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Compton profiles are calculated for L-shell electrons within the Born approximation by use of
nonrelativistic "exact" hydrogenic bound- and continuum-state wave functions. The wave functions are
expressed in parabohc coordinates and the resulting matrix elements are evaluated following the method

of F. Bloch (1934). Impulse-approximation profiles are calculated, and comparisons with the "exact"
profiles show that, as expected, the two profiles lie very close to one another for weak binding and

high incident photon energies. However, even when these conditions are not fulfilled, the two curves

have a tendency to cross one another in the neighborhood of the profile center. This tendency has been

observed in previous studies of K-shell profiles. However, unlike K-shell profiles, the 2S Compton
profiles exhibit a secondary maximum. The secondary maxima occur at approximately the same region
in q, where the impulse-approximation profiles exhibit a plateau. The location of this plateau is shown

to be related to a node in the bound-state wave function and is around q = Z/2 for the 2S profiles.
The impulse approximation, being a monotonic decreasing function in gj, cannot exhibit the
secondary-maximum structure appearing in the "exact" hydrogenic profiles. The intensity of the
secondary maximum in the 2S profiles is reduced by over an order of magnitude from the central
peak. The 2P Compton profiles also exhibit structure, however, unlike the relatively small secondary
maximum in the 2S, the two maxima in the 2P profiles are of the same order of magnitude.

Integrated profiles {incoherent-scattering factors) are calculated and the impulse-approximation results

agree with the "exact" results over a wide range of binding energies owing to profile crossover near
the center. Wailer-Hartree incoherent-scattering factors give a closer agreement with the "exact" results
than observed for K-shell electrons; however, for low-momentum transfer the %aller-Hartree results can
differ from "exact" results by more than 50%%uo. In such regions, impulse-scattering factors represent a
considerable improvement over the %aller-Hartree factors.

I. INTRODUCTION

There has been over the last few years, and

especially in this last year, a resurgence of
Compton-scattering measurements of the momen-
tum distribution of atomic, molecular, "'and
solid-state systems. 4 ' These measurements,
analyzed in a consistent fashion using theoretical
core-electron Compton-profile calculations, can
be utilized to study the momentum distributions
of conduction-band electrons of conductors and
semiconductors, the position of Fermi levels in
these materials, the distribution of vaLence elec-
trons in ionic solids, and correlation effects in
free atoms and molecules. Simply stated, the
outer electrons give the greatest contribution in
the neighborhood of the Compton-profile center.
Thus Compton scattering is a good way to study
these electrons, which dominate most physical
prOperties in atoms, molecules, and solids. The
x-ray techniques themselves have acquired con-
siderable sophistication over the past five years
or so. Because of the large photoelectric absorp-
tion of MoKnx-rays, the profile measurements
have until recently been limited to systems with
Z & 13. However, the development of I i-drifted
germanium proportional detectors, which analyze

y-ray photons received, has led to a time gain of
at least 300 over present x-ray techniques In
addition, the higher energy of the y rays makes
some measurements on high-Z materials feasible,
which are completely impractical at x-ray ener-
gies. Eisenberger and Heed' have stated that,".. . all elements and their compounds can now be
studied by Compton scattering. . ." using the y-ray
technique. There have been few calculations other
than impulse-approximation calculations for ele-
ments with low Z, where many experimental
x-ray profiles have been obtained. It is desirable
to have accurate calculations for small atoms
that are not only valid for large-momentum trans-
fers but that are accurate for intermediate- and
smal. l-momentum transfers also, so as to study
the domain of validity of the impulse approxima-
tion (IA}. Hydrogenic one-electron calculations
have been found to give quite accurate results
forK- and L-shell photoelectric cross-section
calculations. " One would expect that accurate
Compton-profile calculations could also be ob-
tained within this one-electron approximation for
inner-shell electrons where the Coulomb attrac-
tion of the nucleus dominates.

Monte Carlo codes for x-ray and y-ray penetra-
tion through materials are approaching the point
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where improved values of the inelastic cross sec-
tions are called for over a wide range of momen-
tum transfer. These codes have previously uti-
lized either the Klein-¹ishina scattering cross
section (scattering from a free electron at rest}
or the Klein-Nishina scattering cross section
modified by the %aller-Hartree incoherent scatter-
ing factor. Since this factor is really an inte-
grated (over angle) Compton profile, improved
scattering factors can be obtained from more
accurate profiles. For hydrogenic systems analyt-
ic "exact" profiles within the Born approximation
have previously been obtained for K-shell elec-
trons by Eisenberger and Platzman" and by
Vfeiss. 12 Mendelsohn and Higgs" have calculated
"exact" incoherent-scattering factors and impulse
incoherent-scattering factors for K-shell elec-
trons over a wide range of incident photon ener-
gies, scattering angles, and K-shell el~~t~o~
binding energies. It was demonstrated by them
that the impulse-approximation K-shell scattering
factors were much improved over %aller-Hartree
results even for cases of strong binding and/or
low incident photon energies. In the present work,
a similar analysis for L-shell electrons shows
this to be the case again. In addition, one can
utilize the results and comparisons for both shells
to obtain estimates of the improvement in accu-
racy of impulse incoherent-scattering factors
over %aller-Hartree for real atoms. Addition-
ally, some estimates of the inaccuracy incurred
in using the %'aller-Hartree factors in the present
codes can be given.

Dumond'4 in 1929, in considering an atom with
a momentum distribution of electrons, realized
that such a distribution would cause Doppler
broadening about the usual Compton-scattered
wavelength A,'. Considering the electrons to be
free (but moving) before and after the collision,
he found that the shift in scattered wavelength
away from A' the profile center, depends on the
projection of p„ the original free-electron mo-
mentum before the collision, on the momentum
transfer %. He obtained the result:

q —x, = (h/m, c)[I —cos(28)] —(X /m, c)q, (I)

where

and

isotropic momentum distribution, the intensity
of the profile at a distance / from the center

should be proportional to the number of electrons
with momentum p, . This is under the assumption
that scattering is equally probable from all values
of momentum. Using this argument, Dumond
found

where
~ y(P, )~' is the momentum probability distri-

bution in the atom. Dumond's calculation is re-
ferred to as the impulse approximation (IA) and

Z~~(q) given by Eq. (5) is referred to as the Comp-
ton profile. The term "impulse" is used because
the interaction between the photon and electron is
assumed to take place so rapidly (large momen-
tum transfers} that the electron does not see a
variable potential during the interaction and can
be treated as a free particle both before and after
scattering. Calculations of J. ,(q) for atoms and
molecules with the use of hydrogenic and super-
position of hydrogenic wave functions were made
by Coulson a.nd Duncanson. " More recently,
Weiss, ef a/. "have calculated & ~(q), using the
analytic Hartree-Fock wave functions of Clementi,
for free atoms up to Z =32. Mendelsohn, Higgs,
and Mann" have recently calculated impulse
profiles for the rare gases and certain select
atoms through uranium using nonrelativistic and
relativistic numerical Hartree-Fock wave func-
tions. Also Benesch and Smith, "Brown and
Smith, "and Eisenberger, Henneker and Cade, "
have utilized more-accurate wave functions, in-
cluding correlation, to calculate &(q) for small
atoms and molecules. In Be it was found that
J(q) decreased at q =0 by about + below the
Hartree-Pock result when a correlated wave func-
tion was used.

A more rigorous approach, considering the
nonrelativistic Schrodinger equation, utilizing
only the A' term in the perturbation (dropping
p A terms), and calculating the first-Born-ap-
proximation result, gives

dv dv 8,
dQdE dQ E,

N 2

(kylg e 'l4(} 8(ey eg E)

A., and A, describe the incident and scattered pho-
ton wavelengths, respectively, while 28 (rather
than 8) represents the scattering angle. If q =0
in &q. (I), we have a, =A,'. For an atom with an

where E„E,are the incident and scattered x-ray
photon energies, respectively,

E =E, —E2 = (e~ —e(),
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e, , ez are the initial and final electron energy,
respectively; % is the momentum transfer

k =k, -k2, (6a)

k' = 0', + k', —2k, k, cos28; (6b)

k, = E, /he; p is the final electron momentum; and

P, and y& are the initial and final electron wave
functions, respectively. The Thomson cross
section is given by

—1 +cos2 28

The 5 function in Eq. (6) guarantees conservation
of energy. It is only for a hydrogenic one-electron
atom that Eq. (6) can be exactly evaluated analyt-
ically.

Considering a one-electron atom with nuclear
charge Z, we make two approximations to regain
the impulse approximation. First, the outgoing
electron wave function g& is taken to be a plane
wave, and we take ez = p.'/2m, . Second, we take
the bound-state energy I e, I

= p,'/2m„ the energy
associated with a freely moving electron. Choos-
ing g, as the usual hydrogenic bound-state wave
function, one regains the impulse approximation
in the form

dQ do 1 1 n E,
dQdE; p dQ r Z 2'7. 212

(10)
where n here is the principal quantum number of
the ith state and

K = (ka, /Z) n

is a natural parameter for the problem. Equa-
tion (10) modifies Dumond's result with the slowly
varying factor (n/K)(E, /E, ). Still, such an ap-
proach does not shed much light on the accuracy
or lack of it in the impulse approximation. Eisen-
berger and Platzman" used time-dependent opera-
tor perturbation theory, assuming violent inter-
actions (short interaction times), to obtain the
result of Eq. (10). In addition, comparing energy-
transfer moments at fixed-momentum transfer
of (E,/E, )(dg/dQ dE) for the impulse and for the
exact hydrogenic atom, they showed that the first
three moments with E, F.', and E' agreed ex-
actly; the fourth moment with 8' evaluated in the
impulse approximation differed from this moment
evaluated for the exact system by terms of order

Eisenberger and Platzman, using the ma-
trix-element evaluation for the hydrogenic ground-
state-to-continuum of Gummel and Lax, ' have
evaluated Eq. (6) exactly for the one-electron
ground-state formulation. Ne refer to this as the
"exact" (hydrogenic, nonrelativistic, first Born,

p ~ X terms dropped) one-electron result (EH}.
gneiss" has compared the EH result with a calcu-
lation of Eq. (6}, taking g& as a plane wave. How-

ever, he treats g, to be the correct hydrogenic
bound-state wave function and e, to be the exact
binding energy. He finds poor agreement between
the two profiles for 17.4 keV photons scattered
through 160' with Z =2. The agreement becomes
much worse with increasing binding (larger Z).
He has also made some comparisons of impulse
and exact profiles and found good agreement for
Z = 2 and 5 in the neighborhood of the profile
center. Thus it is the effect of the two approxi-
mations (taking the potential energy entering the
& function to be zero, and assuming a plane wave
for the outgoing electron) that leads to good agree-
ment of the impulse with the "exact" one-electron
result.

From a semiclassical treatment" it follows
that inelastic scattering of an x-ray photon with

energy F., into a scattering angle of 28 from an
atom in its ground state tI)p is described by the
free-atom incoherent-scattering factor

(12)

with e„,g„representing a state of the atom, the
sum including continuum terms; E, the energy of
the scattered photon, where, as before, E=E,

EI2 8 8p This factor S the n ente rs the equa-
tion for the scattering cross section

=S

where (der/dQ)„, represents the scattering cross
section for a free electron at rest, which, at low
incident photon energies, is the Thomson cross
section. Further approximations are then made
in Eq. (12); setting E, =E„ taking e„=~, and
taking kw k(E„). Closure is then employed to give
the result"

S(R) = Q (qoI e'" "~ '~'Iq, &
—IF(k)I' (14)

with

the coherent-scattering factor. The calculation
of S(%) is thus reduced via Eq. (14) to a ground-
state (two-particle) expectation value. Thomas-
Fermi calculations of S(k) given by Eq. (14) were
originally performed by Bewilogua according to
the formulation of Heisenberg. More recently,
S(%) has been calculated by utilization of numeri-
cal Hartree-Fock wave functions, "'"the Thomas-
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Fermi-Dirac" model, and an alternative statis-
tical model. 2' However, for strong binding,
(E,/E, )' may be much less than 1, so that a more
reasonable approximation to Eq. (12) is given by
a suitable average of (E,/E, )' taken outside the
sum. Thus in the work of Currat, DeCicco, and
%'eiss, ' they define

S(WH} = (E20/E, } S, (16)

where E=E(W}, and

W= (sin&/X, )(A '); (16)

W represents the momentum transfer in a per-
fectly elastic collision. This is consistent in
utilizing Eq. (14) since E, is taken equal to E, in
deriving lt.

In addition to using Eq. (14), an alternative and
direct method for finding the incoherent-scattering
factor is to integrate Eq. (6) or Eq. (10) over
energy

where E,' is employed to designate the usual Comp-
ton-scattering energy of a photon scattering from
a free electron initially at rest, the (WH) rep-
resents Wailer-Hartree. However, even Eq. (16)
may give a large overestimate of the scattering
in those cases where less than a half-profile re-
mains, i.e., when 8, —e„ the largest possible
value of E, for Compton scattering, is less than

E,'. To illustrate this we have utilized Eq. (14}
to evaluate incoherent-scattering factors S [and
S(WH)] for one-electron ions with arbitrary Z in
the form

s =I -IEI2,

of electrons in the different K- and L-shell orbit-
als. However, the expansion in powers of (Xa) '
used by Bloch in deriving his approximate results,
where 3'. is the final electron wave number and

a, —=I'/m, e', has been observed not to be a very
good approximation for a. 1S electron. As Eisen-
berger and Platzman have noted, under typical
experimental conditions (Xa} ' is not particularly
small. Furthermore, Bloch's a.pproximate K-
and L-results, of use since 1934, have been shown
by us and others to contain certain mathematical
errors. We choose to return to his "exact" gener-
al result [Eq. (26) in Ref. 27] and evaluate the
residue integrals, calculate the derivatives, and
perform the necessary mathematics to derive
analytic EH scattering formulas for the individual
K- and L-shell electrons. The K-shell derivation,
though yielding no new information, is presented
here as a guide to illustrate the procedure used
for obtaining the L-shell electronic results. We
had previously attempted to derive the L-shell
formulas by employing a procedure used by Gum-
mel and Lax" to evaluate the K-shell matrix ele-
ments of Eq. (6}, but the calculation proved too
cumbersome.

A. Exact derivation

For a hydrogenlike atom with a single electron
(X=1), and defining

(20)

Eq. (6) becomes

dEn E~ (19)
i, i

Z(27.212)» E,

where it is understood that subscripts will be used
on the 8 and J to designate the impulse or the
"exact" quantities.

II. GENERAL BLOCH RESULT

(21)

where the scattering matrix has been defined as

(22)

Taking a slight change of variables, and writing
ez = p'/2m, for the final-electron energy, Eq. (21)
assumes the form

F. Bloch" in 1934, extending the theory of Went-
zel,"used hydrogenic bound-state and continuum
wave functions expressed in parabolic coordinates
to evaluate the matrix elements in Eq. (6) for
scattering from any initial hydrogenic bound state.
The "exact" hydrogenic (EH) results were left in
terms of residue integrals and derivatives, which
were not evaluated because of their complexity.
Bloch, in this nonrelativistic calculation, chose
rather to approximate the general result at the
onset and he then used this approximation to cal-
culate the contribution to the Compton scattering

M~; dQ, (24)

p =[2m, (E+e,}]'~'. (25)

(2,q, d 6 -e, -E . (23)
2m, '~' 2mo 2m

The &-function properties may then be employed
to perform one of the integrations, yielding
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I = Q

2 Myj dQ. (26)

Going to parabolic coordinates and writing the
final (continuum) wave function in terms of well-
known contour integrals, Eq. (26) becomes

We will express our results in terms of the final-
electron wave number 3:, thus writing p =hX;
Eq. (24) then becomes

by U„„and Uz, , respectively; a is the azimuthal
quantum number of the initial state; m is a para-
bolic quantum number related to the direction of
momentum of the recoil electron; and E, q are the
usual parabolic coordinates.

The form of Eq. (2V) is the same as Eq. (19) in
Bloch's paper, except that he did not include the
factor E2/E, . Following Bloch, e„„x (1)) can
be evaluated as

(l,) = r2/2(-1)(2 2 ((A )1/

where

1 ~ oo
~n- l-1

X
gp l-1 ~ la& t=Q y (29)

(d)= —
J

'U~ U„„e'" '" "'(1, q)dqd( (m)

Here the initial and final wave functions are given

where A„„is the normalization constant related
to the bound-state wave function and defining
a -=2Zm, e2/nk2 and p -=Zm, e2/M'St, we get

( 1}2(+1 1 ()
g s (+(-2- j

q .)(X, m, }tt)=( 2X)-", . Cx
(1 ),1„ lim Q c,. +

2 j. -t
g Q BP1 BP2

2a -O,

ep. , 8p, , 8 p'8p. ' 4 1 —t

(a-1) /2+ i (8 + m)

2

X
4

1+t . A,'+3'.

1+t, k -3'.

(a-1) /2- j(8+ m) + y + t y + 32 (a-1)/2+i {8™)

(a-1)/2- j(8-m)
(30}

(31)

where Cx, is the normalization constant of the continuum wave function and the quantities c, are certain
numbers defining the spherical harmonics P;; thus

l-a
P;(cos28}=(1—cos'28)'/' p c, cos/26.

For purposes of completeness, the derivation of this result is detailed in Appendix 8, together with
expressions for the constants A„„and Cz„, .

B. "Exact" I(.-shell derivation

For a1S electron, n=l, /=0, j=0, c, =l. Thus Eq. (30) becomes

8
q~(st, m, k, 0) = Cz~ lim +QQ 0 l 0 +mQ

1/2 j (8+ m)

8P2 4 ' 4y

where

Q -1/2+ j(8-m) -1 /2+ j (8 + m)
X ——p, +g

4 2
~ jJ,

Q -1/2- j (8- m)-
+i

., 4 2 4 (32)

and

1/r =-2(k+sc)/(2, v =- (2/(2)(k —&),

cz, =-,'() ' 'ste" l&[-'+ l(p+ jn)Ill&[-' + l(p —)2))ll

Writing

( +)- (1
. )-(/2+((()+m)(1 2/~)-(/2-((8+m)(1 (/+)-)/2+((()-m)(1 + i(,}-(/2 (( (36)
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Eq. (32) becomes, after a little algebra,

(36)

Inserting the expression for Cz~ and simplifying I;, Eq. (36) becomes

(tt tt P)=tr tt tt(t) t ' P tlrf '(P )lllrf ~ '(P ))I

1 + ~z -3/2+f (37)

Thus inserting this value in Eq. (29) and taking the absolute value squared, we obtain
-6„.()t)l'=(pp)-'&, tt'';)t'lt p"'Irff '(p+ )ll'Irf-,'+ (() — )ll'

tt (t ~ p') ' t ~ — 4 ' — ttxp —tptp ', ~ ) )
1 '

2 ((', 2(y+v)(1 —yv)

Using the relationship

I
I'(-,' + iy) I' = ((/coshvy

and

(39)

(39)

8e"'ll'f5+ i(P+~)ll' ll"t5+ f (P —~))l' =

Eq. (38}becomes

4m'

(1 + &-5)((5+m) )(1 + &-2(((5-m)) (40)

a 1 3
(&)I'=I«'& — x' (f- 0'(I+ v') ' 1+—1005&fft 100 2 g y'

exp ~4 tan
~ I

~ ~
~

~ I
4m5+((f(/X)5, 2(y+ v)(1 -yv)

(t p *""'")(t p """) 4 t (t - *)(t'-t))
'|I%It'e now have to integrate this expression over m, and defining

(41)

(t)l —
J I

())I

Eq. (27) becomes

(42)

Now

16@' A,~ — X k' 1+ v' ' 1+—,

2(y+ v)(1 —yv) - 4n('+ (&/X)'
2 1 1 -2(y+~) 1 g~(g ~) (43)

(44)

and

(1 +8-2)r(5+m)»I -5)((5-m)) 5 P(1 +4P )(1 8 )
J(1 +8

The detailed evaluation of these integrals is contained in Appendix C.
Defining ((=nba, /Z and Ip = nXa, /Z, th-ese quan-tities assume the values for K-shell electrons (n =1),

((=Ra,/Z and P =xa,/Z. Here A(~ becomes

A, ~ = 2a'/((',

(45)
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where a =2Z/a„and thus Efi. (43) becomes, with these substitutions and definitions,

22'Z' Z [(1 P P'P -4P~ )*'P 1 8 P* )-
This result is the same as derived by Eisenberger and Platzman" using the matrix evaluation by Gummel

and Lax."
Vfe now go over to atomic units, whereby

moa20/8 ' =1/27. 212,

yielding

2227 212Z' Z, [(1 ~ 7' —P'1' ~ 4P']' P 1+& —1")'
The Compton profile is given by

= (E,/E, ) 27.212)f Zf; " .

Thus Eq. (4S) becomes

2Z [( + (P')' ~P4P ]' -'P 1 P P')'-
(47)

(4S)

III. DERIVATION OF "EXACT"L-SHELL PROFILES

A. 2S EH Compton proNe

For this case n =0, l =0, a =0, j =0 and Eq. (30) becomes, setting T=—(1 +t)/(1 —t),

q (3[7 m 1) T) (2 n1)-Zc [(1 ~ T)4/4] [(T iv)-) l2+f (f)+m) (T + iv)-) /Z-f(8-m)( T i/y)-)/2-f(f)+m)

X (T + i jy) 2/2+f(f) m)]

x[(T-iu} '[--,'+ i(P+m)]+(T -i/y) '[-2 i(P+m-)]+(T+ iv) '

x[-2 i(P —m-)]+[-z+i(P-m)](T+i/y) )j.
Defining

(50)

y, ) =- ——,'+i(p+m), t), , -=——,
' -i(p —m), p, ,-=——,'+ i(p —m),

we obtain

]44=- --,' —f(P+m), (51)

q»(X, m, 0, T) = (4n) 'C„~[(1+TP/4] [(T -iu)"'(T +iu)»(T -i/y)"4(T +i/y)"']

[]x()T-i )u'+]4.(T-i jy) '+]4.(T+ tv) '+f4, (T+ t/y) '].
Since we have set T = (1 + t)/(1 —t), Eq. (29}becomes

( y) v 3/z 2-2(/i )) /2 q»( 2 2 2

2002& fit 200 8T

and we must therefore calculate sq»(X, m, k, T)/BT and then evaluate at T =1 (corresponding to t =0).
Differentiating Eq. (52) with respect to T, we get

(52)

4

z
-1 -1

T —SV +jl4 T —— +$2 7+SU +$3 T+—

-2
-tf, (T-iu) -p. T —— —p, (T+fv) —]4 T+—-2 -1 g

1 4

1+T 1+ ]f)(T iu) )+]),4 -T, - — + ](4Ti+)v2+tfz T+— (54)
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Now let

A =-1+2u, 8—= 1+ u' AA*, C =—1+2/y, D-=1+1/y'=CC*.

At this point care must be taken to ensure that the constants used reflect their proper values for the 2S

case. Thus in this case a (n=2) has the value

(55)

(2 =Z m5e /i2 2.

Consequently we now set

2gpk Kp 2gpX I
p

so that

v =)( P, -1/y=z P+

With these substitutions and some algebra, E(l. (54) becomes

(56)

(5V)

s(t„(x, m, k, T)
8T 3)', ssp

T=l

3
B-312+ jD-3(t 2- ftft 2~ t -1ep-an

+

1 D, B 1 4p
2 tnt D —8 + 4p v + ———3 —u2+ 4pU + —3 ———

+ -4m' —+ ——2 —2(1+2Pv) -1+ —D(1 +2Pu)+8 -1+D B 2p 2p
3 D y y

D 2 B 1 4p 2p 2

~ —(l — ' ~ 4ll (l ~ 2() )') ~ —l ——— ~ -1+ ) .B y
(56)

Cz, takes on the value,

Cx, = (PZ/4((, ) 5 ' 'e'
i
I'[-,' + 2 ( P + m)] i i

1 [-,' + (2P—m)] i .

Substituting E(ls. (56) and (59) into E(l. (53), and taking the s(luare of the absolute value, leads to
-B ~2@2.()')(I'=A. (4 q4 . 8"'I('I( ~ ()) ~ )1)'(I('(l ~ ((()- )1(*

64gp2

)(]m R + -2m —+ —-2 +8 8 D exi) -4ptan2 3 -3 2P
l B D 2 1+2 -I2

where we have defined

1 D, B 1 4p8, = D -8+4P v+ ———(3-v'+4Pv}+ —3 ———
R2= —-2(1+2Pv) -1+ -D(1+2Pu)+8 -1+2p 2p

2 2 y y

D B 2p ' 4p 1
+ —[(1 +2Pu)2+4Pv +1 -v2]+ — -1+ — +1 ——

8
As in the 1S case we are interested in the integral of E(l. (60}over all m, thus

I~.,())(I'-=J I~. A. ()')(I'A

(60)

(61)

2 p2g2
=A, (, )

' ls, B '() 'sxll(-4()tan '
0

()0 dmX+2
2 (1 -22(5+m)}(1 22(5 m))

D I3 m dm
( 1 2) 8 D (1 (+522)m}( 1 22(5 ill))

()o m4 dm
+ 8 +

D (1 -22(5+m))(1 -2(((5-m)) (62)
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The first two integrals have been evaluated for the 1S case [see Eqs. (44) and (45)], and the third integral
(see Appendix C for details) has the value

m4 dm p 7 5((i'

(1 -Re((5+m))(1 Rll (5-m)) 5 24 3 P

Going over to atomic units we arrive at the final result

2s
y

—I exact 2 D-RD-3(1 - B/pP) I-
27.212Z2 Z,

(1
-BB8 )-1 (63)

1+4/P' D 8 4 D 8 ' 7 5 2
)()2RR +

6 7 & g D 5 g D 24 3P~R —4R —+ —-2 + ——+ —-2 + +

4, 2P
(64)

where

R, =—
4 1 D, 4U B (i 1 4

D —B+—U+ ———3-v + —+ —~3 ———
P y 8 P D )4 y' yP

2 )-2 1 ~ ) (-1 ~ -D 1 ~ ) B (-1 ~

D, 4U 2U 2 g ]
+ —1 —0 + + 1+ + 1 —

~
— + —1+a . P P D y' yP yP

(65)

The Compton profile is then given by

J,'~"' = (E,/E, ) 13.606)(gf;g" . (66)

B. 2P EH Compton profile

For this case n =2, f =1, a =0 and from Eq. (31), c, =0 and c, =1, j =1. Thus Eq. (30) becomes

Q . 8 d 8 8
q)c(X, m, k, 0) = -Cz„, —lim +

2 ~ 0 BP7 BP2 BfJ7 BP~

CV
-7/2+i(8+m) k X 7/' "S+~)

(X
4 ' 2

Q 7) 2+&~t -7 j2-t(8-m)
X ~ jJ +

4 ' 2 4 2 2
+1 (67)

while Eq. (29) becomes

e», z (k) = —v '~' 2 '(A»D)) ~2 q)c(St, rn, k, 0).

Making use of

8 8 8 8 9 8

aP. 7 aP 2 ey

(68)

v = (2/o) (k —&), 1/y = (2/a)(k + &),

with the definition in Eq. (56), we note, taking the limits l), )-0 and l(, -0, that Eq. (67) becomes, after
some lengthy algebra,

4 (R 2 Pl C B- 1 + D 4-' e*p -21112 ', -) [4 R ~ '(R, ~ 4 'R )]+ m 7 2P

(69)
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where

2p(1 -u/y) 1 1
BD 8+, [2u —P(1-v')]+, ———P 1 ——D'

(","-(;" )
(1 +4P')(u +1/y) 1 1 1 1

BD
+ lv(3-4P') 4P-(l -v')]+ —(3 4-P') +48 1 ——

B2 D2 y y'

(70)

B-=1+v', D=l+1/y'.

Substituting Egs. (69) and (59) into Eq. (68), taking the square of the absolute value and integrating over
m, and making use of the integrals evaluated previously for the 2S case, the final result in atomic units
ls

exact 128 E2 1 4& y~~ &
8 2 7 5 2 2 4I=—Io),(o)= 2p212go & BD(1 —e '
5

R)')
24

+
3 o + 4 +

3 o ) Q 3 3
I4, 2P

xexp ——tan '

R (2/P)(1 u/y)-, 1

""'-('" )
(1 +4/P')(v +1/y) 1 4 4

BD 8 P P

2 1 1

y P y'

1 1 4 4 1-u') + + —1-D' y P' P y'

The Compton profile is then given. by

J,p&o) =(8,/8, )13.606~ZI,p(o) .

C. ZP EH Compton profile

The 2P'"" and 2P'-" give the same result and here we have n=2, /=1, a=1, c =1, j=0. Thus Eq. ('T9)
becomes

c„,a„(k}=-v'~'2 '(Ao), )'I'q„(3',, m, k, 0),

while Eq. (30) takes on the value

q„(X,m, k, 0}=aX 'C~„, lim + [A,A, C, C,],8 8 8

J,-O
]12~0

where

A, =-(A* —p )" + ' A -=(A —)(, ) " ' C =(C' —(() ) "o' ' C =(C —)) )"
A —= —'n(1+ iv), 8=—(1+ u'), C = —'n(1+i/y), D =-(1+1/y ).

C3, now has the value

c„., =-,'.-"'st"'lr[ (P )]ill [ (P - )] I

performing the lengthy calculation in Eq. (75) and using the additional definitions

2v 1 2 v 2v v
6l = 1+——— 6) = - v + —+ — P =1+—-v2 P =- ——2v ——

y y'' ' y y'' ' y ' ' y y'
tpt2-

q„(x, m, )', o)= (-,' )-', -'&'e"'irf ((), )lllrf (() — )1) ~, , r, *,.exr(&()tan-'(, r, )
U 2 2 2v 1x 8(8 —P8 ) +D(p —Il(()) ) —(D +8 ) —PBD —— —PB D2

(Z5)

(V6}

(V6)

+fm(88, -D4, +D'-8') .
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VÃe write the bracketed terms in this last equation as

S+ im8.

Substituting E(I. (76) into E(I. ('lV) and taking the s(luare of its absolute value, we get finally

(80)

64a, 4, 2P, "
( j3' —m') dm

a'D'Z P I + ~'-P' (1 -e-""'-')(1-e-'""-")
m'(P' —m') dm

-- ('-' ""'"')((-8""") } ' (81)

These integrals are evaluated in Appendix C, and have the values

J (P' —m') dm

(, ,-a. (n..))(, ...(s .)) = 1p(I+4p)(1 —e ),
m'( p' —m') dm

(1 e 2(( (5+ /A) )(I 2(( ({) yg)) 75 P(1 + 5P + 4P')(1 —e ' )

As in the previous cases, going to atomic units Eq. (27) becomes

(82)

I —I~&» —
2 2 2 2 B D 1 —e

5$' 1+, +8' 1+ 2 + ~, exp ——tan. ' (84)

where

8 =B 8 —~ +D p —~ — D2+B2(9 BD2 U 2
1 P P P B yD

8 =-B6, -Dy, +O'-B',

BD 2v 1

P B yD'

(85)

2v 1 2g; U 2v 1 v'
e, =i+ ——— 8 = —U+ —+ — P =-1+ ——v Q

= ——2v ——
y y'' ' y y' ' '

y
' ' y y

The Compton profile is then given by

J,p(%1) = (E /E ))132.606KZI,'~{11). (86)

IV. IMPULSE APPROXIMATION

The impulse hydrogenic (IH} approximation
utilizes the hydrogenic momentum wave functions

g(p, }obtainable either from a Fourier transfor-
mation of the position wave functions g(r) or
directly as solution of the Schrodinger equation
in a momentum representation. %e will use the
former method, thus

( )
I

lt
f(Pl)dp)

p&

In terms of the momentum wave function y(p)},
I (P,}can be written as

(89)

((( ) = fl(((i, )ll'(l&, (90)

where d is the solid angle subtended by p, . Dun-
canson and Coulson" show'ed that

y(p ) =(2') ' 'J e "I'1'" g(r)dr. (8'I)

cf~p Q dg =1 (91)

f(P )dP =1
0

J~,(q) in E(I. (5) can be written in the form

(88)

In terms of j(p, ) where I(p, )dp, is the probabil-
ity that p, has a magnitude between p, and p, +dp,
and therefore that

per electron within an independent-particle ap-
proximation. IH Compton profiles can therefore
be evaluated for various electronic states from a
knowledge of the corresponding bound-state wave
functions. %'e proceed to perform this evaluation
for K- and L-shell Compton profiles.
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A. E-shell IH Compton profile

Starting with the spherically symmetric 1S
bound-state hydrogenic wave function

(Z2/&n2}i /2 e- (xiepiZ

in E(I. (8V), we calculate y(p, ). Inserting this
value into Eq. (90), we find that

)
32P4 Z

is &l 1 znp(P2 ~Z2/n2}4

(92)

(93)

nXa~ 2 n~ E 1
Z 27212 Z2 2

(100)

0 5 1 1Z227212(E', +822—2E, E2cos28)

from conservation of energy in the Exact formula-
tion, and also that

nkg~

Inserting this expression into E(I. (89), we arrive
at

~imp( }
8 Z

3z(22(q2+ Z2/(22}2

which on going over to atomic units (qap-q)
finally becomes

(94)

JUIIP )is 3zZ(1+q"/Z2)2

8. 2S IH Compton profile

Here we use the spherically symmetric 28
bound-state hydrogenic wave function

(95)

gimp )
64 1

zZ 3(1+4q'/Z')'

4'
4(l 44'ta'i')

1

(1 + 4q'/Z')'

(97)

2Z3 i/2
(r} 1 2Z &Z

1 e-(e/2ap)Z (96)s =
4 na03 2ao

and following the same procedure as for the K-
shell, we get

nE
27.212m Z 2n

and at the profile center

(8)2 =1+(I P)2.

(102)

(103)

The evaluation of the IH profile at the profile
center is immediate; thus, setting q =0 in Eq.
(9V}, we find that

J,zP(0) = 128/15zZ. (104)

The evaluation of the EH profile at the profile
center requires that we expand the terms in the
exact profile for P, 6 greater than 1. Thus Eq.
(66) becomes

128 1.205
la 2 (4')' 4( ')')

we define P' and ~' as the values of P and ~ at
the profile center. The left-hand sides of Eqs.
(100) and (101) are in atomic units, while E, and

E, are expressed in eV. Equation (3) may be
written as

4x 64'
37r

p4

(1 +4p2, )2
(98)

C. 2P IH Compton profile

There are three cases for the 2P electrons de-
pending on the azimuthal quantum number m,
namely rn =0, +1. However, all three cases yield
the same I(p, ), i.e.,

128 0.705
15v Z ((iP)2

Finally, the desired ratio is given by

(
128/15zZ

J2'2"',
p (128/15zZXI —0.705/(z )2)

1 +

(105)

(106)

Finally substituting E(I. (9V} into E(I. (89), we
arrive at the desired result

p 64 1 + 20q'/Z'
15zZ (1+4q'/Z')' ' (99)

Making use of the definition of z [E(I. (101)],
Eq. (106) can be written as

(
J,'~" 0.176
gexac( ( P /Z 44 )22S @=0 0 2$

(107)

V. COMPARISON OF EH AND IH

L-SHELL COMPTON PROFILES

A. Ratio of 25 IH and EH differential

cross sections at the profile center

Following the K-shell derivation of the IH and
EH differential cross sections at the profile center
given previously, "and using

where ko is evaluated at q =0 and Z2s is related
to the 28 binding energy. Previously, for the 1S
ratio"

(108)

with Z,*s related to the 1S binding energy, Z,*~ is
always greater than Z,*~. For the cases we have
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of the ionization process is not a very accurate
description. Looking at a typical SM we see that
in order for it to be observed, an energy resolu-
tion exceeding a 4q of & a.u. is called for. In
addition the secondary maximum structure may
only be seen if the intensity of the source is in-
creased to shorn cross-section profiles that are
more than one order of magnitude down from the
center of the profile. As q at cutoff increases in
magnitude, the impulse approximation gets pro-
gressively worse, and cannot be used to deter-
mine profile structure.

C. 2I'Compton profiles

The IA does not distinguish between the 2P'"'
and 2P' ' states, but the EH evaluation results
in two markedly distinct profiles. Figures 9-12
show the differential cross sections for an inci-
dent 20000-eV photon and for Z =2 and Z =5 with
scattering angles of 30' and 180'. Like the 2S
state, the 2P"' profile exhibits structure; how-
ever, unlike the relatively small peak in the 2S,
the two maxima in the 2P"' profiles are of the
same order of magnitude. The same cutoff con-
ditions apply for the 2P profiles, as we demon-
strated in the 1$ and 2S cases. Vfe see from Fig.
11 that the low-scattering-angle higher- Z mate-
rial at the cutoff results in slightly more than
one half a profile with the absence of a SM. The
IH profiles in Figs. 9-12 seem to average the

b Q

LII
D

I 0

2S
E =POOOOev

FIG. 8. Compton scattering from a 2S electron.
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E~ * 20000 eY
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28 *S
Z = 2
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FIG. 7. Compton scattering from a 28 electron. FIG, 9. Compton scattering from a 2P electron.
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2P'"' and 2P'0' results. Since there are two
electrons in the 2P'"' state and one electron in
the 2P"', we will always use an averaged EH
2P value. Figure 13 shows a comparison of the
IH and a,veraged EH 2P profiles for E, =20000 eV,
Z = 5 and 28=180 . The EH 2P (unless otherwise
specified when we refer to the EH 2P results,
we will mean the averaged 2P'", 2P'"' values)
is seen to peak to the right of the profile center.
Again the tendency for the IH and EH profiles
to cross, as seen in the 1S and 2S cases, is also
observed for the 2P case. The relative sharp
peak in the single maximum 2P'"' when averaged
with the 2P'0' profile appears to result in a very
flat region at q =0. This flatness is observed in
both the IH and in%eiss's impulse Hartree-Fock
(IHF) Clementi free-atom profiles.

VI. SECONDARY MAXIMUM ANALYSIS

A. Relation to momentum wave function

%e now want to examine the additional feature
contained in the EH and IH 28 and RP'O' Compton
profiles. Starting with Eq. (89) and integrating
over the directions of the initial electron momen-
tum, we obtain

IO

J &(q}=2v„l IX(p, )l'P, dp, .
~ iai

(110)

One can invert E(1. (110}to obtain
~ y(p, }I'; thus

d J,~p(q) 8 x 64 -1 4
dq vZ' q (1+4q*/Z*)' ' (1+4q'/Z')'

Two properties of J p(q) are discernible from a
study of Eq. (111). The first is that J; (q) is a
symmetric function in q; the second is that J~~(q)
is a monotonic decreasing function with increasing
(q(. From E(l. (111)we note that when [X(p,)[' is
zero, d J; ~/dq is also zero for finite ~q~. There-
fore, combined with the second property, a zero
in the momentum wave function }(',(p, ) will produce
a flat region in the J(,(q) profile. We will exam-
ine the 2S and 2P IH profile to determine the
values of q that correspond to a flat region in
J;,(q).

For the 2S IH profile, J,'g(q) is given by Eq.
(O'I)

() 64 1 1
vZ 8(1+4q~/Z2) (1 +4q2/Z2)

&(( ~ 4q'/&')' ) '

Taking the derivative with respect to q, we obtain

2P
FI 4 20000 eV

28 4 I804
Z 4P.

S( EX)eq 4 0.862
S {IMP) = 0.862 (( 4q'/&')')

(112)
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FIG. 10. Compton scattering from a 2P electron. FIG. 11. Compton scattering from a 2P electron.
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Setting Eq. (111)equal to zero and solving for
q, x.e.,

2 QO

X(p, ) =
(2 ), (, sin(p, r) q(r)dr.
27T) ~1 0

(115}

1 d JPP(q)
q dq

we obtain

To be physically meaningful, we demand that g(r)
be quadratically integrable, and, since we are
interested in bound-state wave functions„use
g(r) in the form

4q'/Z' = l.
g(r)= f(r)e '", a&0. (116)

Thus the d™e'(q}profile will have a flat region at
q = +Z/2. This corresponds to the value of mo-
mentum where the 2S momentum wave function
has a node.

Following the same procedure for J,gq), and
using Eq. (99), namely,

; p )
64 1+20q'/Z'

15wZ (1+4q'/Z')' '

we calculate that the plateau will occur at q =0.

B. Nodal behavior in momentum and

spatial wave functions

The functional relationship between nodes in
momentum and configuration space may be studied
via the Fourier transformation. Thus in atomic
units

We now take f(r} to be a polynomial in r, thus
providing flexibility in the number of zeros in
g(r), and at the same time ensuring convergence
of the Fourier integral. Equation (115) therefore
assumes the form for this g(r)

S

X(p, ) = Q [2b./(»)"p, ]
p m=p

x ( r "sin(p p') e "dr),
having written f(r) as

S

j(r) = g b. r-,

where the 6 are constants. Now the summation
over m in Eq. (117) commutes with the integral
sign, and making use of the integral identity

oo

X(p, ) =
(2 „(, !!(r)e '~~' dr, (114) r r" e '" sin(p, r) dr

0

which for spherically symmetric states becomes
in! [(a i p, )"'—" —(a + ip, )""]

2(a2 +p2)n+1

where a&0, Eq. (11"I)becomes

2b (m+1)! 1 sin[(m+2)y]
x(pl) ~ (2 )1/2 p (aa p2)1+~/2 (120)
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FIG. 12. Cornpton scattering from a 2P electron.
FIG. 13. Averaged exact vs impulse Compton scat-

tering from a 2P electron.
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where

y =-tan '(P, /a).

){(p,}is a polynomial of order s in p,'. Thus we
have a one-to-one correspondence of the nodes
in the configuration wave function to the nodes in
the momentum wave function. For bound systems
that have eigenvalues that can be ordered, cor-
responding to orthogonal eigenfunctions with uni-
formly increasing number of nodes, the compli-
mentary momentum space, preserving this eigen-
function orthogonality, mill therefore exhibit the
same nodal behavior.

One can readily calculate the product of the
widths (distance from the origin) of the nodes in
configuration space and momentum space for
hydrogenic 2S bound-state wave functions. Vfe
find EP =Z/2 and hr =2/Z in a.u. , which gives
the product 4r4P =1. For higher-lying hydro-
genic states n with one node (l =n -1), one ob-
serves b.rbp =n -1. These results follow the
expected pattern that as Z increases the spatial
wave function (electron density) is pulled in and
the momentum density is pushed out. This effect
is exhibited in the Compton profile as a zero-
slope region in the IH profile.

Our hydrogenic calculations show that the EH
profile has a secondary maximum at the same
approximate value of -~q( at which the IH exhibits
its plateau. For the 28 EH profile, the secondary
maximum is down by more than an order of mag-
nitude from the primary central maximum. From
the foregoing analysis the secondary maximum
appears to be related to the structure of the elec-
tron density in the original wave function. Since
Hartree-Fock wave functions exhibit the same
type of nodal structure as the hydrogenic wave
functions, we expect secondary maxima to occur
when Hartree-Fock calculations are performed.

When the change in the photon energy E is small,
the time spent in probing the electronic structure
is large (since Er).t-@ from the uncertainty prin-
ciple), and therefore the exact Compton profile
would show greater structure than when the change
in photon energy is large. This indeed appears
to be the case, as the secondary maximum is only
found on the low-momentum transfer -(q~ side of
the profile. This too is the side of the profile
where qualitatively we would expect a larger
deviation of the EH from the LH profile, since the
impulse approximation explicitly assumes small
interaction times and large values of E.

Assuming that strong-intensity x-ray sources
become available to accurately experimentally
probe this region of the profile, we would expect
the SM phenomena to be most easily demonstrated
for small angle scattering from lithium and beryl-

lium in its gaseous form. %'e specify small
angles because if the 1S state was also excited,
the 1S profile would tend to dominate at q values
corresponding to the SM and wash out the effect.
%'e note that Cohen and Alexandropoulos" have
performed small angle scattering from lithium
in crystal form and have observed resonances in
their valence electron profile. These resonances
are usually associated with either Haman transi-
tions or plasmon excitations. In certain cases
the position of the resonance agrees with our
calculated values but the intensity observed by
them is much larger than we mould calculate.
Their SM intensity appears almost as large as
the intensity at the profile center. No normalized
values of their results are given, however. In
addition, in the solid, orbital angular momentum
is no longer a good quantum number, although
one would expect the 2S state to play an important
role in any atomic-orbital expansion of the Bloch
wave describing the valence electron. Thus one
would expect our atomic results to be somewhat
washed out, rather than enhanced in the solid.
%'e feel that our SM have not yet been experi-
mentally observed, but may well prove an impor-
tant test on the accuracy of atomic wave functions
because they are intimately related to the nodal
structure in the atomic wave functions.

1
0 1504 4 (124)

ZS state

Here we use the p(r) corresponding to the 2S
case and Eq. (122}becomes

& e "~'0)~ sin(kr) dr. (125)

VII. INCOHERENT SCATTERING FACTORS

A. Vfaller-Hartree calculation

Starting with Eq. (15) we calculate the coherent-
scattering factor E, where

)"(Irl =a 5 p(r)I(8(nor)/)'r( 'd", ((22)

and p(r) denotes the electron density ~(1){r)~'.

2S state
Here

p(r) (Z3/++3) e-(2)'/a )8

and Eq. (122) becomes

E(k) =(1+k'/4Z') '

Since k =W/0. 1504, Eq. (123) becomes
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This integral can be evaluated by making use of
the integral identity (119), and since I) = W/0. 1504,
we arrive at

TABLE II. 2S Compton scattering —variable energy.

Z=5; 26=60'

Fmz(W) =[1+(W/0.1504Z) 1

x [1 —3(W/0. 1504Z )' + 2 (W/0. 1504 Z )4] .
Ei{eV) S(IMP) S(EX) S(IMP) -S(EX)

S (EX)

2P '0' state
(126)

Fr(~)(W) =[1+(W/0. 1504Z)'] '
x [I —5 (W/0. 1504Z )'] . (121)

Equation (15) when evaluated for this case be-
comes

5000
10 000
15 000
20 000
30 000
40 000
50 000
60 000

0.052
0.573
0.890
0.918
0.925
0.921
0.910
0.896

0.073
0.492
O. 994
0.934
0.923
0.920
0.910
0.896

-28.8
+16.5

+ 0.68
-1.71
+0.217
+ 0.109

ZP " ' state

Here the evaluation of Eq. (15}leads to

F2~&» ) ( W) = [1 + (W/0. 1504Z ] (128)

The %aller-Hartree incoherent-scattering fac-
tors S(WH) for the 1S and 2S electron states can
now be evaluated by substituting Eq. (I'I) into Eq.
(16), yielding

S(WH) = (E,'/E, )'(1 —iFi'), (129)

and then replacing E in the equation by the ap-
propriate F from Eqs. (124) and (126)-(128). We
note that Bonham" has considered corrections to
the Wailer-Hartree result.

B. Comparison of EH, IH, and Nailer-Hartree

incoherent-scattering factors

Incoherent-scattering factors are calculated,
for incident photon energies of 5000 to 60000 eV
(Z =5) and scattering angles of 30'-180'. These
factors are calculated for the 2S, 2P' ', and 2P'"'
electrons. We call S(EX}and S(IMP) the values
for the incoherent-scattering factors calculated
using Eq. (19) in the EH and IH formulations,
respectively.

The 28 scattering factors for Z =5, variable

incident photon energy, and variable angles are
given in Tables I-IV, for S (EX) and S(IMP}. One
sees that for energies E, greater than 30000 eV,
S(IMP) is a good approximation to S(EX), the
relative difference being less than 0.2oi(}. As the
scattering angle increases, the relative difference
for fixed E, ) 5000 eV improves as expected, ow'ing

to the greater momentum transfer. However,
when E, is fixed at 5000 eV we observe that
S(IMP} at first gets worse and then improves with

increasing angle. The reason is that the Compton-
profile cutoff varies with angle, and since the EH
and IH curves cross at a number of points, the
values of S obtained by integrating the Compton
profiles over energy vary in a nonuniform fashion.
Thus when one might expect S(IMP) to get worse,
it can actually improve. A glance at Table V
reveals this property, observed at fixed F.,
=17374 eV, 26) =170' and for varying Z* chosen
by matching the experimental binding energies
with a hydrogenic model. As Z* increases,
S(IMP)/S(EX) tends to meander about 1, finally
becoming 1.12 for Cr. Thus, even at this rela-
tively large binding, the impulse approximation
differs from the exact factor by only 12'(}.
Throughout the lower binding energies the ratio
S(IMP}/S(EX) is never far from 1. However, the

TABLE I. Compton scattering —variable energy.

Z=5 20=40'

TABLE III. 2S Compton scattering —variable energy.

Z=5; 28=90'

Z, (ev) S(IMP) S(EX)
S(IMP) -S(EX)

S (KX)
E&(eV) S (IMP) S (EX)

S (IMP) -S (EX)
S (EX)

500 0
10 000
15000
20 000
30 000
40 000
50 000
60 000

0.029
0.151
0.613
0.867
0.931
0,940
Q.944
0,943

0.030
0.176
0,578
G. 834
0.945
0.939
0.942
0.942

-3.3
-14.2
+6.0
+3.96
-1.48
+0,106
+ 0.21
+ 0.106

5000
1000Q
15 000
20 000
30 000
40 000
50 000
60 000

0.168
0.861
0.903
0.904
0.889
0.863
0.835
0.809

0.186
0.838
0.915
Q. 9Q2

0.888
0.863
0.836
0.809

-9.68
+2.74
-1.31
+ 0.22
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Wailer-Hartree S(WH)/S(EX) ratio, although close
to 1 over most of the range, is seen to become
progressively worse for large binding. Thus for
t"r the %aller-Hartree incoherent scattering fac-
tor differs from the exact by over 50 j~. That the
%aller-Hartree results give poorer agreement
with exact ones as the binding increases is, for
the most part, caused by the fact that, when there
is only a half-profile or less, it is quite clear~
that using (Eo/E, )2 as the appropriate average
outside the sum in E(I. (12) will give a large over-
estimate to the scattering. Any E, in the partial
profile is less than E2. Therefore, using E,' as
the average value must give a too-large value of
S(WH).

Thus for 28 scattering, the IA is a good rep-
resentation for Z* up to vanadium (Z* =13.58),
and even the %Taller-Hartree factors are closer
than for the 1S case (see Ref. 29). We therefore
see the importance of the binding energy on the
validity of the impulse and %aller-Hartree ap-
proximations.

It follows that S, given by Eq. (IV) in the in-
coherent-scattering-factor approximation [E(I.
(14)], is only a function of W= sin8/&(, Now S
[E(I. (IV)] = (E,/E, )'S(WH) Thus, t.o test this
against the exact results, me have computed
(E,/E', )'S(KX). Tables VII-X show various E,
for Z =5 and sin8/A. ,=0.2; 0.4; 0.8; and 1.2 A.

(E,/E,')'S(WH) is nearly constant for all of these
cases, varying from 0.987 for 0.4 A ' to 0.998
for 1.2 A '. (E,/E,')'S(EX) is also fairly con-
stant, being 0.971 for 0.8 A ' and 0.977 for 1.2
A '. However, for sin8/Q =0.4 A ', (E,/Eo)'S(&X)
=0.49, while (E,/E,'}'S(WH) =0.99, a difference
of 100%; at sin8/&(, =0.2, the difference is over
700 /0. Thus %'aller-Hartree 28 calculations are
more accurate than for the 1S case, but are still
quite poor for small momentum transfers.

The 2P incoherent-scattering factors for the
EH and Wailer-Hartree calculations both yield
different values for 2I" ' and 2P'"'. This dis-

tinction is not present in the IH or IHF results.
We will therefore use the statistically weighted
average S( ),„given by

S( )„=--', [S( . ),p(0&+2S( ~ },p(«&], (130)

mhere we insert either EH or WH in the paren-
theses to denote the particular calculation, and
where S( ~ ),~(o& and S( ~ ~ ~ ),~«(& are the 2P( '

and 2I""' incoherent scattering factors, re-
spectively.

Table VI lists the 2P incoherent scattering fac-
tors for EH, IH, and WH mith E, =17374 eV, 28
=170' and variable binding. A comparison with
Table V for the 2S incoherent-scattering factors
reveals that mith increasing binding the 2P state
S(IMP) and S(WH) „values are closer to S(EX),„
than are the corresponding 2S state values.
Tables XI-XIII show S(IMP) and S(KK) for E,
from 5000 to 60000 eV; 26) = 30', 90', and 180';
and Z =5. As the scattering angle increases, the
IH gets better over a larger range in E,. Thus
for 28=30', S(IMP) is close to S(EX)„for E,
~ 40000 eV; while for 28=180', S(IMP)-S(EX)„
for E, ~ 20000 eV. In general, the S(IMP) for
the 2P state is closer to S(EX)„ than S(IMP) is
to S(EX) for the 2S case. Figure 14 summarizes
these results, a,nd we see that as E, increases,
all of the incoherent scattering factors (1S, 2S
and 2P factors) approach (E',/E, }'.

VIII. CONCI. USIONS

Analytic results for "exact" hydrogenic (EH}
L, -shell Compton profiles have been obtained.
Impulse approximation hydrogenic (IH) profiles
mere also calculated and comparisons with the EH
profiles show O.at the two profiles lie very close

TABLE V. 2S Compton scattering —variable binding.

E& = 17 374 eV; 28 = 170'

S (EX) S (IMP) /S (EX) S (WH)/S (EX)

Z =5 28 -180'

E((eV) S(IMP) S(EX) S(IMP) -S (EX)
S (EX)

TABLE IV, 2$ Compton scattering —variable energy.
Li
Be
8
C
0

1.25 0.879
1.57 0.879
l.99 0.879
2.38 0.879
2.64 0.878

0.999
0.999
0.999
0.999
0.999

0.998
0,998
0.998
0.998
0.998

5000
10 000
15 000
20 000
30 000
40 000
50 000
60 000

0.553
0.882
0.874
0.855
0.804
0 ~ 754
0.708
0.667

0.473
0.898
0,871
0.854
0.804
0.754
0.708
0.667

+ 16.9
-l.78
+ 0.34

Ne
Na

Mg
Al

3.64 0,875
4.32 0.870
5.13 0.863
5.88 0.856
6.61 0.851

Ar 9.70 0.843
V 13.58 0.663
C r 14.85 0.568

1,00
1.00
1.00
1.00
0.999

0.980
1.08
1.12

1.00
1.00
1.01
1.02
1.02

1.04
1.32
1.54
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TABLE VI. 2I' Compton scattering —variable binding.

E) =17374 eV; 28 =170'

S (EX)
2~(o) 2J( i)

S (WH)/S(EX) EX) S(IMP)
2J (0) 2~(~ 0 '" S(EX),„

S~)av
S(EX),„

Li 1.25
Be 1.57
B 1.99
C 2.38
0 2.64

Ne 3.64
Na 4.32
Mg 5.13
Al 5.88
Si 6.61

Ar 9,70
U 13.58
Cr 14.85

0.879
0.879
0.879
0.879
0.879

0.878
0.875
0.865
0.849
0.826

0.685
0.572
0.541

0,879
0.879
0.879
0.879
0.879

0.879
0.879
0.879
0.878
0.876

0.831
0,640
0.559

0.998
0.998
0.998
0.99S
0.998

0.999
1.00
1.01
1.03
1.05

1.19
1.41
1.52

0.998
0.998
0.998
0.998
0.998

0.998
0.998
0.998
0.999
1.00

1.03
1.23
1.35

0.879
0.879
0.879
0.879
0.879

0.879
0.878
0.875
0.869
0.860

0.782
0.618
0.553

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

0.994
0.959
0.966

0.998
0.998
0.998
0.998
0.998

0.998
0.999
1.00
1.01
1.01

1.08
1.28
1.40

to one another for weak-binding and high-incident
photon energies. The ratio of the EH to IH 2S
profile intensity at the unperturbed profile center
is found, and it is observed that corrections to
the IH profile are of the order of [Z/momentum
transfer)]', where Z is the effective nuclear
charge, at the profile center. This is similar
to the analogous result for K-shell scattering ob-
tained previously, As in the 1S case, the IH 2S
profile always lies above the EH 2$ profile at the
center. No such generalization holds for 2P states.

The EH 2S Compton profile is observed to exhib-
it a secondary maximum (SM) on the low-energy
transfer side. However, the intensity of this SM
is reduced by an order of magnitude or more from
the central peak. We discuss why we feel that
these resonances have not been observed experi-
mentally as yet, and a possible experiment to
demonstrate this phenomenon is suggested. We
have recently been informed that such I.-shell
resonance phenomenon has also been predicted
in the ion-atom-scattering calculations of Niko-
laev and Kruglova. " The position in an experi-
mental Compton profile of such resonances can
give important information on the electron spatial

wave function of the atom.
We find that even when an impulse-profile cal-

culation is done in a regime for which the impulse
approximation is not really valid, the IH and EH
profiles for L-shell electrons tend to cross one
another in the neighborhood of the profile maxi-
mum. This leads to a strong cancellation of errors
when calculating integrated Compton profiles (in-
coherent scattering factors}. Thus we find that
IH incoherent-scattering factors are observed to
be extremely accurate w'hen compared to EH in-
coherent-scattering factors over a wide range of
incident photon energies, scattering angles, and
binding energies. In cases of relatively low mo-
mentum transfer, IH incoherent-scattering factors
represent a considerable improvement over con-
ventional Wailer-Hartree incoherent-scattering
factors. A discussion of the errors inherent in
the Wailer-Hartree method of calculation is given.
It is observed that when the EH incoherent-scat-
tering factor is of the order of 0.5 or less, the
Wailer-Hartree result is too high by a factor of
50% or more. The L-shell calculations, as well
as the earlier K-shell results, indicate that much-
more-accurate incoherent-scattering factors can

(sine)/X, =1.2 A-»;

E)(eV) 20

Z= 5

(E /E')'S(EX)

TABLE VII. 28 Compton scattering with 8' fixed.

Eg(eV) (Ei/E2) S(EX)

TABLE VIII. 2S Compton scattering with 8' fixed.

{sin8}/A,$
=0.8 A '; Z=5

10 000
15000
30 000
40 000
60 000

163.8'
58.5'
43.7'
28.7'

(Eg/E2) S(WH) = 0.998

0.976
0.977
0.977
0.978

10000
15 000
30 000
40 000
60 000

165.4'
82.79'
38.61'
28.70'
19.03'

(E,/E,')'S {WH) = 0.999

0.970
0.970
0.971
0.971
0.971
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E( (eV)

{sintI))/A. &=0.4 A ~ Z=5

20 /Eo)2 S{EX)

TABLE IX. 2$ Compton scattering with 8" fixed. TABLE XI. 2P Compton scattering.

Z =5; 28 =30'

E({eV) S (IMP) S (EX)gp(0) S{EX)2p(+i) S (EX) „

10000
15 000
30 000
40 000
60 000

58.5'
38.6'
19.0'
14.2'
94

(E,/E,')'S(WH) = 0.987

0.492
0.499
0.498
0.498
0.497

5000
10 000
15 000
20 000
30 000
40 000
50 000
60 000

4.2(-3)
0.125
0.367
0.561
0.817
0,924
0.957
0,964

0.019
0.143
0.401
0.603
0,737
0,847
0,918
0.948

0.012
0.087
0.286
0.550
0.881
0.961
O. 972
O. 970

0.012
0.106
0.324
0.568
0.833
0.923
0.954
0.963

be obtained for complex atoms at intermediate
momentum transfers by direct integration of the
impulse Compton profiles, rather than by using
the %'aller-Hartree scheme.

g=g g2 Difference in incident and scat-
tered photon energies.
In atomic units:

APPENMX A

Symbols, definitions and abbreviations

10 6n2

0 511Z'x 27 212

PPl
Q

Z*(be)

a, =- 8'/m, e'
26)

Planck's constant divided by
2g.
Electron mass.
Electron charge.
Atomic number.
Effective atomic number ob-
tained by matching the impulse
hydrogente J'(0) and the im-
pulse Hartree Foc-k Z(0).
Effective atomic number ob-
tained by matching experi-
mental binding energy using a
hydrogenic model.
In atomic units: ao=l.
Scattering angle.

Photon

Incident and scattered photon
wave numbers, respectively.
Scattering vector.
Scattering vecto r magnitude.
Incident and scattered photon
energies, respectively.

ef p ef

Il
4f st

q-=-p, k/h

~0 PO

Electron

Initial- and final-electron mo-
me nta.
Initial- and final-electron en-
e rgleS.
Final-electron wave number.
Initial- and final-electron wave
functions.
In atomic units:

n'E
27.212K@

Projection of initial-electron
momentum on the scattering
vector. q is related to the dis-
tance from the Compton line for
scattering by a free electron.
In atomic units:

kgb Kg
27.212K g 2N

The values of ~ and P at q=0.

TABLE X. 2$ Compton scattering with %' fixed.

8'=0 2 A. ' Z=5

TABLE XO. 2I' Campton scattering.

Z = 5' 28 = 90'

E&(eV) $(IMP) S(EX)2p(0) S{EX)gp(yf) S(EX)ay

E) (eV)

10 000
1,5 000
30 000
40 000
60 000

28.8'
19.0'
9.4'
7~2

4.8'

{E)/Ego)28 {WH) = 0.63

(s,/z()2s(zx&

0.074
0.076
0.078
O.080
0.065

5000
10000
15000
20 000
30 000
40 000
50 000
60 000

0.292
O. 741
0.895
0.916
O. 894
0.864
0.836
0.809

0.314
0.685
0,821
0.890
0.892
O. 864
0.836
0.809

0.211
O. 803
0.929
0.926
0.895
0.865
0.836
0.809

0.245
0.764
0.893
0.914
0.894
0.864
0.836
0.809
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I. Block

1/r

Comparison of F. Bloch and our notation

In This 8'oak
o - 2Z/ea,
1/y- z+P
c- f&-I'

P - r./2P

and

1 (a-1)12+ i (B- fit)

(a-1)/2-i (8- m)

x (B6}

EH
IA
IH
IHF

Agbreviafions

"Exact" hydrogenic.
Impulse approximation.
Impulse hydrogenic.
Impulse Hartree-Fock.

APPENDIX B

Detailed derivation of general Bloch result

We mill work in the parabolic coordinates
((, q, &p), where

$==r(1+cos28), q=—r(l —cos28)

and the azimuth y is measured around an axis
in the direction of the scattering vector k. Thus
k r in Eq. (22) becomes

with C3, given by

Ca, =-,'w 'i x"' e' II'[(1 —a)/2+1(P+m)]I

x Ir[(1 g)/2+ i( p —m)]I, (BV)

mhere P is defined by

P-=Zm e'/M'X. (B8)

The usual representation of the continuum state
is in spherical coordinates and can be written as

I P ) = (2m Z/Xao)' '(1 —e " ~'o) '"e'"' '
f

x F(iZ/Xa, ; 1; i (Xr - k r)) . (B9)

The representation in parabolic coordinates
results in a different normalization factor, which
is a functionof 3'. givenby Cz . This canbe seen
most easily by noting that

r = kr cos28 =-,'k($ —q).

The initial state (n, l, a) and the final state
(X, m, a) will be written as

(Bl)
I
1'[-,' + i ( P s )]I' = m/cosh'( P + m), (Blo)

and

I 0&) =U&, (5, n) e'"'

(B2)

(B2)

l.oo

0.90—
2

E )2

~...t~)=,
' $" '(t, ~ ', ]

(a-I) /2- i (8 + ~)
x (BS)

TABLE XIII. 2I' Cornpton scattering.

Z=5; 28=180'

E){eV) S GAMP) S t,'EX)2~( ) S(EX)2~(~i) S(EX),„

Nom Ux can be mritten in the form

U ..(&, n)=C ..(&n)"( X)-"f,(&)~ ..(n),

(B4)

where me will use the well-known integrals,

0,80—
X
G
~ o.7o-

0.60
Z

LL)

cf
~~ oso-
)-
LU 0.40—
LLIr0
O

0.30 +

0.20—

5000
10 000
15 000
20 000
30000
40 000
50 000
60 000

0,510
0.862
0.885
0.861
0.805
0,754
0.708
0.667

0.551
0.779
0.866
0.858
0.805
0.754
0.708
0.667

0.488
0.903
0.893
0.862
0.805
0.754
0.708
0.667

0,510
0.862
0.884
0.861
0.805
0.754
0.708
0.667

O.lo—

~0000 20000 30000 40000 5QQQQ 60000
ENERGY ( eV )

FIG. 14. Incoherent-scattering factors —variable
energy.
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or that

(3I/Ph)[(I -Rn(()+m))(I Rn(8-m))] -1I)2

(811)

(St ~ h I) g nla. m tn )-(-. (815)x.(I )
)l „=, C„„()2+1)!

then using the expression

Thus when we integrate (Uz (2 over the domain
of the parabolic quantum number )2((-~, +~) we
will get a factor 3'2/)l. Therefore Eq. (25) becomes

t n- l-g / 1 )2l+I,
I 2)+1((2r} e- Crt/(I- t)

n+1 (n+ I)) (1 t)2)+2 2

(817)

&nla 3m A'

In polar coordinates the initial state can be
written as

(812) in Eq. (816), and substituting this into Eq. (815),
one gets

q„(St, m, h, &) = dg dn U, (g, n)P;(cos28)
0 0

where

(2 =- 2ZR)12 8 /)2K

Thus Eq. (28) becomes

e„(.~ (k)=RR ) dn(&+n)e"'~2"' n)d(
0 0

)«((,n)(-. .e («)

(814)

U„„=C„„e"""(-«)'P',(cos2e)L,R';„)(«}, (812) 1 )2l+ 1
x (c(/2)(2K-2)(«}) (

(1 t)2)+2

—nr/2- nr t /(l, - t )x e (819)

where the associated Legendre polynomials
P' ((cos28) can be written as follows:

l-a
P;(cos28) =(1 —cos'28}'~2 g c,. cos)28. (819}

j=O

)(P;(cos28) LR();„' («).
If we define q„(sc, m, I(, t) as

(815) Substituting Eqs. (84) and (819) into Eq. (818),
and noting that r = (g+n)/2 and cos28= (g —n)/
($+n), we obtain

«(x a)22*II) t)=I-
4 2 2)-. (-2(. (1 t1)+2 Q &) dt dn(t+n)"' ' '

i=0 0 0

ik 1+t
)& (( n}'(5n)'e-xp (5 n) ——-(5+n) ~

2 4 1 —t

X

x

(a-1)/2+ j {8+m)

t, +

4X {a-&) /2+ j (S m)

t2+

(a-i)/2- j(8+m)

(82O)

Now one can show that

. k((+n)"' ' '(& n)'(tn}'exp-, 2 —
(& n) — -(-(+n)

I

ikxezp g t, — +P2 . 821

Thus Eq. (82O) can be written as

(1St)-Ra (2) ( I )2l+1
)a(atI mI kI t) = — » n(-a &2(ma )a .(2(+2 11m

4F 2 0
P2 0

00 ik e 1
dt, dEexp g t + ————

2 4 1

OO jk a 1
dt, dqexp q t, ————

2 4 1

&+l-a-& g g g g2a

BP,
&

8JJ, 2 Bp. BjJ, Bjj. Bp,

+t {a I, )/2+j {8+m) 32 (a g)/2 j(8+m)
+jul ti+

+t (a- I ) /2+ j (8 —m) &~ (a- 1 ) /2- j (0- m)

(822



ATOMIC I -SHELL COMPTON PROFILES AND. . .

The integrals over E, and q can be evaluated immediately, leaving two contour integrals over t, and t„
respectively. Each of the remaining integrals has first-order poles at

(823)

and at

ik a. 1+ t
(824)

and since these functions are analytic, they yield the values

ik n 1+t
2'Vl — +

2 4 1 —t

(c-1)/2+1(8+m), y & 1 t X (a-1)/2- j(B+m)
+

2
+ ~ jJ

2 4 1 —t ' 2
(825 }

and

iu ~ 1+t ig (' '»"« ' ~u
27TS —+ — —~2+ +

2 4 1 —t ' 2 2 4 1 —t
Eg, '~~- (tt-1) /2- j (8- m)

jJ 2 2
(826)

Substituting these values into Eq. (822), we get finally that

q„(sc, m, k, t}=(tX}",, Cn,
( ~„, lim c,2' ' ' 1 —t ' „'Bp, ,

}12 0

s s / sm' a 1+ t (k-
bp, , bp, 8p, ', bp. ', 4 1 —t ' 2

X — g g,

n 1+t . (k+X} ""/' "8' ' n 1

4 1 —t ' 2 4 1
1 I (0 —

ae))
.- ii.- &a-

x —Ij, 2 +Z
4 1 —t 2 2

1+ l-a- j
+

Bjl.2

3C) (a I)/2+i(8+tn)

(a x))&'-"'*""--'
t P 2+i

2

(827)

Evaluation of A„f,

The initial wave function is given by

lq, ) =U„,.e'"=R„,(r) V;, (2e, q),

where

(826)

e„„n (k) = —(n+t)!C„„

(k) ( 1 )l tt 3/2 23- l (A )1/2

(833)

2n [(n+ l)!]
'

sq",.-'-'(X, m, k, t)
~t n- l-l,

t=0
(834)

x (or)' L2,","(ar}, (82e) then finally equating Eqs. (833}and (834}we get

A.
&'(n —l —1)!(2t+1)(t —(a()!

2 ' "z'n(n+t}! (i+~a~)!
(835)

F,.(2&, y) =
4
l'

,
I';(cos2tt)e"~.21+1 (t —a )!

4m l+ a !

(Bso)

Thus we write Eq. (826) as

U„„=c„„e""/'(ar)' 'P( cos82) L2", ,'(«),

Typical values of A„„are: A„=2n'/v' A

210= Q/27f2 A —2o3/7]2 A -(p/z~211

APPENDIX C

Consider the integral

I z'dz
„(1+e' ')(1+e '"") (C1)

where

C
n' (n —l —1)! 2t+ 1 (t —~a()!
2n [(n+t)!J' 4w (1+ la~)!

From Eq. (816)

(Bs2)

where a is a constant and g is an integer. The
integrand has simple poles at

z =a+i 7/(1+2n}, and z =-a+in(1 2+),n

where n=o, +1,
%'e choose the rectangular path in Fig. 15 to

(C2)
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evaluate the integral in the complex plane en-
closing the poles at a+i m and at -a+i m. The con-
tour integral around the complete rectangular
path consists of the four straight-path integrals:
J„J2, J„and J~.

Writing z =x+iy an.d allowing 4, to go from
x =-R to x =R, we have for the integrals 4, and

J,

-0+i~
Jg 1(

f z
(1+e' '}(1+e ""')

J'g

(R+ iy)'i dy

(1 + RR-a+(2)(1 + e-(R+a»ia))

FIG. 15. Integration path to evaluate integral (C1).

z~ dz
(1+5' ')(1+5 ""')

(-R+ iy)'i dy

,. &1+e-R-a+ir«»1 -(-R+a+ia)) (C4)1 1(~1+8

and

(X + 2 5 i)a dX
2 (l + ea-a)(1 + e-(a+a)) (C6)

(C6)

Evaluating the integrals at the poles, we make
use of the residue theorem to obtain

Taking lim[R~ (J, )
and ltm(R[- 1~21 b«h of

these integrals go to zero. %'e are left with inte-
grals 22 and Z„and allowing }R(-~ we find
(writ1ng x foI' R)

J
oe Pl d p1.

(1 5 22 (5+m) }(1 e-2a (5-m) )

g=5,

= —(1+4P')(1 —e ""5) ', (Cll)
6

d pp2

(1 22 (5+m))(1 2a (5 m))

= ——+ +2Pa (1 —e '" } '. (C12)P '7 5P', ,&8

5 24 3

We now want to evaluate integrals of the type

/ -4& 8 5-1
I» -2a (5+ m)(l» -2a (5-ml) 2P(1 e )„„(1+8 )'1+~

(C10}

g=3

J (x + 2i5)' dx
„(1+ e * ')(1 + e '"') „(1+ e * ')(1 + e '*'") r

(e z'dz
(1

—(a+a&)(1 —(a-a)) (C13)

x =2am and a =2nP. (C8}

After some manipulating, and dividing through
by (2)&)"(, we get the desired result

[ma —(m+ i) ] dm

(1 + e-22 (5+m&)(1 -za (5-m&)

when g is odd the value of the integral is zero,
since the cosh function is even.

We may evaluate this integral by starting from
g=1 and going to larger values of g. Thus for
g=1,

=2((i(1 —e ") '[(-a+i )&(' —(a+ i)I) ]. (C'1)

To go over to the constants in Eqs. (44} and (63}

where again, a is a constant and g is an integer.
Using the results of the integral (C9), we now

make the transformation z —z -i m. Then

e- (g+(2) 1 8- (a+a)

1+8 (e~ g) g ~ (Q» g)1-8
resulting in

(5 ir) —(5-+ i 5)'
(1 —e '*"')(1—e " ")

=25i(1 —e ') '[(-a+i ) —)&(a+ iw) ]. (C14)

%'e are now in a position to evaluate the integrals
in Eqs. (82) and (83). Again setting {2=2)&ii and
z =2am, we are led finally to the desired integrals

J 2 +f1 -4&8 l-&
I» -2»{5+ ))l m2a»(5-m)) & (-e ~~1 -e

(C16)
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0(} m2dm

(y
22 (5+m})(y 22 (5 m})

=--'. p(& -2p')(& - e-"') ', (c~6)

J
00 m' den

(y e 22 (8+m})(y ~ 22(8 m})

=- —,', p(s+top2-6p')(t -e "'-) '
(.c17)

It is then just a matter of algebra to get finally

J
(p'-m')dm

(y e-22(5+m})(y -22(5-m})

r
m2( p' —m') dm

(y -22(5+m})(y -22(5-m})

= —,', p(i+5p2+4p')(i -e-"')-'. (c19)
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