troducing the mean coherence between the m, =0
and m, =+2 sublevels,

1 2 ~,*+M~,'
apa=~g (apo, -a+ p , )a=ao (101}

we find the following equations of motion for the
Zeeman coherences coupled by the continuous
lines of Fig. 8:

c
2Y 2~e 15 a ap2 5~ QP2 10~ @P4

~ Vy

5~ Xa 60 ( Xaa} a~a 10~ (1 Xaa) alta s

Zi, -i = (~.pa —2 A)&~7.

(We define the Zeeman coherence between sub-
levels m and m' by the usual notation p .).

The equation of motion of ~, , is deduced from
(77a) and (VVc). Using the symmetry relations
of the X coefficients [Appendix A, Eqs. (21)-(23)j,
we obtain

7Y ~ 2 Y 4—5~ P a+ &a+20 +2'~a aPa+5Pa

ny 2 y y 22 2—
M X, —10~ (I X~}.Ita+

M
(1 —Xaa) aft.

y Y

10&&"5 a ""5' '"
(102b)

(102c)

where coefficients X are defined by (A22). The
equations of motion are reduced to a set of three
equations, but it is not much easier to find the
solution of (102) than that of (VV). The only inter-
est of (102) lies in its straightforward physical
interpretation, since @„,p'„and, p,

' are associ-
ated with clearly defined Zeeman coherences:

p2 with the coherence between the m, =0 and m,
= +2 sublevels, ,p,'with the coherence between
the m, = +1 sublevels, and ~,'with the coherence
between the m, = +2 sublevels. Then each coupling
term of (102) is straightforwardly associated with
some of the transitions represented by continuous
lines on Fig. 8. For instance, two simultaneous
o' (or o ) transitions involve a coupling between
the ~ = 2 coherences of levels a and b (~, ap', ),
B.nd so on.

Saturation resonances

For the m fluorescence emitted from the 5 level,
elementary arguments lead to simplifying the re-
sults. For instance, the intensity of the m com-
ponent of the J, = 1-j,= 0 Quorescence is propor-
tional to the population of the m, = 0 sublevel. Since
this sublevel is coupled to the m, = +1 sublevels
only (dashed lines of Fig. 6), the saturation reso-
nance is associated with the coherence between
these sublevels. Indeed, using (65), (95), and the
symmetry relations of coefficients g (A24), we

show easily that the intensity of this fluorescent
line, ,p', —,po'v 2, is proportional to aa + g, ,(H).
Then the saturation resonance has the same Lo-
rentzian shape as,R, , On the other hand, the
intensity of the J,=1-4, = 1 Quorescence, ,p,

'
+,pa/W2, is proportional to the population of the

m, =+1 sublevels, and subsequently is coupled,
by the continuous lines of Fig. 8, to the Zeeman
coherence of 5 (,lt', ) and to the Zeeman coherence
between the m, =0 and m, =+2 sublevels of a (g,).
For the Quorescence from level a, these kinds of
arguments are no longer possible, and every
saturation resonance is associated with all the
nm =2 Zeeman coherences, P, „,A„and
~82.

In order to determine the physical origin of the
anomalous behavior of the saturation of the J,=2

cJf 2 Quores cence, we have looked for what

happens with this anomalous behavior in the two-
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relaxation-times model. Figure 15 shows the vari-
ations of the amplitude of the saturation resonance,
8„, as a function of y/y„ for different values of
ratio y, /y, . The zero laser intensity slope of the
curves (Ily/270y, ) represents the 3 value such
as obtained from the fourth-order perturbation
calculation. At high intensities, the asymptotic
value of 8„ is positive or negative accordingly
as y /y, is higher or smaller than (A1 —1) =1.35.
Subsequently, two cases are possible:

(i) If y~ is higher than 1.35y, 3, keeps the

sign of the fourth-order contribution, independent
of the laser intensity; the zero-field saturation
resonance always reduces the laser-induced change
of the fluorescence intensity.

(ii) If y, is smaller than 1.35y„g„, positive
at weak laser intensities, becomes negative when

the laser intensity grows. This reversal of the
saturation resonance increases with decreasing
y~/y, ratios. Subsequently, the anomalous behavior
of the saturation seems to be closely connected
to the mean lifetime of the 5 level, i.e., to the
transit time of the atom in this level.

This effect may be interpreted by using the
diagram of Fig. 8 and pointing out that the popula-
tion of the m, =+2 sublevels plays a leading part
in the intensity of the J.=2 —J~ =2 fluorescence.
Indeed the m, =2-m~ =2 transition is 4 times more
probable than the m, = 1 —m& = 1 tr ansition, and the

m, =O-mz =0 transition is forbidden.
Let us analyze the processes leading to the sat-

uration resonance in the m, =2 sublevel. The stim-
ulated emission of a g-polarized photon by an atom
in the mb =1 sublevel creates coherence between
sublevels m, =0 and m, =2 (second-order contribu-
tion in a perturbation expansion in the laser field).
A new interaction with the laser (now a photon
absorption) couples this coherence with the popula-
tions of sublevels m, =0, m, =1, and m, =2, and

FIG. 15. Amplitude of the saturation resonance on
the J,=2- J& =2 fluorescent line, for various ratios of
the relaxation rates (Jb=1-J,=2 transition; model with
two relaxation rates y, and yb).

produces in these sublevels a. saturation resonance
which reduces, in zero magnetic field, the laser-
induced populations changes (fourth-order term}.
To the sixth order, the stimulated emission of
a 0- laser photon brings back a part of the m, =1
population into the m, =2 sublevel. Since the
laser-induced populations changes of these two
sublevels are reversed, the latter process sets
the saturation resonance of sublevel m, = 1 over
against that of m, =2 and tends to an inc~easing
of the cero -field PoPulation change of m, =g. This
effect is important because the m, = 1-m, = 2
transition is 6 times more probable than the m,
=1 —m, =0 transition. On the other hand, this
effect increases when the laser intensity is strong,
and when the population lifetime of level b becomes
longer than that of level o (then, the contribution
of the m, =1 population grows relatively to that
of m, =2).

These considerations explain the behavior of
S„such as shown by Fig. 15. Such a behavior has
been experimentally observed. " The other sub-
levels do not exhibit the same behavior as that of
m, =2, because of the weak values of the involved
transition probabilities. Subsequently, the other
fluorescence lines from levels 5 and g do not show
the same anomalous character as the one of the
J', = 2 -J& = 2 line, since the m, =+2 sublevels do
not bring a leading contribution to these lines any
more.

Vl. CQNCLUSkQN

In this article, we have analyzed the laser pump-
ing of atoms by means of a nonperturbative meth-
od, valid at arbitrary laser intensities. The prin-
cipal predictions are the following:

(1} For a J, = 1-J,=O transition, the Hanle ef-
fect of 5 a1ways keeps a Lorentzian shape and
the populations of the levels exhibit a zero-field
saturation resonance proportional to the Hanle
effect.

(2) For a J, = 1-J,= 1 transition, the Hanle
effects of both levels also have a. Lorentzian shape
with a good approximation, and their power broad-
enings are similar. The saturation resonances
come from both the Hanle effects of g and b.

(3) For a J~=1-J,=2 transition, while the Hanle
effect of level a is Lorentzian for all the obtain-
able laser intensities, the one of level b presents
a departure from the Lorentzian shape which is
due to the couplings with the quadrupole and hex-
adecapole moments of level g. The saturation
resonances come mainly from the Hanle effect
of g. The amplitude of the saturation resonance
of the J,=2- J& =2 fluorescence exhibits an anom-
alous behavior because of higher-order effects.
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Most of these theoretical predictions have been
experimentally observed. A comprehensive study
of the experimental verifications vriB be presented
in a forthcoming paper.

The comparison of the exact theory with the
fourth-order perturbation calculation' "shows
that, for J =1-J=0 and J=1-J'=1 transitions,
the perturbation calculation deviates from the
exact one in a quantitative way only. The physical
phenomena are the same in the two theories. For
a J =1-J=2 transition, the differences are much
more spectacular because of the existence of
typically higher-order effects (sixth order and

more), in particular the creation of high-order
multipole moments in the excited levels. This
latter effect is one of the most interesting features
of the optical pumping using a laser source. De-
comps and Dumont" have shmvn that the study
of the atomic linear response leads to the deter-
mination of the relaxation rates of the population,
I'(0), and of the alignment I'(2) of excited levels
having a nonzero angular momentum. In the par-
ticular case of a J = 1-J =1 transition, aQ the
atomic parameters can be deduced from the linear
response (obtained by extrapolation at zero laser
intensity). Then the experimental fit of the non-
linear effects only implies the determination of
the pumping rate y. On the other hand, the analy-
sis of the nonlinear effects in a J =1-J'=0 transi-
tion must lead to the measurement of the relaxa-
tion rate of the population of the J =0 level. This
kind of measurement is interesting, but there are
other experimental methods (for instance, the
study of the level decay by the delayed coincidence
method"). More original is the possibility of
measuring the hexadecapole relaxation rate from

APPENDIX

Notations for the J=I -J=2 transition

In Sec. V, we use the following quantities vrhich

have the dimension of a time:

1 3 3y()+
I'~(0) 51',(0) 51",(0)I'()(0) ' (A1)

(A2)

„) fp (I & ra.
I',(2) I', (2) 10 I', (2)I', (2) '

where P, q, and r are any real numbers. We also
introduce matrix 7, (i, j = 1, 2, 3) with the help of
particular r(P, q, r);

~(—,'„1,1)

(v~) = v(~~ 1, 1)

r(1, 1, 1)

r((- (, 3) (i, i, il))
~(&, 1, 3) r(l, ~ 7)

r(1, ~3, 1) r(1, —,', , 1) )
(A4)

vrhere i is the column index and j the row index.
Matrix M, [Eq. (10)) is given by

/' I +~Qr(0)y + —,', v,'y

and its determinant by

——,', W67', y
(A5)

1+ —,', ~~3@ + —,', 7 (4)y

an analysis of the nonlinear effects in a J=1-J = 2
transition. Pressure broadening of this relaxation
rate and subsequent measurements of the collisions
cross section are of interest for the study of the
multipole expansion of the interaction involved
in depolarizing atomic collisions.

Matrix M [E(I. (22}) is given by

2r (0) 77', 7r',

r
9 7 300 Y

772

6r(4) 4rs,1+ y+ 'y

Its determinant is

2~(0} 1 6~(4) y' 7 v(4) 23
() 'ia'"'"""' )O "io ia'" ""-"'"i("'"'is ' i("' '»O)'(~)( (i))

'(OO ()
' '**"(oi)'.(a)(',(s)'i» r.(i)(',(a)) C,As)
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The inverse of M is p/A, where i8 is defined by the following matrix elements, p ' (k' for the row and
/' for the column);

)3 ~1 4Y'
=60~5" '" )'21r. (2)r,(2) loas ' " = vs" lsoor. (2)r, (2)

6515 ' 211",(2)rt)(2) 100)I5 '

„si" = 5~5~'4svs ' ""lsr. (2)r, (2) " = vs~'lsoor. (2)r, (2)

""=5m&~'4sns ')'8'lsr. (2)r„(2), ""="~
9 'soo'so' '2vo ' "'sor, (2)r, (2)

In the equations of motion of the transverse components, the following coefficients are introduced
[4 is defined by (A8)]:

AX.'=1+—[r(15,~, I)+6~(4)]+—r(4)~(~ ~ 1)+ r 2 r (2),a

A)p, =1+—~(2, „6)+ +—r(4)r(„1,2)+ (2)r (2) X, =V
1(l

—
5(}r (2)r (2)

for the source-terms, and

(A 10)

A}("= 1+ v(0)+~8v(~», 14, 50) + r(4)—

Vy 2 ~~ 2 7
+ —v(0)r(7 . ., 5) + —7 (0)v(4) + r(4)r—(„... 2) +

(e a

(All)

for the coupling terms. The equations of motion of the transverse components of the density matrix
may be written in a compact shape,

(A12)

if we introduce the 4&4 matrices

DXT =1+——T(0)+ T(, , 4)+—T(4) —T(0)r(1,4 8)+—T(D)T(4)+ {vv 2 5) ~ )
y' 10 10 v7 (4) 5

10 9 3 ""' 5 j.00 3 '5 9 15 "' ' 3r,(2)r, (2)

48,",=1+——r(0) ~ —v(, , 2, 7)+-vt4) ~ - Tt0)v(5, 1, 7)+——vt0)vt4)+ r(„,2, 4) ),

484, =1 ~ —27(0) (2, 4, 8) —vt4) ~
100

4 (0)v(1, 4 8) ~ —r(0)r(4) -v{4)r(4;, 1, 2) ),
20

Vy 20 Vy a~ 1
48,.=1+80 2(v(0)+rt„, l, 4) +8 v'ttl)r(„„1) ~

(8)D ( )),6I', q 2

484 1 ~ 7[27(0)'+.T=(I. X. ~)1 80(v(0)vil, 1 2)+ (00 (2 7 (2))

~l'= ' iso 21
' ""' ' ) '

2vo '( ""sor, (2)r,(2)
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Sy 2y M21

42 542( ttt ")
2y

5~21 1,{2)+—

y
5Wv

I' {4)+-4y
35

y
Iaf~

I', (4) +—

(A13}

0 co, 0

0 0 02~,

{A14)

23 22210(1-X )

1 22

5~21

~2(I —x.".)

(1 22)1
30 bb

1—
I~q ( —xa.)

vol 2

(1 —x,D)
1 42

7
(A15)

and the column vectors

—F21y',

A=-y
30

(A16}

8 is the real part of p. The following coefficients
are used in the saturation resonances of the pop-
ulations:

]0 ~ 11 (40 ~13

5"=1 — (2 2) ~ —t(4))y 6

10 ' '' 7

aP2

2
b@2

aP2

(A 1v)

'1« "' ' "'vr (2)r (2)

5"=1~ —t(~ ~ 5)4-t(4))y 6
a

—
10 vi 21' 7

1« """ ' 211.(2)r,(2),

3y 9
v0 r.(2) r.(4) sor, (2)I" (4)

]22 1 y
2 (0)

5 5 y' 24m(0) 2r(0)
r.tt) 51'.(4) 1D 551',(2) 71',(4) 55t', (2)t', (4))

'

y 1 5 y' 4r(0) & {())

».(2) Dr.(4) '1D t5r. (2) Dr.(4)'25r. (2)r.(4))'

y 2 (0)
11 y &(0)

10I" (2) 45 I',(2) '
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101",(2) 70 I' (2) I',(4) 10I',(2} 3501',(2)I',(4) '

I

201"s(2) 10 30I'~(2) I'~(2} 5I', (4) 201', (2)

y' 47 (0) r (0) 3y~, 1
10 51',(2) 31',(4) IOI'g2) 751',(4)1' (2)

7y~, y 158 189y~, 25 14 3y~
151'~(2) 30 9 7901'~(2) 91'~(2) 51",(4} 5I"~(2)

y' 8r(0) 14'(0) 3y, 7
90 1 s(2) 3I',(4) 101's(2) 151"s(2)I', (4)

21y,. y 21y 29 y' ~(0)
10I',(2) 9 101's(2) 101'~(2) 15 I', (2)

'

Two -relaxation - times model

For the two-relaxation-times model, the ma-
trix of the X coefficients is symmetrical

~M ~k '0
(A21)

%'e use the following coefficients for the study of
the Zeeman coherence

1 y 5 6
X X 1+ +ab ab Xxb g t BO

1 y 1
+22 ~ ] + +

5 y,

where

(A22)

4, y 2
21 ' 10yb y,

1 2y

1+1 y

5y.

46X",+ 3)(' 1 y 25
49 ~' 21O y,

Coefficients $ [Eq. (A20}] verify the following
relations:

~20 ~22

(A24)
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