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Electrons trapped on the surface of liquid ‘He by the image potential can escape into the
gas by thermal ionization. We have calculated the rate of ionization on the assumption that
the electrons are strongly coupled to each other and weakly coupled to the liquid and gas.
The first electrons to leave the surface extract their ionization energy from the kinetic en-
ergy of the electrons that remain behind. This adiabatic cooling effect rapidly lowers the
electron temperature to a small fraction of the temperature of the surrounding gas and
liquid. Above about 1.2 K gas-atom collisions determine the ionization rate and below 1 K
it is determined by ripplon scattering. It is only for temperatures below 1 K that the life-
time measurement can be used to determine the surface-state binding energy.

I. INTRODUCTION

Since Cole and Cohen'*? and Shikin® predicted
that electrons could be localized outside liquid he-
lium, several experiments*™ have been performed
to measure the properties of these unique surface
states. In the model of the surface state, the elec-
tron executes free-electron-like motion parallel
to the liquid surface but it is bound perpendicular
to the surface. Cyclotron-resonance* and mobility®
measurements support the free-electron nature of
the parallel motion. However, the experiments®™®
designed to measure the electron lifetime in the
surface state yield conflicting results. The bind-
ing energy of the electron remains unknown.

The surface state arises from two competing
forces. Near the liquid the long-range attractive
force due to the electrostatic polarization is op-
posed by the short-range repulsive force due to
the exclusion principle. This gives a potential
minimum just outside the liquid. The authors®™®
described the polarization force by the one-dimen-
sional classical image potential. The electronic
states in this potential are nearly hydrogenic for
their motion perpendicular to the liquid surface.
Associated with each hydrogenic level is a band
of free-electron states for motion parallel to the
liquid surface. Williams, Crandall, and Willis®
placed electrons on liquid “He and showed that
they were indeed bound to the liquid. They mea-
sured lifetimes for escape from the surface state
as long as 107* s. Ostermeier and Schwartz’ re-
peated these measurements with a different ex-
perimental arrangement and concluded that the
lifetime must be shorter than 107° s,

This paper describes a theoretical estimate of
the lifetime of an electron for thermal excitation
from the bound to the continuum states. Both he-
lium atoms in the vapor above the liquid and sur-
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face excitations (ripplons) in the liquid contribute
to the electron ionization. At high temperature,
gas atoms determine the ionization rate, whereas
at low temperature it is the surface waves. Since
neither the surface waves nor gas atoms can trans-
fer sufficient energy to an electron to ionize it,
the ionization process is complicated. However,
a gas atom or ripplon can transfer energy from
the parallel to the perpendicular electron motion.
If the energy in the parallel motion is equal to or
greater than the binding energy, ionization can
take place. Thus, two steps determine the life-
time, i.e., the ionization probability and the addi-
tion of energy to the parallel motion of the elec-
tron by the ripplon or gas-atom system. We find
that, above 1 K, it is the latter process that de-
termines the lifetime. Thus, a lifetime measure-
ment can not yield the binding energy except at
low temperature.

In Sec. II the surface state model is outlined.
Section III contains the model calculation of the
ionization rate. In Sec. IV the energy input and
loss rates are calculated. Section V discusses
these results in terms of the experiments.

II. SURFACE-STATE MODEL

Since Ref. 2 gives a detailed discussion of the
surface-state model, we shall merely outline it
here. At the liquid surface the short-range repul-
sive interaction dominates the long-range attrac-
tive interaction. Therefore, the electron experi-
ences an energy barrier. Away from the surface
the short-range repulsive potential can be neglect-
ed compared with the long-range potential due to
the polarization of the liquid by the electron. This
attractive potential then localizes the electron out-
side the liquid surface. Because the electron is
assumed to be weakly bound to the surface and
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therefore far enough away from the liquid so that
the surface may be treated as planar, the electron
motions parallel and perpendicular to the liquid
surface are uncoupled in first order. For a plane
surface, the polarization potential can be described
by the classical image potential.’ If the liquid
occupies the half space z <0 and z is the distance
between the electron in the gas and the liquid sur-
face, the potential energy of the electron is

V()= -aée/z, z>0
=+V, 2<0, 1

The potential V in the liquid results from the
short-range repulsive interaction. The strength
of the image charge is

a=(e,-€,)/(4le, +¢,])) . 2)

Thequantities €, and €, are the static dielectric
constants of the liquid and gas, respectively. For
‘He, a is'® about 0.006. Therefore, the binding is
weak. The solid line in Fig. 1 represents the po-
tential energy V(z). The authors in Refs. 1-3
assumed that V(z) given by Eq. (1) is the only po-
tential in the z direction, and furthermore that
the potentials in the x and y directions serve only
to give the electron an effective mass. It is, of
course, reasonable that if electron-electron in-
teractions are ignored, the motion in the x-y
plane is free-electron-like. Recent experiments*:®
tend to support this idea at high temperature, e.g.,
cyclotron resonance measurements® show that the
electron motion parallel to the surface is free-
electron-like with the mass equal to the free-elec-
tron mass.

For this model, the energy spectrum is

E=E“ +E¢ , (3)

where the energy of the motion parallel to the
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FIG. 1. Sketch of the potential energy of an electron
outside of liquid helium. Potential energy is plotted
vertically and the z coordinate horizontally. The solid
line represents the image potential. The dashed line is
the image potential plus potential due to an applied elec-
tric field. E, is the binding energy. E, is the vacuum
level of energy. E, is the conduction band in the liquid.
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surface is
E,=n2K?%/2m, . 4)

The wave vector and effective mass in the x-y
plane are K and m,, respectively. In the limit
V,~=, the one-dimensional wave equation for the
2z motion has energy eigenvalues that are of the
same form as for the hydrogen atom, i.e.,

E,= —ame*/2i°n* = -K?/2mn2} . (5)

Here 7 is an integer, m the free-electron mass,
and z, the Bohr radius of this one-dimensional
hydrogen atom. For “He the ground-state energy
is about 0.0007 eV below the continuum and z, = 70
A. Because of the weak binding energy and a liq-
uid barrier of about 1 eV,!! this hydrogenic ap-
proximation is reasonable for *He. The wave
functions are identical to those for the s state of
the hydrogen atom multiplied by z/z,.

III. THERMAL IONIZATION OF THE SURFACE STATE

Using the model of the surface state described
above, we now calculate the electron lifetime
against thermal ionization. To do this, one must
calculate the rate at which an electron in the
ground state makes transitions to the continuum.
The gas atoms above the helium liquid and the
liquid surface waves cause these transitions. Be-
cause little of the electron wave function pene-
trates the liquid, bulk liquid excitations are in-
effectual in causing transitions.

To show that this transition rate is actually a
good measure of the ionization rate, one must
consider the actual experimental configuration
used in a lifetime measurement. In equilibrium,
for the potential given by Eq. (1), the electron will
be distributed amongst the various bound and
continuum levels. If the temperature is low
enough® (<1 K) the majority of the electrons will
be in bound states rather than continuum states.
In this cage, the surface state is bound. If a
weak electric field F is applied to the surface so
as to draw electrons into the gas, the potential en-
ergy has the form

V(z)= —ae®/z —eFz. (6)

The dotted line in Fig. 1 represents this potential.
If an electron receives enough energy from the
liquid or gas to be excited to a continuum state,

it can leave the surface state. Once in a continu-
um state the electron must diffuse to the right-
hand side of the potential barrier before it can
make a transition back to the ground state. The
electric field is kept weak enough so that it may
be treated as a perturbation and the hydrogenic



states are the same as those obtained in the ab-
sence of the field.

How does the electron gain the thermal energy
from the liquid or gas? Because momentum con-
servation severely limits the amount of energy
transferred in a collision, direct transfer of the
binding energy to the electron is improbable. For
example, in a collision with a gas atom, the
maximum energy transfer to the electron is about
(m/M)/?kT, where M is the mass of a gas atom.
The surface excitations are similarly ineffectual
in transferring energy. These surface excitations
are called capillary-gravity waves. Their disper-
sion relation is

=Gg+(0/d)q?®, (7

where G is the gravitational constant, o the sur-
face tension, d the liquid mass density, w the
frequency, and g the magnitude of the wave vector.
In their quantized form,? the surface waves are
called ripplons. Both energy and momentum are
conserved in a collision. Therefore, in a single-
ripplon collision, the ratio of the energy transfer
to the average electron energy is 107374, Since
the binding energy is several kT, neither ripplons
nor gas atoms can remove an electron from the
surface in a single collision. Since multiple-gas-
atom or ripplon collisions are improbable, it
would seem unlikely that the surface state could be
ionized.

Nevertheless, there is a way to ionize the sur-
face state ina single-gas-atom or ripplon collision.
Since the parallel and perpendicular motions of
the electron are uncoupled, it is possible for the
total energy to be positive with the electron still
bound to the surface, i.e., the positive kinetic
energy of the parallel motion can be greater than
the binding energy. The surface state could then
be ionized if the energy in the parallel motion
were transferred to the perpendicular motion. A
perturbation that mixes the parallel and perpendi-
cular motions can cause this transfer. Since the
energy transfer from the perturbation is small,
its chief role is to mix the electron states while
conserving parallel momentum. Both gas atoms
and ripplons can do this.

We now consider this process and calculate the
ionization rate for both gas-atom and ripplon
scattering. This will be the rate-limiting step in
the escape from the surface as long as the electron
system remains in thermal equilibrium. This
means that the ripplon cr gas-atom system must
be able to supply energ; to the parallel motion
fast enough to keep it in thermal equilibrium. If
not, then it will be the energy exchange between
the electron gas and its surroundings that will be
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the rate-limiting step.

To estimate the transition rate we calculate the
perturbation of the electron states by the ripplons
and gas atoms. The forms of these perturbations
were proposed by Cole® in his calculation of the
mobility parallel to the surface. For scattering
by gas atoms he described the perturbation as a
contact interaction, i.e.,

Ve=00(f =Tg), v,=k%2ma,/m, (8)

where a4 is the gas-atom s wave scattering
length, T=p +Z is the electron coordinate, and
T; is the gas-atom coordinate.

We consider the process where the electron is
initially in its ground- hydrogenic state and the
gas atom is in aglane-wave state described by
the wave vector P=P, +P,. The perturbation
causes a transition from the ground to a continuum
state labeled by the wave vector E The parallel
component of the electron wave vector changes to
K’ with an accompanying change in the parallel
component of gas-atom momentum Because mo-
mentum is conserved AK =K’-K = APH —Pn —P” .
Thus the energy of the parallel motionis transferred
to the perpendicular motion. The matrix element
for this perturbation is calculated in the Appendix;
it is

i <VG> lz =(v

where V is the volume of the gas space, L the
length of the gas space, @=p+G, p=k, 2., and
G=AP,z,, where AP, is the perpendicular com-
ponent of the wave-vector change for the gas. The
quantity F(p, G), which is defined in the Appendix,
is the order of unity for p<1.

For ripplon scattering we consider the same
change in the electron states. The ripplon pro-
duces a distortion of the liquid surface, which
causes the image potential to become a function
of the parallel as well as the perpendicular co-
ordinate. This change in the image potential is
expressed in terms of surface displacements,
which are in turn expanded in ripplon normal
modes.

Cole obtained'*

ok, 82%/VEL)(1+Q*)°F(p, G),  (9)

T T t .
Ve= -2 MCRa,.02.3+ .5, 9%, (10)
q,K
M=1nw e*(%q®/8dA w)t'?
<(K +§, 1][K,(qz)/2]€'? | K, m) (11)

for the lowest-order perturbation in second-
quantized notation. Here rn, is the density of liquid
atoms, «, the liquid polarizability, A the area of
the liquid surface, and K,(¢g2) is a modified Bessel
function of the second kind. Momentum conserva-
tion in the parallel direction is implicit in the



1300 RICHARD S. CRANDALL 9

above expressions. The ci - and ¢y . arecrea-
tion and annihilation operators for the electronic
states. The a} * and ay are ripplon creation and
annihilation operators In the Appendix we calcu-
late (V) between the plane-wave states |K) and
IK +@) and the ground hydrogenic state and a
continuum hydrogenic state. It is

2 2 ;4,2
[(Va) = 2l o, 1), (12)
where N, is the ripplon density. We have added
ripplon absorption and emission together, since
they both contribute to the transition. Momentum
conservation gives AK =3.
To calculate the transition probability in lowest
order we use time-dependent perturbation theory
where the transition probability per unit time is

=205 () PoiE, - E)), (13)
f

where the sum over final states f depends on the
interaction. It is carried out in the Appendix.
Using the perturbation given in Eq. (9), the ion-
ization probability for gas-atom scattering is

Wie=Pg(E/E,- 1)0(E, - E,), (14)
PG=3mv§nc/4ﬁ3?—c ’ (15)

where 7. is the density of gas atoms and E, is the
absolute value of the binding energy.

Similarly, the transition rate for ripplon scat-
tering is

W’1R=PR(E”/EO—1)6(E” _EO)’ (16)
2
- m(n,a e®) kT
Pr 47 0ziE, a7

The ionization rate is the sum of the transition
probabilities (14) and (16) averaged over the dis-
tribution of electron states of parallel motion.
For the low electron densities considered here,
the distribution is Maxwellian. Thus the ioniza-
tion rate W, is

W, =(Pg +Pg)(kT,/Ey)e 5ot e | (18)

where T, is the electron temperature. The elec-
tron temperature is to be distinguished from T,
the temperature of the liquid or gas, since we
shall show below that T, <T. Both Pg and P,
depend on T. At high temperature, since Pg>> Ppg,
gas-atom scattering dominates the ionization pro-
cess. Since P, decreases rapidly with decreasing
temperature owing to the decrease in ng;, ripplon
scattering dominates the ionization at low temper-
ature (<1 K).

In calculating the above transition rates, we
make certain approximations to obtain the results

in closed form; these are: k,2.<1 and gz,>1.
Both these approximations have little effect on
the results because of the threshold nature of the
transition. We also omitted the transitions from
higher bound states to the continuum, since an
investigation of the contribution from these states
shows that it decreases as 1/n°.

We now proceed to the calculations of the energy-
input and -loss rates, since they determine T,.

IV. ENERGY BALANCE

When an electron leaves the surface state, it
carries away E,, which is much greater than the
average energy per electron. If this energy is not
replenished rapidly enough by the gas atoms or
ripplons, the electron system must cool. Since
the energy-loss rate E, decreases with decreasing
temperature, the electron gas cools until the
energy loss is balanced by the energy input from
the gas atoms and ripplons. Because the energy
transfer in a collision with a gas atom or ripplon
is a small fraction of 27, many collisions are
required to replace the energy lost.

In the steady state, the average energy-input
(E,) and -loss (E ) rates are equal, giving the
energy-balance equation. It is

(E)-(E;)=0. (19)

The averages are over the electron distribution
that satisfies the Boltzmann or other appropriate
kinetic equation. However, to find this distribu-
tion requires a complex numerical calculation
that is beyond the scope of this paper. Hence, at
this stage, it is appropriate to make what is called
the electron-temperature approximation®® and
assume that the distribution is Maxwellian. There
is no rigorous justification for this approximation,
but it is thought to hold when the electron-electron
scattering is sufficiently rapid to maintain an
electron temperature. For the present situation,
one can show that the energy-exchange rate due
to electron-electron scattering is larger than the
energy-exchange rate due to gas-atom or ripplon
scattering.

The average energy-loss rate is given by the
product of the ionization rate and the energy lost
per ionization event, i.e.,

E,=EW,;=(Pg+Pg)kT,e Eo/Te (20)

Using perturbation theory, we find that the
energy-input rate for a single collision with a
gas atom or ripplon is

E, =%Zf:AEI(V’)I26(Ef—Ei), (@21)

where AE is the energy transfer in a collision.
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Since the electron states quantized in the z direc-
tion are widely separated in energy, this energy
is transferred to the parallel motion.

The perturbations, which are derived in the
Appendix, are

KVl = (w,/V)?(1 +3G?)® (22)

for gas-atom scattering and

2\ 2 p
I<VR>|2=(M;0:‘2*6—) 4—2/‘—13(21\1“ +146N)  (23)
for ripplon scattering. Here 8N is +1 or ~1 for
ripplon emission and absorption, respectively.

In a collision with a ripplon an amount of energy
7w is exchanged. For a collision with a gas atom,
the energy exchange is

AEg= -(B%/2M)AK? -2AKP, cosy], (24)

where y is the angle between AK and 'ﬁn .
After performing the sum over final states in
Eq. (21) as outlined in the Appendix, one has

Ey=(Pam/4M)(E; - E,) (25)

for the energy-exchange rate between an electron
and the gas atoms. Here E;=#1%P?/2M. When
E'J, ¢ is averaged over the electron and gas-atom
distributions, Eq. (25) becomes

(E,) =(Pgmk/4M)(T -T,). (26)

This expression shows, as expected, that for
energy to be transferred to the electrons, their
temperature T, must be less than the gas temper-
ature.
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FIG. 2. Ionization rate plotted as a function of recipro-
cal temperature. The solid curve is for the same elec-
tron and liquid temperatures. The dashed curve is for
the electron temperature determined from Eq. (19).

A similar expression results for ripplon scat-
tering

o E 3273m 3 /2
<E4R>=PR'§K—%<THT’E‘> (T-T1,). (27)
e

One may now combine Eqs. (20), (26), and (27)
in the energy balance Eq. (19). The solution of
this equation determines the electron temperature.
Then Eq. (18) is used to obtain the ionization rate.
The dashed curve in Fig. 2 shows this ionization
rate as a function of temperature. It is instructive,
however, to write the energy balance at high tem-
perature, where only gas-atom scattering is im-
portant. It is

(Eyo) - (E,g)=Pcklm/4M(T - T,) - T,e~Fo/*Te] =0,

(28)

It is then apparent that the electron temperature
is independent of P, and hence of the gas-atom
density. In fact, T, is virtually independent of
temperature. The electron temperature is less
than 1 K at all temperatures. The electron
temperature does not depend on the gas-atom den-
sity or strength of the interaction because the gas
atoms contribute equally to both the energy input
and loss. The ionization rate, however, has a
temperature dependence owing to the temperature
dependence of the gas-atom density. When the
gas-atom density has decreased at lower temper-
ature, the ripplons become important. Below
about 1.4 K they dominate the energy-input rate,
while the gas atoms dominate the loss rate. In
this region the electron temperature rises slightly
with decreasing temperature because, while the
energy input changes slowly with temperature,
the loss rate decreases rapidly with decreasing
temperature. At 1 K and below, the ripplon dom-
inates both energy input and loss. Below about
0.8 K the energy-loss rate is so low that the elec-
tron temperature remains nearly equal to the
lattice temperature. In this region the ionization
process is temperature activated.

V. DISCUSSION

From the above calculation, we see that the in-
ability of the electron system to remain inthermal
equilibrium with its surroundings hinders the de-
termination of the surface-state binding energy.

In Fig. 2 the ionization rate is plotted versus re-
ciprocal temperature. The solid curve is calcu-
lated assuming that the electron system has the
same temperature as the gas and liquid, which are
in equilibrium. The dashed curve is calculated us-
ing the energy-balance equation to determine the
electron temperature. The electron cooling effect
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clearly reduces the ionization rate above 1 K be-
cause the electron temperature is about 0.8 K and
is virtually independent of the liquid temperature.
The temperature dependence of the ionization rate
(dashed curve) is caused by the temperature de-
pendence of the gas-atom density. Above T, gas
atoms dominate the energy exchange; above Tj
they dominate the ionization process.

Even with the electron cooling effect included,
the theoretical values of the ionization rate are
higher than the experimental values. There are
two reasons for this discrepancy. First, the
electron-temperature model overestimates the
density of electrons in the vicinity of E,. The
actual electron distribution has fewer electrons
in the region of energy space E ;> E  than does a
Maxwellian distribution with the same average
energy. Such failures of the electron-temperature
model have been observed in non-Ohmic trans-
port." Second, crystallization of the electron gas
occurs for low-electron concentrations. A
dilute electron gas, as pointed out by Wigner,
attains its minimum-energy configuration by
forming a regular array. We find that for the
electrons on liquid helium that electrons are well
correlated about their lattice points below 1 K.
Thus one might expect the escape rate to be affect-
ed if the electrons are in a regular array rather
than free.

Note added in proof. Preliminary results of a
calculation of the ionization rate based on the elec-
tron crystal model’ will appear in Physics Let-
ters. We find that W, is at least an order of mag-
nitude lower than for the free-electron case dis-
cussed here.
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APPENDIX

To calculate the matrix element for gas-atom
scattering using the perturbation V; given by
Eq. (8), one uses plane waves for the initial and
final gas-atom wave functions, i.e.,

¢G=V—1/2e-i—l;-‘rc . (A1)

The initial and final wave functions for the parallel
motion of the electron are, following Cole,? chosen
as Bloch functions. The ground-state wave func-
tion for the perpendicular motion is

@o(2) =222]32e7%/% (A2)

and the continuum wave function, for a container

of length L,is"
0. =(2/L)V2|TG/p)| (2/2,)e™ ket
XF(1+i /p, 2,2ik,2), (A3)

where the function F is a confluent hypergeomet-
ric function, p=k,2z., and I'(¢/p) is the I" function.

Integration over the parallel coordinates of the
gas atom and electron gives momentum conserva-
tion. Integration over the z component of the gas
atom removes 6(z - z2;). The remaining integral,
apart from constants is

I =fdz e™%/% 22F (1 +1 /p, 2, 2k, 2)
=(228/@®F(1+1 /p, 3,2, 2ip/a), (A4)

a=1+i(p+G).

For energy exchange, the initial and final gas-
atom and parallel electron states are the same as
above. The electron remains in the ground state
of its hydrogenic motion. The integration over the
z coordinate gives

I,=23/4(1+3iG). (A5)

To treat the scattering by ripplons we use the
perturbation Vi given by Eq. (10). For the ioniza-
tion process when the initial perpendicular state
is the ground state of the electron and the final
state is the continuum state, the integration over
the z coordinate is

J=2VZ|TG/p)|e™*?(L23)™1/>
Xf C—Z/Zc—ik‘ZI{l((]Z)Z
0
xF(1+i/p;2;2ik,z)dz. (A6)

The integral in (A6) does not appear to be repre-
sentable by simple functions that would facilitate
further integrations in the matrix element. How-
ever, as we shall show, the transition probability
is strongest for k,z.,<1. Since the main contribu-
tion to the integral in (A6) comes from z values
less than 2., we can use the small-argument ap-
proximation for the hypergeometric function which
is to replace it by unity. Then the integral in

(AB) is'”

_16F(3;3;3;S)

T 3¢%(1 +7 +ik)®’ (a7

1,

where r=(gz,)"'and S=( - 1+ik)/(r + 1 +ik). The
quantity kK =k,/q<< 1. Using the integral represen-
tation of F we find that'®

I,=G(r, K)g™?, (A8)



9 LIFETIME OF SURFACE-STATE ELECTRONS ON LIQUID “He. I... 1303

~ 2 1+S
G, = +r+iK)3[S(1 ~SF
+ln<-————1 +Sl:2s\/§> /ZS“/2 ] .

(A9)

For values of » <1 we find that G(r, k) is the order
of unity. We take k<< 1. Thus we approximate I
by ¢”%. It, on the other hand. » =1, G(7, k) can
be well approximated by »~!, so that in this regime
I =z,/q. Since the important contributions to the
transition probability come from the region where
r<1, we set Gr, k)=1.

For energy exchange where the z motion re-
mains unchanged, the integration over the z co-
ordinate is

I4=f e /% 2K (qz2)dz=>2,/2q, qz,< 1.
0

(A10)

Since the dominant g values in energy exchange are
much less than z;', the approximate value of the
integral is sufficient.

To perform the sum over final states for ioniza-
tion by gas atoms, we replace the sum over the
final states by an integral using the transforma-
tion
VL
Z=———;fdk,dAPad9AP"dAP.,. (A11)
+ (2m)

Momentum conservation limits the final states of
the parallel motion to two momentum-space di-
mensions. Since there is no momentum conser-
vation in the perpendicular direction, there are
both the final-electron and gas-atom states in
this direction. The energy conserving & function
for this process is

O(E;—E;)=0(li2/2m)(k,? +2,” + AP, - 24P, - K)
+(%/2M)(AP, % +2AP - B, +AP?

+2AP,P,), (A12)

where momentum conservation was used to write
K’ in terms of AP,. Because M/m is over 10°, the
terms multiplied by %%/2M can be neglected with
respect to those multiplied by #2/2m. Integrating
over the angular variable to remove the 6 function
gives for the integral in the transition probability

P =f k dk AP dAP,dAP,
57 ) (1+Q®[4aP K- (AP 2 +k,2 +2, 2V ] V2 .

(A13)

The limits on this integral are determined by the
condition that the 6 function [Eq. (A12)] must van-
ish. This restricts AP, to lie in the interval

K- (K2~ k-2, 2<AP <K+(K*-k?-2,7%)"2.

The upper limit on k, is determined by the condi-
tion that AP be real. We take the upper limit on
the AP, integration as M/mz, > AP,>2_', so that
omitting the AP, term in the 6 function remains
justified. Therefore (A13) is

I.,=(372/32)2%(E\/E, - 1)O(E - E,), (A14)

where 6 is the unit step function. Much the same
procedure is used for ripplon ionization. The sum
over final states is replaced by

AL
Z =Wfqdqd9dkz .
f

The integration over the angle 6 gives, apart
from constant factors

. = J‘ dqk,dk,
6" q:;(kzqe_ (q2+C2)2,/4)‘ 2

(A15)

(A16)

where C?=k,%> +2,7%. In obtaining this expression,

we used the high-temperature approximation for
N, and also neglected the term linear in g in the
dispersion relation. These approximations are
valid above about 0.1 K. The limits on the ¢ inte-
gation are to insure that the argument of the §
function vanishes. This requirement restricts g
to lie in the range K -~ (K2 -C?)Y2<gq
< (K?-C?'2+K. The upper limit on %, is de-
termined by the condition that q be real. Per-
forming these integrations we obtain
I,=%122(E,/E,- 1)6(E, - E,). (A17)
For energy exchange the integration over final
states in Eq. (21) can be simplified because the
collisions are nearly elastic. In this case, it is
convenient to expand the 6 function in powers of
the energy transfer. Thus we write

G(EI—E‘)=6(E,||—'E”+AE)

=<1 +AE——6?Z'” + > 8(E' - Ey),

(A18)

where E’| is the final energy of the electron. This
expansion is only defined in terms of an integra-
tion over the J function. Since AE is small com-
pared to E, the expansion need only be carried
to first order. This technique was not appropri-
ate for the ionization rate, since AE ~E in that
case.

For the rate of energy exchange between elec-
trons and gas atoms the final states are the elec-
tron states characterized by K’ and the z com-
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ponent of the momentum transfer to the gas atom.
The integration over the magnitude of K’ is con-
verted into an integration over E’,. Then the sum-
mation in Eq. (21) becomes

I =fdAp, (Vo) fdedz;',, SE’ -E,)

;]
X<AEG"6—EI—”(AEG)2>’ (A19)
where the derivative of the 6 function was removed
by an integration by parts. Using Eq. (24) for
A E, and performing the required integrations,
we arrive at

3T m

r= Rz VM

—(E~Eg) (A20)

correct to first order in (m/M).

RICHARD S.

CRANDALL 9

Similarly we have for the energy-exchange rate
for ripplon scattering an integral of the form

I =del|| ae q[NGG(E'||—E,|—ﬁQJ)

-(N, +1)8(E" - E  +hw)], (A21)

which, after expanding the 6 function to first
order and integrating over E’;, becomes

I=- (ZK)‘/ZJ dé ((1 - cos6)Y/?

3(gwN,)
‘/—aE',, ; B). (A22)

If we make the high-temperature approximation
for N,, Eq. (A22) becomes

I =8K'(kT /2E, - 1). (A23)
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