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The onset temperature To(P for superfluidity of He has been measured in d =0.1-, 0.2-,
0.4-, and 0.6-pm wide channels at pressures between saturated vapor pressure and the
melting curve. The onset was detected by observing the vanishing of second sound in reso-
nators equipped with superleak transducers. In the channels used the onset temperature
To(p was depressed below the bulk transition temperature g&{p') by 2 x10 ~ ~ qo ~ 2 x10 4.

Here qo =1-To(&)/T'&(p). For constant d, we find that qo is independent of pressure to
within our resolution of +2%, From the data the exponent g' and the coefficient d~ for the
equation go= (d/d*), and the exponent and coefficient for the correlation length, g = (*q ',
have been calculated. We show that g' and d*, as well as p' and (*, and the quantity (p /T
are independent of pressure, within our resolution of +2@. The lack of a pressure depen-
dence of the critical exponents is in agreement with universality arguments. For the abso-
lute values we find ( = (1,2g0.1) x10 8 &-0.85 0.02

& ~d/(5 7y0 6) x].0-8~-1.54&o.o5 and ~& /
= (0.16+0.01) xl0 8.

I. INTRODUCTION

Order-disorder transitions are of great theoret-
ical and experimental interest in physics. The
superfluid transition of liquid helium has been
intensively investigated' in order to study critical
phenomena at higher-order transitions. The rea-
sons seem to be that liquid helium offers important
advantages to the experimentalist: The liquid is
extremely pure and homogeneous. In addition, it
is possible to achieve a temperature stability, re-
solution and homogeneity of better than 1 p. K. As
a result, one can investigate a very sharp phase
transition with a very high temperature resolution
close to the transition temperature. The recent
progress' in the theory of critical phenomena
makes it worthwhile to perform an extensive test
of theoretical predictions for the superfluid transi-
tion.

Liquid helium also offers the possibility for
investigating the influence of pressure or impuri-
ties on the phase transition. Universality ar-
guments' predict that these changes should not in-
fluence certain dim nsionless parameters charac-
terizing the transition because they do not in-
fluence the symmetry of the transition. The crit-
ical exponents, for example, should only depend
upon such general properties of the system as its
dimensionality and the degrees of freedom in the
order parameter for the transition. ' These con-
cepts have been supported recently by expl. icit cal-
culations. ' Greywall and Ahlers have verified this
prediction for the superfluid fraction p, /p of 'He
under pressure. ' This quantity is closely related

to the order parameter for the superfluid transi-
tion. ' On the other hand, Ahlers' has found an
apparent violation of universality for the specific
heat C& of liquid helium near Tz under pressure.
According to his results, the amplitude ratio A/A. '

of the singularity of C& above and below T& is
pressure dependent, in contradiction to the uni-
versality concept. It seemed to be of importance
to us to investigate more parameters for the
superfluid transition under pressure.

In this paper we report measurements of the
temperature T,(P) for the onset of superfluidity in
d = 0.1-, 0.2-, 0.4-, and 0.6- p, ~n-wide channels at
pressures between saturated vapor pressure and
the melting curve. %'e used porous membranes as
second-sound transducers. ' The onset of super-
fluidity in the channels of these membranes was
detected by observing the presence or absence of
second sound in a resonant cavity as a function of
temperature at several fixed pressures. In order
for vibrating filter papers to generate or detect
second sound, the diameter of the channels must
be smaller than the viscous penetration length of
the normal fluid component and larger than the
correlation length of He II, so that the normal
fluid is pushed back and forth, while the superfluid
can flow through the vibrating paper. %'hen the
temperature is raised the correlation length in-
creases, and eventually near T& it becomes com-
parable to the channel diameter. Then, super-
fluidity is expected to vanish in the channel. ' ' At
that temperature the channels are "closed" for the
superfluid component of He II as well. The filter
paper is then not suitable for the production or
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detection of second sound because it is no longer
a superleak. This effect has been pointed out by
Williams et al. '

Ne have measured the temperature at which the
second-sound signal in "filter-paper resonators"
vanished for different pressures and for papers
w'ith different channel diameters. The disappear-
ance of second sound indicates how far the super-
fluid transition had been shifted below T& by the
restriction of the geometry. The results are valid
at least for the temperature I ange where the onset
of superfluidity occurred inour channels, 4& 40 "K
- T „(P)—T - 4 && 10 ' K. We find the reduced tran-
sition temperature depression e „=I- T,(P)/T, (p)
to be independent of pressure to within our resolu-
tion of +2k. From our results for co we calculate
the exponent ~' and the coefficient d* for c,
=(d/d*} " . Through a scaling argument the onset
length of the channels is related to the correlation
length ~=(*~ ' of He G. We find that the co-
efficients '* and d* and the temperature exponents
A' and v' are not influenced, to within our resolu-
tion of + 2k, by applying pressure to the liquid.
The pressure independence of &' and v' is in agree-
ment with universality. Qn the basis of a theoret-
ical prediction, " " it can be expected that t'p, /T
is a constant, independent of P and T. This pre-
diction has already been verified at vapor pres-
sure. " " We find $p„'T (as well as p,!T) to be
independent of pressure to within + 2%, as well.
All our results are, within their errors, in agree-
ment with theoretical predictions.

In Sec. II of this paper we present the details of
the experimental setup and technique. There we
discuss a technique for precise pressure regulation
at low temperatures. The performance of the
experiments, the data analysis and checks of the
data are discussed in Sec. III. Finally, in Sec. IV,
we discuss the results of our measurements and
compare them with measurements by others and
with theoretical predictions.

ll. EXPERIMENT

A. Low-temperature setup

The complete experimental low-temperature
apparatus is shown in Fig. I, It consists of a
copper pressure cell filled with liquid helium and
sealed by lead 0 rings. There are two second-
sound resonators (EC, and It, ) and a sealed germa-
nium thermometer (T} inside this cell. All elec-
trical leads to the resonators and to the thermom-
eter passed out of the cell through Expoxy-filled
capillaries soldered into the cell body. Directly
connected to the pressure cell is a capacitive
transducer which measured the pressure of the
liquid in the cell. This whole assembly is sus-

pended inside a vacuum can which is surrounded
by the main helium bath. We kept about 7&&10 '
Torr of He gas in the "vacuum" can to provide
some thermal coupling between sample cell and
main bath. The temperature of the main bath was
usually kept 20-30 mK below T„(&) and was
regulated to +0.1 p.g. The helium sample (about
9 cm') in the cell and resonators is connected via
a capillary to a helium-fil1. ed pressure bomb of
about 8 cm' volume. This bomb is suspended
in its own vacuum can, which is also surrounded
by the main hei. ium bath. It is used to produce and
regulate the pressure in the sample.

8. Pressure system

Ne want to describe the pressure regulating
system, whose main parts are shown in Fig. 1, in
some detail. A capacitive pressure transducer of
the Straty-Adams type'" is attached directly to the
sample of pressurized helium being studied. The
helium sample is connected via a capillary to a
pressure bomb which is filled with liquid helium
and wrapped with a heater. This connection is via
room temperature, where a gauge is used to
measure the absolute pressure to +0.03 bar. '- The
agreement (see Table II) between the measured
~ temperatures and those calculated from the
measured pressures with the equation given by

= CAP!LLARIES

I~
VACUUM

PRESSURE EKNB
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~ ~ ~ —HFATERS

PRESSURE CELL
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FIG. l. Experimental apparatus. R& and A2 a,re the
t~o second-sound resonators and T is the germanium
thermometer. Capillary dimensions: Room ternpera-
ture to bomb 1-mm i.d. room temperature to ex-
cba"age-gas-can flange, 0.8-mm i.d. ; fI.ange to sample
cell, 0.2-mm i.d.
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Kierstead, "showed the validity of the calibration
of our gauge. The pressure cell, the pressure
bomb, and the capillaries are each in vacuum-
isolation cans or tubes which are immersed in the
liquid-helium bath.

The bomb was kept in a temperature range where
the thermal-expansion coefficient of helium is
positive. Then passing a current through the
heater increases the temperature of the bomb,
thus raising the pressure in the entire liquid-gas
system. The amount of heat necessary to keep
the pressure in the sample constant is determined
by the capacitive strain gauge. Its capacitance is
measured using the bridge circuit shown in Fig. 2

with a lock-in amplifier as null detector. Any
deviation in pressure at the sample produces an
off-balance in the capacitance bridge and hence a
nonzero voltage at the output of the lock-in ampli-
fier. This voltage is power amplified and applied
to the bomb heater in series with a dc bias cur-
rent. This negative feedback loop automatically
compensates for changes in the sample tempera-
ture, as well as less easily controlled conditions,
such as the temperature profile in the helium
Dewar. In addition, this method does away with
the usual large room-temperature pressure tank
whose temperature must be regulated extremely
well to avoid straying from the isobar.

The strain gauge, made of Be-Cu heat-treated
at 300 C for 3 h, was built according to the
Straty-Adams design. " The diaphragm is 1.34 mm
thick and 24 mm in diameter. It is connected to
the movable plate of the capacitor (23 mm diam).
A spacing of 0.075 mm at zero pressure yielded a

capacitance of about 50 pF, which increased to
about 100 pF at 30 atm. The sensitivity increased
from 0.9 to 8.6 pF jbar over this pressure range.
The movable and fixed plates of the capacitor were
insulated from ground. Hence in this situation the
GR Model 1615 capacitance bridge" can be used in
a 3-terminal mode excluding lead capacitance
from the measurement, and on the 100-pF range
over the entire ~-line region. The temperature of
the capacitance bridge was regulated to 0.01'C to
minimize drifts due to the temperature dependence
of its components (5 ppm/'C}. Coaxial leads"
were used all the way between bridge and capacitor.
They were run through a tube together with the
heater and thermometer wires into the sample
vacuum can. The capillary dimensions, described
in the caption of Fig. 1, were chosen so that the
system's time constant was about 0,3 sec.

The operational procedure was to condense enough
helium gas .'nto the pressure bomb to yield a
pressure slightly less than twice the pressure
sought. After waiting for at least 2 h the bomb was
connected to the sample through a room-tempera-
ture valve, resulting in a pressure slightly below
the pressure desired. A dc bias voltage is then
applied to the bomb heater, which brings the
system to the proper pressure. Finally, the
capacitance bridge is balanced. The output from
the bridge's null detector is connected in series
with the dc bias such that an increase of pressure
at the sample produces a decrease in the voltage
across the heater. If a power amplifier is used on
the output of the null detector whose gain is ad-
justed so that full-scale off-balance on the high-
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pressure (high-capacitance) side reduces the
voltage on the heater to zero, the system is essen-
tially foolproof and can be left unattended as long
as helium surrounds both the bomb and sample
vacuum cans. The performance of the system. is
shown in Fig. 3. The present system provided
short-term (r = 1 sec) pressure stability of 5&: 10 '
bar and long-term (T = 2 h) pressure stability of
10 ' bar. Taking the slope of the X line, -55
atm/K & (dp/dT) z& —120 atm/K, "this corresponds
to an uncertainty in the transition temperature of
less than 0.2 p.K.

The system can undoubtedly be improved if
operation is desired over a smaller pressure range.
This can be achieved by reducing the capacitor
spacing in the pressure transducer so that at the
highest pressure used the plates just fail to touch.
Through the use of an external standard kept at
helium temperatures, an appreciable reduction of
drift ean be expected. Since relative measure-
ments are being made, any ratio-measuring device
can be utilized in place of the GB bridge. " Finally,
we drove the bridge at 0.2 VfQ at 5 kHz, The low

drive was used to reduce cross talk encountered
among various eireuits in our particular experi-
mental arrangement. %'ithin reason, an increase
in this drive voltage directly yields an increase in

sensitivity of the pressure measurements. A

capacitor system in which some of these improve-
ments have been included showed a noise in &C/C

of only 3&10 ' at a bridge voltage of 10 V."
C. Thermometry and temperature regulation

A sealed germanium thermometer" was sitting
in the liquid inside the pressure cell. Its value and

T~- l.769 K

~r
246 pK

+1))—2 pK

263 pK

33l pK

FIG. 3. Strip-chart recording of the output of the lock-
in amplifiers used with the sample therxnometer (left) and
the capacitive manometer (right) in the temperatuxe-
and pressure-regulating circuits of Figs. 2 and 4 during
an actual data run at P =-29.82 bar. The spikes on the
temperature recording are the transient response which
occur when changing the ratio-transformer setting in
order to change the sample temperature. These tem-
perature changes do not influence the pxessure regula-
tion, as can be seen on the pressure recording.

sensitivity varied from 28.8 kQ and 29.8 pK/Q at
the lower X point to 51.7 kQ and 11.7 yK/Q at the
upper A. point. The thermometer resistance was
determined using the bridge circuit shown in Fig.
4, and operated at 29 Hz with a lock-in amplifier
as null detector. The bridge ratio between the
strongly-temperature-dependent resistance of the
germanium thermometer and a very constant
metal-film reference resistor (8 =45 kQ) mounted
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on the sample cell was determined with a ratio
transformer. A comparison of our X-line deter-
mination with Kierstead's" results showed that
the thermometer was unaffected by pressure (see
Table II). The noise of this bridge circuit was
about 10 nV~. (with 3-sec time constant). It was
possible to resolve 0.3 p K with this setup. The
off-balance output from the lock-in detector was
amplified and applied to a heater wound around the
pressure cell. This feedback loop kept the sample
temperature constant to better than 0.3 p. K, as
can be seen in Fig. 3. The power dissipated in the
thermometer was 1&10 ' Vf, and was checked to
produce no measurable self-heating effects. The
bridge ratio was calibrated against the 1958 'He
vapor-pressure scale, using a capacitive manom-
eter" for the vapor-pressure measurements.

The actual reduced-temperature difference
1 T/Tq(P-) used in the analysis of the data was
determined from the measured second-sound
velocity u, by interpolating the original data of
Greywall and Ahlers' for the velocity of second
sound near Tz under pressure. These values for
T~- T are good to 1 p, K.' This technique was
utilized in order that the second sound in the
resonator provided both the sound amplitude and
the temperature iriformation. This freed us from
depending on a thermometer mounted outside the
resonators.

D. Sound electronics

A schematic of the electronic system for the
sound measurements is shown in Fig. 5. The heart

of the system is a wave analyzer": a bandpass
filter (3-Hz bandwidth), whose center frequency is
tunable, followed by an rms voltmeter, which is
used to detect the signal at the sound receiver.
The analyzer also produces a sinusoidal output
signal at the filter frequency for driving the
sound generator. The frequency of the wave
analyzer was mechanically swept at a constant
speed of 3 Hz/sec to record the resonance spec-
trum of the second-sound resonators.

Both the sound generator and receiver have a
bias voltage of about 100 V applied to them, so
that the sound drive and detection are done at the
same frequency. The electronic cross-talk be-
tween the drive and receiver circuits was reduced
by careful shielding to about 100 nV, „However,
since signals down to this level were being mea-
sured, it became important to understand how this
cross-talk affected the sound amplitude. This
understanding led to the installation of the phase
shifter in the drive circuit, which is adjusted to
maximize the amplitude of the particular resonant
harmonic used for the data analysis. The details
of this procedure are discussed in Sec. IIIB. The
attenuator shown in Fig. 5 was used to check the
dependence of the data on the drive amplitude
(see Sec. IIIC).

The signal from the receiving transducer was
amplified by 60 dB before being sent to the ana-
lyzer. The analog output from the analyzer, which
is proportional to the amplitude of the signal, and
the frequency from the counter after digital-to-
analog conversion, were recorded separately as a
function of time on a 2-pen strip-chart recorder
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FIG. 5. Block diagram
of sound electronics.

AMPLIF IER
STEP

AT T E NUATOR



COBHE LAT ION LENGTH, FINITE-GEOMETRY E F F EATS, AND. . .

(see Fig. 5). As the frequency is swept linearly
with time, the signal amplitude appears as a func-
tion of frequency as well. The frequencies and
amplitudes of the resonances could be read from
the recorder chart to within 1 Hz and 1% of full
scale, respectively.

E. Second-sound resonators

With two similar electronic systems, sound mas
generated and detected simultaneously in two
cylindrical cavities sitting inside the pressure cell
(see Fig. 1). The design and dimensions of the
stainless-steel resonators are given in Fig. 6. The
height of the sample was kept to a minimum to
avoid gravity effects. " The resonators were
terminated at both ends by identical capacitive
superleak transducers. ' Their backing plates,
serving as a stationary part of the condensex's,
were mounted with electx'ically insulating epoxy in
the end caps. The surface of these plates was
lapped with fine sand paper. The vibrating ele-
ments of the transducers were commercial
"Nuclepore"' filter papers. " They were plated
mith gold on one side to give a conducting layer
with a thickness of about 300 A and a resistivity of
about 1 &/I". This conducting layer was elec-
trically grounded to the resonator body. The heli-
um sample entered the resonator by flowing be-
tween the end caps and resonator body. The two
ends of each resonator body were ground flat and
mutually parallel to 0.104. The lengths of the
resonators were measured at room temperature
to +5&10 ' mm and were corrected for thermal
contraction due to cooling to helium temperatures.
Both transducers in each resonator were biased
with a dc voltage of about 100 V. The generator
was driven at an ac voltage of 0.68 V~, . The
coaxial leads" for the drive signals and for the
pickup signals were mounted in separate tubes.
The velocity of second sound u, = 2Lv„jn deter-
mined at SVP between 1.5 and 2.16 K from the
resonant frequency v„of the nth harmonic, and the

~FiLTER PAPER

RESONATOR BODY

resonator length L agreed to + 0.1' with the data
of Greywall and Ahlers. ' Plane-wave modes
dominated the spectra of our resonators. The so-
called Bessel-function modes were absent in the
frequency range over which our measurements
were taken. The quality factor Q of the resonances
defined as the resonant frequency v divided by the
full width 4v at half-power was 1250 at 1.6K. It
decreased with increasing temperature to about
200 at & =70X10 ', and remained constant to with-
in the accuracy of our measurements in the tem-
perature range 20 &10'&e &70,

F. Filter papers

The range for the channel diameter and channel
density for three of the filter papers used in our
experiment is given in Table I." We have no
corresponding information on GE 10 (d =0.1 p.m).
Electron micrographs were taken on the filter
papers used in our experiments. Unfortunately
the scale calibration on the scanning-electron
microscope used was not good enough to deter-
mine the channel diameter with an accuracy better
than the range given in Table I for d. No estimate
was possible for the 0.1-p, m paper. Our pictures
at least convinced us that the channels were circu-
lar and had very few interconnections. Trans-
mission micrographs indicated that the channels
are quite straight and of uniform diameter over
the entire length. Because the diameters of the
"holes" are a factor of 15-100 smaller than the
thickness of the paper (10 pm), it is more rea-
sonable to consider them as "channels'" rather
than as "pores'* or "holes, " We make the reason-
able assumption that the channels are not changed
by applying pressure to the surrounding liquid.
Data taken at saturated vapor pressure (BVP)
before and after the data at higher pressure had
been obtained did agree within our resolution. In
Table I we show how the efficiency of the trans-
ducers at temperatures clearly below T,(I') varied
for different filter papers, We do not know
whether the increase of the second-sound signal
from the 0.6- pm paper to the 0.1-pm paper at
constant drive voltage is due to the decrease of
channel, diameter or due to the increase of the
number of channels (at constant total open area),
or due to both. We discuss later how the efficiency
of the resonators influenced our results.

BACKlNG PLATE

EPOX Y

-ELECTRICAL
CONNECTOR

FIG. 6. Exploded cxoss-sectional view of sound res-
onator.

III. DATA ACQUISITION AND ANALYSIS

A. Experimen tal procedure

After the system was prepared as described in
Sec. IIB, the performance of the temperature-
and pressure-regulating systems was checked and
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TABLE I. Data on filter paper (Ref. 24).

Filter paper
Chanel diameter

(p, m)
Channel density

(107/c rn2)

Sound signal
(mV)

GE10
GE20
GE40
GE60

no information
0.16-0.20
0.32-0.40
0.48-0.60

no information
25.5-34.5

8,5-11.5
2.55-3.45

2.2
0.6
0,3

'Signal received at temperatures clearly below To(P) and with a drive voltage of 0.68 p„„.

their sensitivities measured. Then the pressure
and temperature were regulated fo' about 2 h to
ensure that equilibrium was achieved in the entire
system. At about 1 mK below T&, the acoustic
systems were checked by recording the resonant
spectra of both resonators over a frequency range
from about 100 Hz to 10 kHz. It was found that the
operation of the resonators, transducers, and the
over-all appearance of the resonant spectra were
essentially pressure independent. In fact, the
relative strengths of the various modes and their
harmonics for a given resonator remained quite
constant regardless of the pressure applied.
Before any second-sound measurements were
begun, the resistance of our thermometer at the
& transition was measured. This was done by
observing the inflection point in the velocity of
first sound as the apparatus was allowed to warm
slowly (3 gK/min) through the X point from below

along an isobar. "'" %e locked in on the funda-
mental plane-wave mode in order to measure the
velocity of first sound. It was found that high-
quality first sound could be generated in these res-
onators when the temperature was higher than that
at which second sound vanished. A similar deter-
mination of the X transition was made after all
other measurements were finished. These ~-point
measurements depend on the germanium-thermorn-
eter reproducibility, reference-resistor stabil-
ity, and the pressure stability. The pressure
stability in turn depends on the capacitive-pres-
sure-transducer stability, reference-capacitor
stability, and the operation of the pressure-regu-
lating feedback system. Therefore the ~-point
determination served as an over-all indication of
the system's operation over long time periods,
and was used to detect malfunctions in various
components of the system, and in general to
qualify the data taken during a given time period.
Typically, the ~ points measured at the beginning
and end of a data run (about 10 h apart) agreed to
within a few p.K.

The data were acquired by holding the tempera-
ture constant, and sweeping the frequency of the
second sound in a given resonator at a speed of 3
Hz/sec through at least five harmonics and re-

cording this part of the spectrum. For each filter-
paper channel diameter d, a particular harmonic
& was always included in this set on all isobars
(n =26 for d=0. 1 pm, & =15 for d=0. 2 pm, n =17
for 0.4 p.m, and & = 35 for d =0.6 p.m). The ampli-
tude and frequency of this harmonic were then
measured as a function of temperature along an
isobar. If the small-channel resonator was being
studied, the frequency of the second sound in the
large-channel resonator was simultaneously but

independently swept and recorded, usually in the
region of the tenth harmonic. This served as an
additional check on the temperature, and aided in

keeping track of harmonic numbers as the signal
vanished in the small-channel resonator. If the
large-channel resonator's second sound was under

study, the other sound system was used to lock in

on the fundamental first-sound resonance in the
small-channel resonator, since second sound had

already vanished in it. Then the velocity of the
first sound was used for checking temperature

C)
C)

u& lcm/sec I = l i6.5

|0 c =263.t

L U(
I I 3.7

246.0

,'04.5

FIG. 7. Strip-chart (time) records of second-sound
spectra. The sound amplitude is shown as a function of
frequency, since the frequency is swept linearly in time
{the frequency record has been suppressed). The top
spectra show harmonics pg =25-27 from a resonator
fitted with 0.1-pm paper. The bottom spectra are har-
monics 10-13 from a resonator with 0.6-pm paper.
The data were taken simultaneously with the two resona-
tors along the isobar & =29.82 bar. The temperature
has been increased in four steps going from left to right
and is given as & =1 —T/Tz(P). The absolute frequencies
involved can be obtained by calculating v = utrg.
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stability. Recordings of second-sound amplitude
versus frequency were started at a temperature
below 7'& such that the sound amplitude was about
30 p,V. Then the temperature was raised in steps
of 50-2 p, K, with spectra being recorded after
thermal equilibrium had been reached at each step
(a wait of about 2 min). An example of the results
from this procedure is shown in Fig. 7. The upper
traces in this figure show the amplitude of second
sound in the 0.1- p, m-channel-diam resonator as
the temperature is increased until no second sound
is discernible. The second-sound spectra in the
lower traces in Fig. 7 were taken at the same
time and under identical circumstances as the
corresponding traces directly above it, except
using a resonator fitted with 0.6- Ij,m-channel-diam
paper. The absolute amplitudes of the signals in
the lower traces and their weak dependence on
temperature in this region demonstrate that the
channel diameter of the filter paper is controlling
the amplitude of the second sound in the other
resonator. At constant pressure the temperature
was stepped up to the vanishing of the sound signals
and back down to about 30- pV amplitudes at least
twice. The amplitude of a particular harmonic
was then plotted against the velocity of second
sound obtained from measuring its frequency.
Various plots of this nature axe shown in Figs,
8-11.

The relative error in the amplitude measure-
ments increases as the sound amplitude decreases,
resulting in possible errors of about 100% at the
lowest amplitudes measured (100 nV). However,
regardless of the noise, even if a harmonic was
barely discernible, its frequency was still re-
solvable to better than 1%0. All error in the sound-
cutoff determination is due to the uncertainty in
the amplitude measurements because the uncer-

tainty in the velocity measurement was negligible.
It was found that the data close to the sound cut-

off could be well described by the following equa-
tion:

1n(A/A*) =m(P)u, .

Here 4 is the sound amplitude, u, is the sound
velocity, A. is a constant for each filter paper
independent of pressure, and m(p) depends on
pressure and filter-paper channel diameter. The
logarithm of the amplitude versus velocity for
second sound is plotted for the four channel diam-
eters used at essentially constant pressure
(0.06-0.2 bar) in Fig. 8. Here the range of valid-
ity of Eq. (1) can be seen to vary from amplitudes
of 1 pV and less for the 0.6- p, m channel paper
data to 30 pV and less for the 0.1- p,m data. If we
extended the graph to higher velocities, it could be
seen that the curves saturate for all filter papers
similar to that shown here for the 0.6- p.m paper.
The amplitudes at which this saturation occurs
increase for decreasing channel sizes, so that far
away from T ~ the 0.1-pm filter paper will produce
second sound more than an order of magnitude
stronger than the 0.6-y, m paper (all other variables
equal). The values for the amplitudes at satura-
tion are given in Table I. An increase of the slope
m(&) with increasing channel diameter is also
clearly present and will be discussed in Sec. III C.
Figure 9 gives the same type of plot but for con-
stant channel diameter (0.6 p.m) with pressure as
the variable parameter. Although all the curves
have the same shape, it can be seen that m in-
creased with increasing pressure. This will be
discussed further in Sec. III C. The sound ampli-
tude at constant drive voltage also increased with
increasing pressure for the 0.6-gm filter paper
(see Fig. 9). The viscous penetration length X„of
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FIG. 8. Second-sound amplitude as a function of sec-
ond-sound velocity u2, for the four filter papers used.
The points are labeled by the channel diameter of the
fLlter papers. The pressure is constant within the ac-
curacy of the diagram (0.05-0.2 bar). The cutoff level
used for determining u& 0 is indicated.

FIG. 9. Second-sound amplitude as a function of sec-
ond-sound velocity u~. The data were taken with 0.6-pm
filter paper under the pressure (in bar) associated with
each set of data points. The sound cutoff level used for
determining u p 0 is indicated.
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the normal component is about 1 pm at SVP and
the frequencies used (3.5 kHz} for the run with
this paper. Because for this paper X„ is compara-
ble to the channel diameter, there might occur
some slippage of the normal component in the
channels resulting in a decrease of sound ampli-
tude. The increase of viscosity with increasing
pressure will reduce the slippage and could be
responsible for the increase of sound amplitude
with pressure. This effect should not influence the
sound amplitude in resonators equipped with paper
with smaller channels. %'e mill come back to the
pressure dependence of the sound amplitude when
we discuss the data in Sec. IVA.

B. Phase adjustment

When using a sound drive of the order of volts
and detecting sound of the order of hundreds of
nanovolts at the same frequency, the system has
to be shielded well to avoid coupling between the
drive and receiver circuits. In our apparatus we
encountered cross-talk of about 100 nV whose
magnitude and phase were weakly dependent on
frequency, and which can be described at a given
frequency in polar coordinates by the vector
(8, Ws}

As the frequency of the sound is swept through
a particular harmonic in a resonator, the signal
increases from zero to some peak amplitude & and
then decreases to zero, while the phase of the
resulting sound signal changes through 1SO'. Such
a signal can be described in polar coordinates by
the vector (A sing„, y„), where y„=90' or 270' at
the peak, depending on whether the harmonic is
odd or even. The wave analyzer measures the
sum of this and the background signal:

S = [A' sin'y„+ 2AB sing„cos(y„- rp, ) + 8-'] "'.
(2)

Since A. is the actual sound amplitude being mea-
sured, 8, y~, and yA must be known to extract
4 from S. However, if one would set p~ =90, and
measure the amplitude at the peak where 9.&„=90'
or 270', one obtains the simplified version S
=Ax 8 or A =Sx 8, for Eq. (2); the plus-or-minus
signs applying to alternate harmonics. Then by
measuring the peak amplitude S at a frequency v

and then the background level 8 at the same fre-
quency v after the second sound has vanished, &
can be obtained. Notice that if the phase in the
sound circuit is peaked for a particular harmonic
Pl

while its two closest neighboring harmonics n+ 1
and & —1 will be minimized, yielding

A.„~,=S„~,+B.

Equation (3) shows that with this phase setting
the sound signal for the &th harmonic adds to the
background, making amplitude measurements
possible to a level limited only by the electronic
noise. For the n+1 and n 1-harmonic [Eq. (4)],
the resonant peak will actually be a dip when 4
& 2B, and the spectrum will dip to the zero voltage
level when & = 8 with this phase setting. [ For A

&8, Eq. (3} is not directly applicable]. For ran-
dom-phase adjustments almost any type of spec-
trum can be observed.

In a few early runs the phase was not adjusted
properly, but the background phase Bnd amplitude
were carefully measured as a function of frequency.
In general these quantities could be described by
first-order polynomials in the frequency:

8 —5~, 51v, Pg = co+c

Then these equations and Eq. (2) were used with
the total amplitude S and frequency v measured to
obtain 4 for each data point. Later the following
technique was used: As mentioned above, the
phase and amplitude of the background signal 8
were weakly frequency-dependent. Therefore,
before any measurements were made the tempera-
ture was stabilized near, but slightly below, where
the sound vanished, and the phase shifter adjusted
to maximize the amplitude of the harmonic under
study. Thus, with this procedure, the phase
adjustment is correct for the smallest amplitudes
when its effect is most important. That is, as one
cools away from the cutoff temperature, the
sound amplitude increases relative to the back-
ground level (which actually falls very slightly
with increasing frequency or temperature),
making the background progressively less impor-
tant, The results of this method were checked
against those obtained using the first method by
using two different phase settings in one run. The
agreement was well within the precision of the
measurements.

C. Checks

l. Bav~nonic dePendence

As stated in part A of this section, for each
channel diameter a particular harmonic number
was used for all measurements. We tested
whether our results could depend on the harmonic
chosen Ky measuring sound amplitudes and veloc-
ities in each resonator for several harmonic
numbers and at various pressures. It was found
that although a resonator usually yields a spectrum
with harmonics of varying amplitudes at tempera-
tures far away from 1'q, as a temperature close to



CORRELATION LENGTH, FINITE-GEOMETRY EFFECTS, AND. . .

where the sound vanishes is reached, all harmon-
ics assume nearly the same amplitude. A plot of
sound amplitude versus velocity of four harmonics
from n =20 to 35 in the 0.6-ILt,m-pore-size reso-
nator is presented in Fig. 10. Fitting Eq. (1) over
the applicable range of each data set yields veloc-
ity cutoffs which vary less than 1/c, even though
the frequency at which the data were taken differs
by more than 1000 Hz. This indeed demonstrates
that within the experimental errors, the cutoff
velocity does not depend on harmonic number.
Regardless, as mentioned earlier, all measure-
ments with a given filter paper were made with
the same harmonic.

50.0

~ l0.0—
QJ 50

CL
l.o—
0.5—

O. I

70

HARMQNIC u2 {O.l pV)
NUMBER

20 7 I.4
25 7 l.4

o 30 7I.6
35 7 l.9

I l I I

90 I IG

u2 tcm/sec]
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FIG. 10. Second-sound amplitude for four harmonics
as a function of second-sound velocity at P =4.063 bar
using 0.6-pm filter paper. The inset shows that the
cutoff velocity g2(0.1 pV) is essentially independent of
the second-sound harmonic used.

2. Sound drive amPlitude

The effect of varying the voltage applied to the
sound-drive transducer was investigated over the
range from O.OV45 to 6.3 V&~, . First, it was found
that the second-sound velocity was independent of
the drive voltage with all other variables held con-
stant. However, at the highest drive used (6.3 V, ),
slight heating of the resonators was observed
(-0.5 pK). A test was then done for critical ve-
locity effects with drives between 0.0745 and
2.08 V, , where no heating was detectable.

The intrinsic critical velocity of superfluid he-
lium decreases strongly near the ~ transition or
near the temperature where superfluidity vanishes
in a particular geometry. " An order-of-magnitude
estimate gave a maximum velocity of 10 ' cm/sec
for the motion of the filter paper at 1 V ac drive
and 100 V bias (at constant frequency this velocity
is proportional to the product of the drive and bias
voltages). Therefore, at all temperatures of the
experiment the velocity of the filter paper should
have been small compared to the critical velocity

o. Cutoff level

The frequency at w'hich the amplitude of second
sound intercepted the 0.1-p.V noise level was taken
as the cutoff where the sound "vanished'* for our
apparatus. The O. i-pV level is a somewhat ar-
bitrary cutoff, and the absolute cutoff velocity and
temperature involved would be slightly different
for different noise levels. The dependence of our
results on this cutoff level has been investigated.
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FIG. 11. Second-sound amplitude for various drive
voltages as a function of velocity of second sound at
P =0.2 bar using 0.6-pm filter paper. The sound cutoff
used for determining g2 0 is indicated. The inset shows
the weak dependence of u2 0

= u~(0.1 pV) on the sound
drive voltage.

of He II, (U~, =380 ~' ~"'"at SVP according to
Ref. 27).

However, if critical velocities were being
reached in the filter-paper channels of the trans-
ducers, the sound signal should have decreased
with increasing drive voltage, owing to the reduced
efficiency of the sound transducers, This would
lead to a higher c~ttoff velocity being measured,
since the sound signal at a given temperature would
be reduced. In fact, as can be seen in Fig. 11, the
opposite was observed; each time the drive voltage
was increased by a factor of 3, we observe the
same relative decrease in cutoff velocity of about
3.3 j(;. The figure demonstrates that the cutoff
velocity is a rather weak function of the drive
voltage, However, the sound drive was fixed at
0.68 V,~, for all the data in Table I and in the
figures from which our conclusions were obtained.
The drive and receiver bias voltages were also
constant throughout the measurement. Similar
tests were done with the various filter papers and
at various pressures. Vfe could exclude any non-
linear or critical velocity effects as influencing
our results.
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The basic question is: What happens to the veloc-
ity u, , of sound measured at the amplitude cutoff
level, for various cutoff leve)s~

As stated in Sec. IIIA, the data for the second-
sound amplitude as a function of frequency close
to the sound cutoff can be described by Eq. (1).
Also, within the precision of our data, the velocity
of second sound can be described by a simple
power law, ' "

s, = h(P)e (5)

where e = 1 T/T-~, i is pressure independent for
the accuracy of our experiment, and

h(P) = h, +A,P.
Substituting Eq. (5} into Eq. (1) we have

ln(A/W*) =m(P)a(P)~ '.

(8)

Experimentally we find &* to be a function of
filter-paper channel diameter only (independent of
pressure). Therefore, if

m '(P) =o.h(P),

where & is a constant of proportionality, then con-
stant & (sound amplitude) in Eq. (7) always implies
constant & independent of pressure. Figure 12
shows m '(P) taken from our data (see for example
Figs. 8 and 9}, where Eq. (1) is valid as a function

of pressure. The linear curves on this graph

p, a quantity proportional' to the velocity
of second sound at constant &, which is therefore
proportional to h(P} in Eq. (5). The proportionality
factor has been chosen for each channel diameter
so that the curves and data points coincide for
ease of comparison. It can be seen that the condi-
tion in Eq. (8) is satisfied. Therefore, regardless
of which cutoff level is used for the analysis
[limited only to the part of the data for which Eq.
(1}is valid], our result that m '(P) ~ u, ,(P) in-
dicates that a given filter-paper channel diameter
will yield a constant & at cutoff, independent of
pressure. As will be seen in Sec. IV, the validity
of Eq. (1) and Eq. (8) is a sufficient condition for
most of our conclusions, in particular those re-
garding the pressure dependence of the various
quantities investigated.

IV. RESULTS AND DISCUSSION

As mill be shown in the following, the onset of
superfluidity in the channels used occurred in the
temperature range of 4&&10 ' K- T„(P)—T -' 4
&&10 ' K or 2~10 '~ c «2&10 '. Hence all the
results to be presented below are valid for at least
this temperature range and for pressures between
saturated vapor pressure and the melting curve of
'He.
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A. Pressure dependence

The measurements and the data analysis de-
scribed in the above sections yield, for each of
the four filter papers used, a set of frequencies
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FIG. 1,2. Reciprocal of the slope m ' (points) of Kq.

(1) and uu2 0 (lines) as a function of pressure. The
points for gpss are labeled by the filter-paper channel
diameter. The 0.4-pm channel-size data have been
suppressed for clarity. O. gg2 0 is proportional to the
velocity of second sound at constant q and is therefore
proportional to p(&) in Kq. (5).. The factor & is adjusted
so that the resulting curve for G.g2 0 falls near the data
for ~ ~ for ease of comparison.
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FIG. 13. Velocity of second sound at an amplitude of
O.l pV (sound cutoff level) as a function of pressure.
Each data set is labeled by the channel diameter of the
filter paper used. The straight lines are an aid for the
eyes.
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TABLE II. Experimental results.

u, 0(~u2 0)

(cm/sec}
108&0(+10'Ee ) 1O'p, Pr

{g//cm~K)

IO'Zp, Pr
(g/cmmK )

0.203
4.063

11.086
22.212
26.234
29.821

mean value

2.171
2.132
2.050
1.894
1,830
1.769

2.171
2.132
2.049
1.893
1.829
1.767

166.8 (1.3}
155.e(l.o}
140.5(1.1)
llV. 3(2.1)
1OS.3(1.1)
1O2.3(1.2)

187.0 (4.4}
183.6 {3,5)
186.8 (4.4}
184.6(e.e)
1S1.5(5.5)
186.5{6.5)

7.80
7.29
6.66
5.70
5.36
5.27

5.26
5.25
5.29
5.23
5.19
5,37

5.25

0.526
0.525
o.529
0.523
0.519
0.537

0.525

0.101
7.448

14.288
19.901
24,238
28.291

mean value

2.172
2.094
2.008
1.929
1.863
1.796

133.6(o.s)
119.4(l.o)
109.5(1.1)
100.0 (1.1)
91.4(1.2)
85.30..o)

103.4(1.9)
103.0 {2.6)
loe.o {3.3)
110.0 (3.6)
106.8 (4.2)
llo.o(3.e)

107.0

5.26
4.78
4.47
4.13
3.80
3.67

3.55
3.61
3.71
3.68
3.58
3.66

O. 709
0.722
0.741
0.736
0.717
0.732

0.726

d =0.4 pm

0.051
0.051
7.448

14.146
19.901
24.238
28.271

mean value

2.172
2.172
2.094
2.010
1.929
1.863
1.796

sv. v(o.4)
sv. 6{1.2)
vs. 1(1.1)
69.1(1.1)
63.1(1.0}
57.0{1.0)
52.1(1.6)

34.2 (O.5)
34,0 (1.4)
33.4 (1.4)
31.9 {1.5)
32.5(1.5)
3O.4{1.6)
2e.5(2.v)

32.3

2.47
2.46
2.24
1.97
1.82
1.64
1.53

1.66
1.66
1.69
1.63
1.62
1.55
1.52

1.62

0,665
0.663
0.677
0.650
O.649
0.618
0.609

0.203
4.063

11.086
22.212
26.234
29.821

mean value

2.171
2.132
2.050
1.894
1.830
1.769

2.171
2.132
2.049
1.893
1.829
1.767

v V.5(O.S)
71.6 (0.4)
64.1{0.4)
53.2{O.4)
49.0(o.5)
44.5(o.s3

24,v(o.s)
23.4 {0.4)
23.1 (O.4}
22.9(0.5)
22.6(o.v)
21.1(1.1)

23.0

1,98
1.82
1.65
1.40
1.31
1.20

1.34
1.31
1.31
1.28
1.27
1.22

1.29

0.802
0.785
0.784
0.770
0.760
0.731

'T& z was calculated from the measured pressures P with the equation given in Ref. 16.
"T& was measured in this experiment.

v, of second sound at various pressures from SVP
to the melting curve at which second sound
vanished. The frequencies v, were multiplied by
twice the length L of the resonators to give the
second-sound velocity ~, , at onset of superGuidity
in the channels. These data are given in column 4
of Table II. The errors given there arise from
the uncertainty in determining the second-sound
amplitude when the signals fall into the cutoff
noise level of 0.1 p V and the uncertainty for the
length of the resonators (n.f./I. =10 'l. The

smallest measured velocities were about 45
cm/sec. In Fig. 13 we show the velocity u, , of
second sound at cutoff as a function of pressure for
the four filter papers. %'ithin the errors, u, , is
a linear function of pressure (as is obvious from
Fig. 12 already). The data of Greywall and Ahlers'
show that Q~ 0 is a linear function of p at constant
e (to about 2/o or better for P& 30 bar and 2X 10 "

& ~ & 2&& 10 ')." Therefore the data for u, , pre-
sented in Table II and Fig. 13 suggest that & at onset
is independent of pressure, as was already ex-
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pected from the argument presented in Sec. III C 3.
This was verified explicitly by calculating &,= 1
—T,(&)/Tq(p) from the measured velocities of
second sound at onset. These values for &, were
determined from the original data for s,(e) of Ref.
4 and our measured u, , They are given in
Table II. The errors for e, given in the table are
calculated according to 4e,/e, =Sou, ,/u, „. the
additional error arising from an uncertainty of
1 p.K for T& in the data of Hef. 4 has not been
included into the errors given for our data for &, .
The results for ~, = 1-T,(&)/T&, (P) are plotted as
a function of pressure in Fig. 14. The somewhat
larger spread in the results from the run with the
0.4-pm paper compared to the other runs may be
attributed to the fact that these were the first data
taken. In the later experiments with the other
three filter papers, the experience gathered during
the first runs and slightly improved equipment
resulted in improved data. ~ There seems to be a
slight trend with pressure toward larger &, in the
data taken with the 0.2- p.m paper and toward
smaller ~, in the data taken with the 0.4- and 0.6-
pm papers. Ne cannot establish a pressure de-
pendence of ~, outside of our errors, and suggest
a possible reason for the trend of the data taken
with the 0.4- and 0.6- p, m papers. As can be seen
in Fig. 9, for example, the sound amplitude at
constant-drive voltage increased by a factor of
2.5 between SVP and the melting curve for the
0.6- p.m paper. An argument for this increase mas
discussed in Sec. GIA. The increase of sound
amplitude with pressure will result in a decrease
of &„ as observed for the 0.4- and for the 0.6- p.m

i

~ e

papers. From the discussion given in Sec. IIIC 2

we conclude that the change for &, resulting from
an increase of sound amplitude by a factor of 2.5

over the full pressure range should be as much as
(7-10)%.

From all the data shown in Fig. 14 we conclude
that for a given channel diameter d the reduced
onset temperature depression &, is independent of
pressure within the errors from saturated vapor
pressure to the melting curve:

&,(&) = const ~ 2%.

This is the main result of our experiments on
which the further conclusions about pressure de-
pendences rely.

Greywall and Ahlers' invoked higher-order
correction terms in & in addition to the leading
term in the power-law expansions for u, and p, //p

to explain their data. If they present their data as
p, /p ~a, then the apparent exponent j varies
between about 0.668 and 0.683. This was also ob-
served by Terui and 1kushima. " The trend for
the data of Hef. 4 is not quite monotonic with pres-
sure. The variation of the apparent exponent f is
smaller than our error for &, and for the quantities
to be discussed below. Ne can therefore not
decide from our data if the inclusion of higher-
order correction terms is necessary to describe
our data. In addition, the small temperature
range 2X10 '- c 2&10 ' for our experiment may
make such a decision difficult even for more
accurate results. The higher-order correction
term for u, is only of the order of a few percent
for the ~ range of our experiment. ' " For the
analysis of our results and for the calculation of
the uncertainties we assume pure power-law rep-
resentation of the quantities near T q.

It is easy to show then that the coefficient d* as
well as the exponent ~' in the relation"

e, =(d/d*) "

l00 .
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(d* is the channel diameter for an onset tempera-
ture T, =O) have to be independent of pressure.
We have 6p and d as independent of pressure.
Comparing the results taken with two filter papers
with channel diameters d, and d„we can write
with Eq. (10)

X' = —log (& o, ,/~, ,)/log (d, /d, ).

FIG. 14. Reduced transition temperature depression
&0=1-To(&)/T&(&) at the vanishing of the second-sound
signal as a function of pressure. Each set of data is
labeled by the channel diameter of the filter paper used.
Horizontal lines are drawn through the average value of
qo for each set. Error bars are shown only when they are
larger than the data point. Note the discontinuous verti-
cal scale.

Here &0, is the reduced temperature shift in a,

channel mith diameter d&. The data in Fig. 14
show that &0,/eo, ,= const independent of pres-
sure. Therefore the exponent ~' has to be inde-
pendent of pressure. Taking the uncertainty of
+ 2% for the pressure independence of g into ac-
count, we find from the above equations that for
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d*(I'}= const s 2$. (12)

The error for d* is obtained by fixing X'(Pl without

any uncertainty, and considering only the uncer-
tainty in Eq. (9).

According to scaling" there sho& '.d be only one
intrinsic length describing the characteristic
properties near the phase transition. This should
be the bulk-correlation length. Ot,her lengths,
such as the length describing surface properties,
or the onset length in finite geometries, should
only differ from this length by factors of order
unity, but are expected to have the same tempera-
ture exponent. '*' ' " The correlation length can
be written as a power law in the distance e =(T„
-T)/T & from the transition temperature,

j =E*c

%e know of no theory possibly applicable to He II
which relates a depression of the transition
temperature to the correlation length, or which
gives the factor between the onset length and the
correlation length, besides the phenomenologieal
Ginzburg-Pitaevskii- Mamaladze theory. " Ne are
aware of the reservations for applying this phe-
nomenologieal theory to He II." To relate our
results for the depression of the transition tem-
perature to the correlation length of superfluid
helium, we use the prediction that the transition
at T, occurs when a characteristic length ( for the
superfluid state becomes comparable to the chan-
nel diameter d, with $(To) = yd. We use the
numerical value given in Ref. 8 for the constant
y. There it is predicted that superfluidity vanishes
in a cylindrical channel of diameter d when

all pressures

&'(I') = const ~ 2'.
The result that the critical exponent ~' is inde-
pendent of pressure is in agreement with the
principle of universality for continuous phase
transitions as, for example, proposed by Kadan-
off. ' This principle predicts that changing an
inert variable, like the pressure for the super-
Quid transition, will not affect the symmetry of
the system and thus leaves the critical exponents
unchanged. The more explicit statement' is that
critical exponents are expected to depend only
upon such general properties as the spatial dimen-
sionality of the system and the degrees of freedom
of the order parameter. In superfluid helium, both
are not influenced by pressure, so that ~' is ex-
pected to be independent of pressure in agreement
with our experimental results. Because &„d, and
A.

' are independent of pressure, we must have also

which implies that v' = I/&'. lI this equation is fulfilled
the channels in our filter paper are "closed" to
the superfluid as well as to the normal fluid. %e
have shown above that &„A', and 4* are, within
their errors, not influenced by applying pressure
to He II. Therefore also v' and (~, and hence the
correlation length ( itself, are independent of
pressure. Lines of constant z are also lines of
constant (. The pressure independence of not only
the exponent v' but the correlation length itself
goes beyond predictions of scaling"" and univer-
sality. '

From the definition of the correlation length (
by Ferrell et al."and by Halperin and Hohenberg"
it follows that

(p, /T =~', &s/4w&' =0.044 g/cm'K, (15)

where all symbols have their usual meaning. %e
have investigated the pressure independence of
this quantity. Since for all our results T„(I') & T
& T„(I') —4 & 10 ' K we can set T = T&(I') in Eq.
(15). We have shown above that; is independent
of pressure. At the onset temperatures for super-
fluidity in the channels, we have &, =yd =const at
all pressures. Therefore the quantity (p,/ T) at
onset has to be independent of pressure if the above
Eq. (15) is valid for all pressures. For this test
we have calculated (p, ,/p) from our measured
I, „using thermodynamic data for CI and the
entropy S, ' ' ' and the relation between p, and u,.
given by linear two-Quid hydrodynamics. " The
resulting values are shown in column 6 of Table II.
The errors for p, , are np, Jp, o=2bu, Ju, , „
+ (4o/c from the uncertainties in Cp and S). Using
these values for (P, Jp} and the data of Kierstead'"'
for T&, (P) and p(P} we have calculated p, JT as
well as dp, ,/T [with T =T „(I')]. These data are
given in the last two columns of Table II. The
values for dp, ,/T are plotted as a function of
pressure in Fig. 15. The figure shows that dp, ~/T

is independent of pressure. The fact that the data
for different filter papers do not coincide is
attributed to the deviation of the channel diameters
from the nominal values given by the manufacturer,
and to the different efficiencies of the four filter
papers as second-sound transducers. This mill be
discussed in more detail in See. IV B.

%e have normalized the mean values for dp, ~'I'
from the four filter papers (using the factors 1.27,
0.92, 1.03, 0.87 for the 0.1-, 0.2-, 0.4-, 0.6- p.m

papers, respectively) to get an over-all mean
value of 10' d p, ,/T = 0.668. The resulting values
are plotted in Fig. 16 with higher resolution than
was possible in Fig. 15. Our data are in agreement
with

(o = E(T,) = 0.207d, (14) ip./T = const ~2~/o
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for all pressures along the ~ line. As stated
earlier for the validity of Eq. (9), the slight trend
of some of the data is within the uncertainty of our
data and does not allow us to establish a pressure
dependence for $p, /T outside of the errors. The
correlation length which satisfies Eq. (15) is the
phase-coherence length according to the derivation
of Eq. (15) in Hefs. 10 and 11. Our result dp, /T
= const demonstrates, therefore, that the phase-
coherence length and the onset length in 'He are
related by a constant multiplicative factor.

Since our data are taken as a function of pressure
at constant d or g, the above result for (p,/T
means that for all pressures and at constant &

along the X line,

p, /T = const ~ 2%.

This result was checked explicitly by calculating
p, /T for different e within the range 2&& 10 '- e
~ 2 x 10 ' as a function of & from the original data
of Greywall and Ahlers. ' Indeed, this calculation
verified that p, /T is independent of pressure to
better than 2% for the above range of e! We do not
know what this close relation between p, (near
T q) and Tq both as a function of P means, and are
not aware of any corresponding prediction.

Recently Ikushima and Terui" have determined
$ at several pressures from their measured val-
ues of p, assuming the validity of Eq. (15) and a
pure power law for p,/p. They find the correlation
length & to be proportional to the interatomic
distance a, and find that $*/a is a constant to with

in about 2%. The interatomic distance decreases

by about 7% along the A line. Therefore, their
result implies that g' decreases by about (7 +2)%
from SVP to the melting curve. Our results for
the correlation length show that $* is a constant to
within 2% along the A line [if we fix the exponent
&'(P) = const]. Any relation between t' and a is
somewhat surprising, because the order parame-
ter does not couple to the total density of the
liquid.

Vfe discussed in Sec. III C 3 that the choice of
the cutoff voltage level for the vanishing of second
sound used in the data analysis has no influence
on the pressure dependence of our result. Its
small influence on the absolute values is explicitly
shown for the quantity dp, ,/T in Figs. 17 and 18.
The lower set of data points in Fig. 18 was dis-
cussed above, and results from an analysis using
a cutoff level for the second-sound amplitude of
0.1 gV. The upper set of data points comes from
exactly the same analysis except using a cutoff
level of 1 p,V. It is clear that the general trend of
the data points, their scatter, and the extent to
which they show no dependence on pressure have not
been altered by this factor-of-10 change in the
cutoff level used. In addition, the absolute value
of dp, JT is only changed by 22% due to this 1000%
change in the cutoff level. This example is in-
dicative of the cutoff voltage dependence for the
absolute value of all the quantities determined
from our data, and will be discussed in more de-
tail in Sec. IV B. Therefore„any foreseeable
reduction of the noise level of the apparatus (and
hence the cutoff level) would produce a very small
change in the absolute values quoted in our results,
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FIG. 15. Scaling quantity dp, /T as a function of pres-
sure for four filter papers: ~, d=0.6 pm d=0.4 pm.

O, d =0.2 pm; g, d =0.1 pxn. (p is the superfluid den-
sity at the onset t:emperature To.) The right-hand scale
gives the same quantity with d replaced by the correla-
tion length using the Ginzburg-Pitaevskii-Namaladze re-
lation ( =0.207 d (Ref. 8). Also shown is the value of the
constant (p,/T predicted in Hefs. 10 and 11, whose ab-
solute value refers to the right-hand scale. Error bars
are shown only when they are larger than the data point.

FIG. 16. Scaling quantity dp 0/T as a function of pres-
sure for four filter papers with channel diameter d =0.6
pm (g; 0.4 pm ); 0.2 pm (0); 0.1 pm (Q). (p~ 0 is the
superfiuid density at the onset temperature To). The
right-hand scale gives the same quantity with d replaced
by the correlation length ( using the Ginzburg-Pitaevskii-
Mamaladze relation ( =0.207 d (Ref. 8). The data shown
are obtained from the data of Fig. 15 or Table II by nor-
malizing them to their over-all mean value for all filter
papers. Some representative error bars are shown.
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and would not affect at all the pressure indepen-
dences we have determined.

8. Absolute values

To obtain absolute values for X', v', d~, and E*,
we have to compare data from dif'ferent filter
papers. We encounter two problems in this analy-
sis: The absolute values for the channel diameters
d have to be known, as well as which part of their
size distribution is determining our results. For
the values and distribution of the channel sizes we
take the information from the manufacturer, "
which is given in Table I. We guess that the very
weak sound signals we see near the cutoff level are
generated preferentially by the channels at the
large-diameter tail of the channel size distribution,
which are left "open'" at temperatures where
smal. ler channels are already plugged" for the
superfluid component of liquid helium. According
to the information from the manufacturer for the
0.2-, 0.4-, and 0.6- p.m paper, the values at the
upper-tail end in the size distribut:ion are these
nominal values and the papers should "contain no
channels larger than these values. "" We there-
fore used the nominal values for the channel
diameters d to deduce the absolute values for the
various quantities to be discussed below.

A more serious problem for the analysis of
data taken with different filter papers is the differ-
ent efficiency of the four papers for the genera-
tion or detection of second sound. In Table I we
show that using the same drive voltage of 0.68 7,
gave second-sound signals between 0.3 and 8 mV

at temperatures clearly below T, . Because of the
varying transducer efficiency it might have been
more meaningful for the determination of absolute
values from different filter papers to take the data
not with a constant drive voltage but with a con-

stant signal at a temperature clearly below T, .
Vfe have discussed in Sec. IIIC 2 how the values
for second-sound velocity or onset temperature
are changed by changing the drive signal (see Fig.
11). A one-to-one relation between a change in
transducer efficiency and a change in drive voltage
may, of course, not be quite correct, but this
comparison should enable us to determine approx-
imately the changes introduced due to different
signal sizes. To take the varying amplitudes into
account, we have normalized our data to the data
taken with the 0.6- pm paper which gave the
weakest signals. For this paper we left the cutoff
level at our noise level of 0.1 pV (see Sec. IIIA).
The cutoff levels for the other three papers were
increased proportional to their signals 4& at
temperatures clearly below T, ; the cutoff level is
0.1 pVX(AqjAO, „~) (&qfrom Table I). An error
introduced by this shift in cutoff level may be the
fact that at the higher amplitudes the second-sound
signal should be determined by another part in the
channel size distribution than it was at the 0.1-pV
level. For that reason we take the full range for
the channel sizes d (+10%) given by the manu-
facturer as the error for d.

As an example for the change in the data intro-
duced by this change in cutoff level, we show in
Fig. 19 the data for the reduced cutoff temperature
&, , determined by this analysis. We emphasize
that the changes in cutoff level which are quite
drastic for the 0.2- and for the 0.1-pm paper, do

not change the general behavior of the data and

especially do not influence their pressure inde-
pendence. With the adjusted cutoff levels we get
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FIG. 17. As in Fig. 15, but with the cutoff level for
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FIG. 18. Same as Fig. 16. The lower set of data is
identical to the data of Fig. 16 and shows the results if
we determine them from the cutoff level for the second
sound at 0.1 pV. The upper set of data would result if
we shift the cutoff level by an order of magnitude to 1.0
pV. The scaling quantity g p,/p is still constant, and
its absolute value is increased by only 22fII).
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as mean values 10 &0& 335 134 7p 34 5 and 23 0
for the 0.1-, 0.2-, 0.4-, and 0.6-p,m papers, re-
spectively, instead of the values given in Table D.

Using these values, we can extend the previously
known data for the onset temperature as a function
of the dimension d in superfluid helium by about
an order of magnitude to higher d and smaller &.

They are in good agreement with the data for
smaller dimensions, as collected in Fig. 30 of
Ref. 1 for example, and therefore support &,
~d-3/2

Taking the above data for &, , and d we have
performed a two-parameter (X', d*) least-squares
fit resulting in

360 .
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(d/dg} 1 ~ 54k 0.05
O, c

with d* = (5.7 ~ 0.6}x 10 cm.

And with Eq. (14) we find for the correlation
length

(=(1 2+0 1)X10 e '"""cm

For this fit the data were weighted by the factors
7, 6, 2, and 5 for the 0.1-, 0.2-, 0.4-, and 0.6-
pm papers, respectively, according to the accu-
racy of the data from the four runs. The quoted
errors result from the uncertainties for the
channel diameters d.

The scaling laws'" l' = v' and 3v' =2-a' (which
pertains to a three-dimensional system), together

FIG. 19. Reduced temperature difference q0, as a
function of pressure. q0 ~ was determined from the ve-
locity of second sound at amplitudes of 0.1, 0.2, 0.77,
and 2.67 pV for the 0.6-pm (g), 0.4-pm , 0.2-pm (Q),
and 0.1-pm (g) filter papers, respectively. The change
in cutoff level does not change the pressure independence
of q«. Horizontal lines are drawn through the average
values of q0 & for each filter paper. Note the discontinu-
ous vertical scale.

with the experimental results for the exponent
describing the singularity in the heat capacity
(n"=-0.01+0.03),6 and for the exponent of p, /p
(g =0.67 +0.01),' yield at all pressures v' =0.67
+0.01. This number is in agreement with our
above results. Our results for ~' are also in

TABLE III. Determinations of the correlation length for the superfluid state. Only in Refs.
d and e, and in this experiment, was the exponent &' treated as a free variable and not as-
sumed to be 3, the data of Ref. 33 is for P = 25.1 atm; all other data besides ours were taken
at SVP.

System Ref.

Bul.k
Bulk
Bul.k
Channels
Pores
Pores

Film
Film
Bulk
Bulk
Boundary

Attenuation first sound
Attenuation first sound
Intensity first sound/second sound
Vanishing of second sound
Fourth sound
Persistent current;
Gravitational flow
Third sound
Heat transport
Theory
Theory
Theory

(1,2 and 2.4) &

0.81& ~3

2 0~0 4~ 2/3

-0~ 65% 0~02

18"'~ '"""
~ «f 5

1.8~ ~'
1.6~ ~'
0.3~ ~'
12 m

'/'

1 63 ~-2/3

a
b
33
This work

12
13
10, 11
e
8

G. Ahlers, J. Low Temp. Phys. 1, 609 (1969).
R.D. Williams and I. Budnick, Phys. Rev. Lett. 25, 276 (1970), but see Ref. 26.

'M. Kriss and I. Rudnick, Z. Low Temp. Phys. 3, 339 (1970).
R. P. Henkel, E. N. Smith, and J. D. Reppy, Phys. Rev. Lett. 23, 1276 (1969); an improved

analysis of the data gave &' = 0.63+ 0.05 fR.P. Henkel, thesis (Cornell University, 1970) (un-
published)] .

J.A. Tyson, in Proceedings of the International Conference on Fllctuations in Superconduc-
tors, Asilomar, Calif. , edited by %'. S. Goree and F. Chilton (Stanford Research Institute,
Menlo Park, Calif. , 1968),p. 343; M.E. Fisher, ibid, p. 357.
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agreement with phenomenological calculations of
&, as shown in Table III. The absolute value we

find for (* is about 3@c smaller than the value
from the GPM theory, ' but almost a factor of 4

larger than the correlation length defined in Ref.
10 and 11. Because of the uncertainties about
numerical factors in these calculations, ""'"'"
we do not consider the apparent disagreement with

the predictions significant.
There are two groups of experiments by which a

characteristic length for the superfluid state has
been measured at SVP for the temperature range
«10 ': (i) acoustic experiments in bulk He II;
and (ii} depletion of p, in restricted geometries.
Their results are summarized in Table III. The
summarized experimental results show values for
,"' ranging from 0.8 to 2.8 A. The experiments
are distinguished by the system (bulk, films,
helium in pores or channels), the substrate for the
experiments in restricted geometries, and last
but not least the experimental method. Consider-
ing these differences, we find the agreement
between the data, demonstrated in Table III, re-
markable. %e believe that the geometry for our
experiment is known at least as well as for any
other experiment performed in restricted geom-
etries. The only experiment performed at a
higher than saturated vapor pressure gave a
value of (~ =2.0 ~0.4 A at P = 25.1 atm, assuming
an exponent of v' = +." Taking into account the
very different method and theory to extract this
value for (* from the data of Ref. 33, we feel, that
it is in agreement with our result that the pres-
sure has no or very little influence on the correla-
tion length.

From the analysis with different cutoff levels we

find 10'dp, ,/T=0. 789, 0.850, 0.676, and 0.772
g/cm'K for the 0.1-, 0.2-, 0.4-, and 0.6-pm
papers, respectively, instead of the values given
in Table II. The scatter of these values is within
the a 10%%uo uncertainty of the channel diameter d.
The mean of these four values is

10'dp, ,/T =0.77+0.04 g/cm'K,

and gives with Eq. (14}

IQ'Fp, JT =0.16~0.01 g/cm'K.

(If we weight the results from the four filter papers
by 7, 6, 2, and 5 as we did for determining X'

and d~, we find 0.79 and 0.16 for the above two

quantities, respectively. ) Both values are only
about 157o larger than the results from the analy-
sis with a constant cutoff level of 0.1 pV (0.67
and 0.14 g/cm'K, respectively), which represent
a lower limit. The somewhat low value from the
data with the 0.4- p, m paper may result from the

lower accuracy of this run. Vfe compare our re-
sults to theoretical predictions and experiments
performed at SVP. The mean value for $p, /T is
smaller than calculated for SVP from phenomeno-
logical GPM theory (0.263}," but larger than pre-
dicted in Ref. 10 and 11 (0.044). As mentioned
above, we do not consider this disagreement to be
significant because of the uncertainties about
numerical factors in these calculations. The
quantity gp, /'T has been determined as a function
of temperature at SVP in two other experiments,
giving the following values:

10'$p, /T=0. 289 for 1.125 & T &2.046 (Ref. 12),

=0.264 for 1.37 & T &2.13 (Ref. 13).

These values are very close to GPM value. '
Both results are from film experiments and
assume p, to vanish at the solid and at the free
boundary. " The above two numbers for fp, /T
have been determined on quite different systems
with very different methods compared to ours.
These facts, an uncertainty about the film thick-
ness (at least for Ref. 12), or about the boundary
condition at the free surface, may be responsible
for the difference between the above numbers and
our result.

V. SUMMARY AND CONCLUSIONS

%e have determined the onset temperature for
superQuidity of 'He by observing the vanishing of
second sound in resonators equipped with super-
leak transducers. The experiments have been
performed between saturated vapor pressure and
the melting curve of 'He. A precise pressure-
regulating system has been developed for these
experiments. The onset temperatures T,(P) in the
investigated channels (d =0.1, 0.2, 0.4, and 0.6
p,m) were in the range 2& 10 '- e, = 1
—T,(P)/T~(P) -.- 2x IQ '. We find that the reduced
shift &, of the onset temperature, the quantities
$p, /T and p,y'T, as well as the exponents and
coefficients for the equations ~, =(d/d*)

'
and

are, within our errors, independent of
pressure ($ is the correla. tion length). The quan-
tity (p, /T is constant over a very wide tempera-
ture range at SVP, "'"and for all pressures along
the ~ line. The appreciable temperature and
pressure dependences of g, p, , and Tq(&) have to
cancel each other. The absence of a pressure de-
pendence of the exponents &' and v' is in agree-
ment with the universality concept for the super-
fluid phase of liquid helium. ' Our results support
Ahlers"'4 suggestion that the observed deviations
from universality and scaling are likely to result
from properties in the normal fluid phase of liquid
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helium. For the absolute values we find

(=(1.2%0.1)xlO~e ""'" 6 =[a/(5. 7%0.6)x 10 '] ' "" (p jT=(0.16%0.01) xlO '.
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