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Condensation of photons in a hot plasma*
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The Compton cooling of a photon gas is studied using the Compton-Fokker-Planck equation.
Numerical solutions of the Fokker-Planck equation are presented which illustrate the possi-
bility of forming a temporary excess of low-energy photons. The conditions under which it
would be possible to observe this excess of low-energy photons are derived. The possibility
of using stimulated Compton scattering to generate coherent x rays is also discussed.

I. INTRODUCTION

One of the most interesting eonsequenees of
Bose statistics is the condensation into the zero
momentum state that is predicted' to occur when
an ideal Bose gas is cooled below a certain tem-
perature. Although this predicted condensation is
a standard topic in statistical-mechanics text-
books, no simple physical illustration of this phe-
nomenon is known. The most obvious example of
an ideal Bose gas is a photon gas. Unfortunately„
photons can be emitted and absorbed by all mate-
rials; whereas the existence of a condensation re-
quires that the number of particles be conserved.
It is possible, however, to conceive of circum-
stances in which the number of photons would be
approximately conserved as thermodynamic equi-
librium is approached. An example of a system
in which it is possible to approach an equilibrium,
where the number of photons is approximately con-
served, is a very hot (multi-keV temperature) hy-
drogen plasma' ' where the energy exchange be-
tween radiation and matter takes place mainly via
Compton scat'tel'lllg which collsel'ves photolls (I'a-
diative Compton scattering is small. at keV tem-
peratures). Thus one will expect that if the radia-
tion and plasma are not in equilibrium, the pho-
tons will approach a distribution of the form

n(}t) = i/(ce" ie —i),
where 6 is the temperature and C» 1 is a constant
determined by the number of photons present.

Detailed investigation shows, ~ ' in fact, that
when the Compton-scattering optical depth of a
hot plasma cloud becomes greater than (III c'/8, )"',
where m is the electron mass and 6, is the elec-
tron temperature„ the high-energy portion of the
x-ray spectrum emitted by the plasma cloud does
indeed correspond to a distribution of the form (1)
(absorption effects become important at iow ener-
gies). In general, Compton scattering will distort
a bremsstrahlung-type spectrum towards a Bose-
type spectrum, Eq. (1). This effect has been ob-

served in the spectrum of the astronomical x-ray
source SCQX-1.' Such an effect should also be
present in x-ray spectra emitted by neutron stars. '

The interaction of a photon gas with matter via
Compton scattering can lead either to an increase
or decrease of the average photon energy depend-
ing on whether the radiation is "hotter" or "coMer"
than the matter. For example, if radiation de-
scribed by a Bose distribution with a temperature
6„ is brought into contact via Compton scattering
with coMer matter at temperature 9, then the
radiation will approach an equilibrium distribution
(1) characterized by a temperature e~ such that
9„&6~&9 . Conversely, if initially the radiation
temperature 9„ is greater than the matter temper-
ature 9 then the equilibrium temperature 9& will
satisfy 9 &6~&9„; i.e. , the radiation will be
cooled.

The possibility of cooling radiation via Compton
scattering leads, however, to a paradox. If the
initial Bose distribution was a Planck distribution
(i.e. , C= 1), then the equilibrium distribution can-
not be of the form given in Eq. (t) because the
number of photons for a Planck distribution with
temperature 6„exceeds the number of photons in
any distribution of the form (1) with temperature
6& & 6„. This apparent contradiction is resolved
by the fact that the excess photons will be scat-
tered downward in energy and in the absence of
absorption will condense into the zero momentum
state. ' Of course, a condensation of photons into
the zero momentum state cannot actually happen
because the low-energy photons will be strongly
absorbed by the inverse bremsstrahlung process.
However, one expects that Compton cooling of a
radiation spectrum can lead to a temporary ex-
cess of low-energy photons. In fact„ it has been
suggested' that an excess of low-energy photons
due to Compton scattering occurs in some astro-
physical contexts. In this paper we shall be pri-
marily concerned with the conditions needed to
produce such an excess of low-energy photons in
the laboratory. Since Bose particles approaching
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a condensation become partially coherent" one
might hope that this process could be used to pro-
duce coherent x rays.

In Sec. II we discuss the Compton cooling of a
radiation spectrum in the absence of photon ab-
sorption. The Bose condensation of Compton-
scattered photons is illustrated by numerically
solving the Compton-Fokker-Planck equation for
the cooling of a Planck spectrum. It is shown t:hat
in the absence of absorption the excess photons
will scatter downward in energy and after a cer-
tain time will start to condense into the zero mo-
mentum state.

The effect of absorption on the formation of a
condensation is discussed in Sec. III. The condi-
tions needed to produce a temporary excess of
low-energy photons are derived.

II. CONDENSATION OF COMPTON-SCATTERED

PROTONS

In this section we are concerned w'ith the time
evolution of radiation spectra due to Compton scat-
tering in an infinite medium. %'e use a distribu-
tion function n(k, t) normalized so that

s(k, t)k'dk = N,kc' 0

where N is the number of photonsjcm'. If the
mean photon energy is not very different from the
electron temperature, then the changes in n(k, t)
due to Compton scattering can be described using
the Compton-Fokker-Planck equation" "

a((; e, [(n(k, ([[ ( ~ (1, t[], ss(k, I) s

sn(k, t)
ek

a„„(k)=n, ork'/mc,

where s, is the electron density and or is the

Thompson cross section. For photon energies
above 10 keV it is necessary to take into account
relativistic corrections. " Given an expression for
o(k, 8) it is possible to follow the time evolution of
a radiation spectrum by numerical integration of
Eq. (3). For example, one may study the forma-
tion of a condensation by obtaining the numerical
solution of Eq. (3) when n(k, 0) is a Planck spec-
trum whose blackbody temperature 8„ is greater
than the initial electron temperature 0,.

Figure 1 shows an example of such a numerical
calculation, using the equation of Ref. 11 and the
finite-difference scheme of Chang and Cooper. "
The initial n(k, 0) was a Planck distribution with
9„=12 keV. The initial matter temperature was
8 =10 keV. The matter density was chosen so
that the matter specific heat is comparable to the
radiation specific heat, thus giving rise to signif-
icant radiation cooling. The calculation shows
clearly that after a certain time photons begin to
pile up in the zero momentum state.

The fact that the condensation into the zero mo-
mentum state begins after a finite time may seem
a little surprising but can be made plausible ana-
lytically. ' For small k we have n»1 so that Eq.
(3) becomes

28n 8 Bn
a(k 6) n'+6-

Bt ek Bk

Let us assume that we also have

ann»e
Bk

If we assume further that the electron tempera-
ture and photon energy are low enough so that the

where 0, is the electron temperature. The coeffi-
cient a(k, 6,) is related to the mean-square ener-
gy change in a Compton collision of photons with

energy A".

a(k, 6,) =
((k' —k)')
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It should be noted that Eq. (3) guarantees two im-
portant properties, namely, conservation of pho-
tons and a Bose-Einstein equilibrium.

To evaluate the quantity a(k, 6) one must per-
form an average involving the Klein-Nishina cross
section and a relativistic Maxwellian electron dis-
tribution. The multiple integrations involved are
sufficiently complicated so that no general analytic
expression is available for a(k, 6). However, for
electron temperatures less than 20 keV and photon
energies less than 10 keV one can use the nonrela-
tivistic approximation' '
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FIG. 1. Numerical calculation of f (k) =—2(hc) k n(k, t)
at time 7=7' 10 " sec (~= 70). The initial photon dis-
tribution (dashed line) corresponds to a 12-keV blackbody
spectrum. The initial electron temperature ~s 10 keV.
The electron density is 5& 102 cm ~. The critical time
(m~0&C) '(mc~/28„) is 2.1& 10 " sec (7.=&1).
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nonrelativistic expression for o(k, 6) is valid,
then Eq. (5) can be written in the simple form

X ' —=—X4n'8FE 8

et ex (7}

sharply at particular energy. To see how this
comes about we differentiate Eq. (8)

where x =0/me' and ~ = (n,c~)t. introducing the
function f=—x'n one sees immediately that the num-
ber of photons & is constant and that the solution
to Eq. (7) is

f(x, T) = F(x+ 2f7), (8)

where the function I' is determined by the initial
conditions. As an example, suppose that the ini-
tial distribution is a Planck distribution:

n(k, 0) = 1/(e'~e" —1) .

This corresponds to

where x, =6„/mc'. Substituting into Eq. (8) and

setting x=0 gives an equation for the time T, to
reach x=Q:

4y72-e&& c& p (10}

III. EFFECT OF INVERSE BREMSSTRAHLUNG

From Eq. (10) one finds that the low-energy pho-
tons (k «6, ) start to pile up at k =0 after a time
r, =mc'/26, . For the example shown in Fig. 1

this time is 21 psec. In the numerical calculation
we find that the buildup of photons in the A,' =0 state
becomes noticeable after about 50 psec.

We see that sf/sx- ~ when T- (2&'), if E' & 0.
Thus the photon spectrum can develop a very steep
gradient if the approximations leading to Eq. ('7)

are satisfied and if the initial photon spectrum is
sufficiently steep.

In order to delineate the conditions where stimu-
lated Compton scattering can produce coherence in
a pulse of photons, we must first compare the time
it takes Compton scattering to change the spectral
shape of the pulse to the bremsstrahlung absorp-
tion time. The characteristic time for changes in
the spectral shape of the pulse due to Compton
scattering is (&,ore) '(1/2F'), where F' is a char-
acteristic value for the slope of the photon spec-
tral-distribution function. As an order-of-magni-
tude estimate we can set F' =6s/mc', wh~re 6s
is the peak luminosity temperature of the pulse,
The characteristic time for absorption of the pulse
is (Kc) ', where x is the inverse bremsstrahlung
opacity. Thus Compton scattering will dominate
over absorption xf

(n, ore}(26s/mc') & Kc.

Using the Kramers approximation for the inverse
bremsstrahlung opacity, inequality (12) may be
written in the form

The Bose condensation into the zero momentum
state that we have just discussed will in fact never
happen because the low-energy photons will be ab-
sorbed. Nevertheless, under certain conditions
Compton cooling of a radiation spectrum can lead
to a temporary excess of low-energy photons.
This is illustrated in Fig. 2, which shows the cool-
ing of a Planck spectrum taking into accountbrems-
strahlung absorption. It can be seen that Compton
scattering creates a "wave" of excess photons that
is eaten away by photon absorption as the wave
moves downward in energy. Eventually, one is
left with a Planck distribution corresponding to
the equilibrium temperature,

If the excess of photons occurs in a region where
n»1 then the excess photon "wave" will be strong-
ly influenced by stimulated Compton scattering
[Eq. (8}]. Under these circumstances it is reason-
able to expect that the excess photons will develop
some degree of coherence. Indeed, as was first
pointed out by Zel'dovich and Levich, ' stimulated
Compton scattering can lead to the formation of a
"shock wave" in the photon spectrum in which the
number of photons per quantum state rises very
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FIG. 2. Numerical calculation of the "excess photon"
distribution, f (k, t) -f (A, O), as a function of time. The
time is given in units of (n, o~) '=2&10 ~0 sec. The
initial electron temperature was 4 keV. The initial ra-
diation temperature was 5 keV. The density is n,
=2.5& 10 cm . As a result of photon absorption and
emission, f (k, t) will approach a Planck distribution
corresponding to the equilibrium temperature 4.99 keV.
The equilibrium distribution is established out to 0 =5
keV in a tinie T=6& 10 8 sec (7=300).
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PS C06
( ~(e) mc (13)

three moments of k' —k be correct, one finds

6~ 0 2 6„
mc' ~g, 8, (15)

This shows that in order to achieve significant
Compton cooling 8s/mc' must be on the order of
0.2 or that 6~ must be on the order of 100 keV.
We have checked the estimate by calculating the
"gain"" (I/n)(dn/dx} in a hot plasma due to stimu-
lated Compton scattering:

(16)

where T(k, k'} is the probability for scattering k
- O'. No general analytic formula for T(k, k') is
known, but in the nonrelativistic regime one may
note from the numerical work of Matteson et al."
that T is nearly exponential in 4' with different
decay parameters for 0'&k and k' &O'. Using this
observation and the requirement that the first

where k and 6, are measured in keV and g is the

plasma density in units of 5&1022 cm '. The rea-
son for considering such high plasma densities is
that the matter specific heat must be comparable
to the radiation specific heat in order to achieve
significant radiation cooling. This means that the

density of hydrogen atoms must be comparable to
the density of photons. The density of photons in

blackbody radiation of temperature 6„ is

N= 2.6~10"6'„cm ',
where 6„ is measured in keV. Thus we see that if
6„ is in the multi-keV range the matter density
must be at least on the order of liquid-hydrogen
density (n, = 5&& 10 '2cm '). In general, we require

(14}

Combining (13}and (14) and assuming 0= 8, leads
to the following condition on 6~:

2 1x exp ———(k' —k)26

[(40 —k)'+ 48m c'J"' aj,
(17)

Using expressions (17) and (16} the stimulated
Compton gain can be evaluated for any given n(k).
We have numerically evaluated the gain for dis-
tributions of the form Ae ' '0' ' superimposed
on a Planck distribution in equilibrium with the
plasma (i.e. , at temperature 8,). The gain will
depend somewhat on the shape and position of the
Qaussian, but we find that the gain calculated
from Eq. (16) will not exceed the inverse brems-
strahlung loss unless the peak brightness tempera-
ture of the Qaussian is large compared to the elec-
tron temperature. For example, for 6, = 5 keV,
g =50, we find the stimulated Compton gain ex-
ceeds the bremsstrahlung loss only if 4™5 keV
and the peak luminosity temperature of the Qauss-
ian exceeds 120 keV.

IV. CONCLUSION

The high densities needed to produce a signifi-
cant excess of low-energy x rays are beyond the
densities that have been produced in the labora-
tory. Further, luminosity temperatures on the
order of 10( keV in the region k~ 1 keV are much
higher than can be produced at present. Neverthe-
less, high-power lasers capable of producing com-
pressions in hydrogen of 104&& liquid density mill
soon be available. " Also, by using exotic nuclear
fuels" it may be possible to produce radiation
temperatures near 100 keV. Therefore, it is not
unthinkable that at some time in the future it will
be possible to observe effects related to the Bose
condensation of photons.

Work performed under the auspices of the United States
Atomic Energy Commission.

fPresent address: Physics Department, California
Institute of Technology, Pasadena, Calif.

~A, Einstein, Sitzungsber. Dtsch. Akad. Wiss. Berl. 3,
(1924).

2A. S, Kompaneets, Zh. Eksp. Teor. Fiz. 31, 876 (1956)
ISov. Phys. —JETP 4, 730 (1957)j.

H. Weymann, Phys. Fluids 8, 2112 (1965).
A. F. Illarionov and R. A. Sunyaev, Sov. Astron. -AJ 16,
45 (1972).

5G. Chapline and J. Stevens, Astrophysical J. 184, 1041
(1973).

~E. D. I.oh and G. P. Garmire, Astrophysical J. 166, 301
(1971).

'Y. B. Zel'dovich and N. I. Shakura, Sov. Astron. —AJ 13,
175 {1969).

Y. B. Zel'dovich and E. V. Levich, Zh. Eksp. Theor.
Fiz. 55, 2423 (1969) jSov. Phys, —JETP 28, 1287
(1969)].

~R. A. Sunyaev, Sov. Astron. -AJ 15, 190 (1971).
'OG. Chapline, Phys. Hev. A 3, 1671 (1971).



~'G. Cooper, Phys. Rev. 0 3, 2312 (1970}.
~2J. S. Chang and G. Ccoper, J. Comput. Phys. 6, 1

(1970).
'~Positive gain does not mean that a beam vrould be am-

plified but only that the photons would tend to pile up
into the same quantum state.

~4L. Matteson, G. C. Pomraning, and H. 1.. Wilson,

Gulf General Atomic Report No. GA-9694 (1969} (un-
published).

'~J. Nuckolls, L. Wood, and J. Emmett, Phys. T'oday

26, 46 (1973).
"V.A. Weaver and X, . Wood, auil. Am. Phys. Soc. SS,

1300 (1973).


