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Persistent correlations in diffusion
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The effect of persistent correlations on self-diffusion in a dilute gas, and on Brownian
motion, is discussed. It is found in both cases that the second-order diffusion constant is
infinite. The distribution function for displacements is calculated, and is found to be more
sharply peaked than the usual Gaussian, although the difference is quite small.

The persistent correlation of velocity first ob-
served in computer experiments by Alder and
Wainwright' has attracted considerable attention
because it contradicts, in a basic wa. y, predictions
of classical kinetic theory. One symptom of this
is the nonexistence in, two dimensions of the co-
efficient of diffusion. ' In three dimensions, Ernst
and Dorfman' have shown that the dependence of
the hydrodynamic frequencies on wave number is
not analytic, implying that higher-order diffusion
constants do not exist.

The purpose of this paper is to consider further
the consequences of persistent correlations for
diffusion. The second-order diffusion, constant
is calculated for the case of self-diffusion in a
gas by use of the ring operator, ' and for the case
of Brownian motion by use of a frequency-depen-
dent friction constant. In both cases the second-
order diffusion constant is infinite, in agreement
with the results of Ernst and Dorfman. To de-
scribe the nature of the infinity, consider the usual
diffusion length l, defined by

l=[(x )]"',
where ~ is the displacement of the particle in the
x direction during time t and the angular brackets
denote an equilibrium average. If the ordinary
diffusion constant D is finite then, as is well
known, / increases with increasing time as t' '.
The second-order diffusion constant D, is related
to a diffusion length !,defined by'

is calculated below, again for the two cases of
self-diffusion in a gas and for Brownian motion.
It is found that the distribution function is more
sharply peaked than a Gaussian, but the difference
in both cases is quite small.

Let n denote the density of diffusing particles.
The diffusion equation with higher-order terms
can be written

—= DV'n+D V'V'n+. . . .2

The diffusion constant D is given by the Einstein
formula

D = lim (x'),.'2t .

The second-order diffusion constant D, is given
by a similar formula, '

where

The moments of displacement can be obtained
from the generating function

c(k, t) =(e"").
For self-diffusion in a gas, the Laplace transform

If D, is finite, then l, should increase with time
as t' ', but it is found instead that the increase is
as t'~', implying that D, is infinite. However, l,
is considerably smaller than /, and so the anoma-
lous behavior of D, might be difficult to observe.

A nonvanishing /, implies a deviation from a
Gaussian distribution of displacements. Conse-
quently, the distribution function for displaeements

has been calculated from the ring operator by
Dufty' to Navier-Stokes order. That calculation
is extended here to (super) Burnett order, or
order k4. The low-density limit of the ring ap-
proximation to G(k, p} is given by

G (k, p) = (1, Rl),
where the scalar product (g, 5) is defined by
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x E.(12}(0, 0
~
t„~0, 0),

K(12)=[p+tk' u, +t(k-k') u, +nJ+nt, } '.
Also, nI is the linearized Boltzmann operator.
The subscripts 1 and 2 indicate that the domain
of the operators is a function of p, or p„respec-
tively. Explicit form for the two-body operators„
t», ma. y be found in the literature. ' To evaluate
expression (9) for small k, p we assume the exis-
tence of solutions to the eigenvalue problem,

(tk v +n J -na)g(k, p, u) = &(k, p)g(k, p, u}, (12)

with

limg(k, p, u) =1,
lim X(k, p) = 0 .

This assumption is based on the fact that 1 is an
eigenfunction with zero eigenvalue for k =0. For
k 40 the operator n is not self-adjoint, so the
equation adjoint to (12) must also be considered.
The generating function G(k, p) may be expressed
in terms of g(k, p, u) and l.(k, p) as

(I,g){g, 1)
G( )P, )-@ )[ (k ))+(»& ~), (13)

where g is the biorthogonal compliment of g agd

and fo(u) is the Maxwell-Boitzmann distribution.
The resolvent operator g is given by

B =(p+tk v+nt -ndl) '.
Here nJ is the Boltzmann-Lorentz collision opera-
tor and n is the ring operator,

dk'n=n, dv, f, v, ) 0, 0 t» 0, 0

A.„andA., is needed. The results found in the
Appendix are

a(p) -ml. ',/T,

l.,(p) —D, (1 -Bp"'),

BD,'-(v + 2/5 D, j
4 pl/I o (D

b (p }- 2A,D„..
Here D, is the coefficient of self-diffusion as
determined from the Boltzmann equation, T is
the Kelvin temperature (in units such that the
Boltzmann constant is equal to 1), v is the kine-
matic viscosity of the gas, p its mass density,
and the constant B is

B = T[6xpDO(v+Do}'!'j '.
The hydrodynamic part of G(k, p) is therefore,
to this order,

G "(k, p) = [(1 -ak'+bk'}(p+l. ,k'+l. ,k')] '. (1"I)

The dependence of g, 5, A,„andA., on. p has been
left implicit.

It is straightforward to obtain (x') and (x') from
the generating function (7} by expanding in powers
of k. Using the form (IV), one obtains first the
I apiace transform of (x') and (x4) as

-2 A.Z(x') =—a —~
p p

4t A.
'

A. +A.
+( 4)

~ ~ 4 2
(b 2)

P

where g denotes the Laplace transform. Inver-
sion of the transform in Eq. (18), with expres-
sion (15), gives for long times

(x') —2D, t —4BD,(t!'x)V

Dot' 3&.2DA(t)DO+»)

(g,g) = 1 —a(p)k'+b(p}k'+ ~ ~

= l.,(p)k'+ l.,(p)k'+ ~ ~ ~ . (14)

Since the long-time behavior of G(k, t) is deter-
mined from the small-p behavior of G(k, p} only
the corresponding asymptotic behavior of g, b,

The first term in Eq. (13) is the "hydrodynamic
part" and gives the dominant contribution to G(k, t}
for long tirr. es. Only the hydrodynamic part will
be considered in the following. The eigenfunction

g and the eigenvalue A. will be calculated by per-
turbation theory. Since G{k, t) is required to order
k', to determine the mean fourth displacement
the perturbation expansion is required to fourth
order. The perturbation expansion is carried out
in the Appendix, with the results

This yields for Q{t)

Q(t) - -(3/5x'~')(D'T/p)(D + v) '~'t'~'

Since Q(t) increases as t'~', it follows immediately
that D, is infinite. There are no contributions
from a{p) ol' b{p) 'to the asylllp'to'tic lllIllt of Q(t),
so that actually only the eigenvalue A. needs to be
calculated to Burnett order. Furthermore, the
evaluation of P, in the Appendix shows that only
the Navier-Stokes-order modes for the gas are
required in determination of the contributions from
the ring operator. Specifically, it is the coupling
of Navier-Stokes-order modes which leads to the
most divergent part of the Burnett self-diffusion
constant.

Parameters for a gas of hard spheres with diam-
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eter d and mass m can be introduced by'

Do = T/mf, v = 6Dw/5 .
Here f is the collision frequency, given by

f= (Spd'/3m)(wT/m)'~'.

The result for Q(t) is

Q(t) = -c(d'/y')(ft)' ',

(21)

(22)

(23}

by replacing t, by $(p), then inverting the Laplace
transform. This is the procedure to be followed
b,elow.

In the usual theory, me have for large times

/x') =2Dt,

(x') = 3(x')'

= 12D't'

where c = (16/15)(5/ll)'~' =0.149 and y = 4wpd'/3m.
As a numerical example, consider ft =10, y=0.1,
then /, =4.Vd, while for comparison I= 39.6d.
Evidently quite large times are necessary for the
divergence of D, to become apparent.

Consider next Brownian motion. The ring opera-
tor has been derived only for a gas of equal parti-
cles, and so we will proceed by the ad hoc intro-
duction of a frequency-dependent friction constant.
The persistent correlations ean be described by
a modified Langevin equation in mhich the dynamic
drag force is used in place of the Stokes force as
follows'.

~v 4'0 - 1/'o—=-t v —p, ——( a(wv) ' -'

dt ' dt o

where D= T/m(, Ta. king the Laplace transform,
we obtain

Z(x') = 2D/p'

= 2T/(m ~y'},
Z(x') =4! (T/m(, )'p '.

Incorporating the persistent correlations as ex-
plained above, we find

Z(x') =2Dp '[1+a(p/v)'~'] ',

Z(x') =4!D'p '[1+a(p/v)"'] -'.

The Laplace transform can now be inverted, and
the result for long times is

x ds (t —s) 'i' —+A(t) .
ds (24)

(x') = 2Dt —4Da(t/wv)v'+. . .

(x~) =12D't'-64D'at' '(wv) ' '+. . .
(34)

Here A(t) is the random force, and the Stokes-
law friction constant $, is given by

g, =6wqg/m, (25)

%e then obtain

q(t) = -16D'at"'(wv} ".

p = 2wpa'/3m; (26)

for Brownian motion of particles in a. gas this
term is negligible and mill henceforth be neglected.

Let x(t} denote the velocity autocorrelation,

X(t) = (vv(t))/(v') . (27)

Then X(t) can be obtained from Eg. (24) by taking
the Laplace transform. One finds'

(26)

where, with the approximation p =0,

In the usual theory based on Langevin's equation,
one has instead

Thus the persistent correlations can be described

where q= pp is the viscosity of the fluid, a is the
radius of the particle, and m its mass. %e will
treat only one component of the particle's motion,
and so U denotes its velocity in the g direction.
The coefficient p, in Eq. (24) describes the effective
ma, ss of the particle, and is given by

G (k, p} = [p + x(k, p)] ',
with

X(k, p) -D,k'[1 ft(p+ uk')V-'f(p, k)],

(37)

Again the second-order diffusion constant D, is
seen to be infinite.

Typical values of the parameters for Brownian
motion of solid particles in air would be

a=5&10 ' cm,

D=2.4x10 ' cm'/'sec,

v = 0.14 cm'/'sec.

Kith these values, and for a time t = 1 sec, one
finds L, =9.1x10 ' cm, while in contrast l=6.9
x10 4 cm.

The distribution function P(x, t} for displacement
is given by the inverse Fourier transform (with
respect to variable k} of the generating function
(7); using expression (9), one must also invert
the Laplace transform. The small-p behavior
of G(k, p) governs the long-time behavior of
G(k, t}. The divergence of D, indicates that x(k, p)
cannot be expanded in k for small p, so to calculate
G(k, p) we evaluate
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as follows from Eqs. (A6), (A14), (A18), and (A25)
of the Appendix. Equation (38) represents the
asymptotic behavior of X(k, p) for both small k and
small p. To invert the Fourier-Laplace transform
of G(k, p) we make the simplification of replacing
f(p, k) by its value at @=0, which is a constant
independent of k. The transforms may then be
inverted to give for long times

discussion and communication of his own calcula-
tions on this problem.

To determine the eigenfunction g(k, p, v} and
eigenvalue X(k, p), Eq. (12) is written as a problem
in perturbation theory:

(ik 'v+C)g =kg, (Al)
P = [4v(at)"']-'

-(x- v) 2 -(x+ r) 2{e +e

X = x/(4/xt)"',

(89)

where C =-nJ -n~ and ik v is taken as the pertur-
bation. . In particular, we are interested in the
eigenfunction and eigenvalue obtained from the
unperturbed eigenfunction 1, with eigenvalue zero:

C1=0.

Y=,i, (1+ ', ,)
~ = [-,'(B'D, )][u(D, —o)]-"',

and O' = Bf (0, k). For B =0 the result (39) reduces
to the Gaussian,

P =(4vD t} »'8 "'~'-&o'

&'(x'/4Dt) + ~ ~ ~ ] . (44}

Corrections to this result would be obtained by
starting with the exact distribution function of the
usual theory rather than its asymptotic form [(41)].
How'ever, an analysis of such corrections shows
that they are negligible except for very small g.

From Eq. (44), it is seen that P is more sharply
peaked than P', . However, the difference is again
quite small.

We are indebted to Professor J. R. Dorfman for

For B40„Pis more sha. rply peaked than Po,
although the difference is quite small. For ex-
ample, with the numerical parameters introduced
above one finds that, for x = (4D,t)' ', P is about
0.3'fo smaller than P„while at g =0, it is larger
by about one part in 10'.

For Brownian motion we begin with the Gaussian
(41), which is the long-time approximation to the
distribution function of the usual theory. Its
Laplace transform is

gP (4D~)- &/oe-I xlto/Dog/o (42)

Replacing t'p by $Qr), we obtain

ZP = (4D~)-"[1+a(P /~)" ]"'
x exp[- i x

~ (p/D )"'[1+a(p/v)"']"'j
To invert the Laplace transform we again. con-

sider the small-p or long-time approximation.
The result is

P=P,t,l+-,'(a~x~/t)(vD) '/'

The corresponding adjoint equation is

(-ik v+0')g=~.

It is readily shown that C~ is the complex con-
jugate of C,

(A4}

where the asterisk denotes complex conjugation.
Furthermore, it follows from (A4) and (AS} that

The perturbation expansion is obtained by writing
ik ~ v =ike ~ v (where e is a unit vector in the direc-
tion of k) and

(A6)

The series (A6) are not expansions of g and X in
k, since C also depends on k. Rather they are
expansions in the k dependence arising only from
the perturbation ik ~ v. A subsequent expansion
of the coefficients in k in Eqs. (A6) will be required
after the perturbation. This procedure is required
since the dependence of C on k ls not analytic about
k =0 for p-0, and a perturbation expansion in
the full k dependence would not converge.

Substitution of (A6) in (Al) and equating coef-
ficients of k gives

X, =X,=0,

X,= (e ~ v, g, },
&4 = (e ' vi go }i

and g„g„andg, are solutions to the equations

Cg =e.v

(A8)

Cg3=X&gi+e vg.
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with

(l,g,.) =0, i =1,2, 3.
The expression for A., may be simplified using
(AS):

with

~,(p) = (T/m) u. (p),
A, (p) = (T/m)[nk(p) +(T/m) n„(u',+2y, )],

A17 }

e(p) = (T/m)u. '(p),

g2 )gl} 1 {A10)

2 '(-ma, (2},(2)
k p)=2—

x, =x,(g,',g, )+(g,', e vg, }.
Also, from (A9), we have

R g}=1-k'(gl,g, ) -ik'[(g' g )+(gl g.}]

+k'[(gi gl} (gs—,g, ) —(g' g3)]+

(All�

}
(g, g}=1 k'(gi-gl}+k'[(g2 g. )- 2(gi gs)]

Use has been made of the fact that g, and g,
have opposite parity.

To estimate (g, g), X„andX„the solutions
to (AS) for g, and g, will be given by the first
term in a Sonine polynomial expansion:

[ki(k} — l(P) —22.(P) l(2)]}.

Direct calculation shows that lim, y, (p} and

lim, u (p) are finite. The most singular part
of X,(p) and h(p) for small p therefore comes from
n, (p}.

The behavior of n, (p) and u, (p) is determined
from (A13),

n(k, p)= —[(e v, nJe v)-(e v, n(ae v)j '

re'D -l
1 —,' e - v, ne ~ v) . Ai8)

g, =ne v,

g, =y[(e ~ v)' —(T/m)].
(A12)

Here D, is the usual Boltzmann self-diffusion
constant. The contribution from the ring operator
is determined as follows:

The "constants" n and y are determined from
(AS) to be

dk' ~ }M'(k', k -k')
(2}f)'~ [p+D(k'}+p, (k k')] '

n = (T/m)[(e ~ v, C e v) ] ',
y = (-2uT'/m2}[[(e v)', C(e v)2]j ',

Then we get

(A13)

with

M„(k',k —k')= J k, k, f,(1)f,(2}k

(A19)

X, =(T!m)u,

X, = (T'/m') n,'+(2T'/m')y, n, ,

(g, g}=1 —k'(T/m}n'+k'2(T/m)'

x( 2 u4 2 n2)

u(k, p) = n, (p) +k'n, (p) + ~ ~ (A15)

where n, and n, are calculated below. Compiling
these results to order k' gives

x(k, p) =x,(p)k'+z, (p)k',

(g, g) =1-e(p)k'+k(p)k',

Use has been made of E(ls. (AS) in obtaining the
last expression. The functions Qp and po are the
k =0 limits of e and y, respectively. The function
o. is required only to order k',

x(0, 0
~ f» ~0, 0) (t ((}„k—k')(t)((2„k').

Here g and p are the hydrodynamic eigenfunctions
of the linearized Boltzmann and Boltzmann-Lor-
entz operators, respectively:

(ik' v, +n/1)(p(v„k') = D(k')(t}(lf„k'),

[i(k —k') ~ v, +nf, ])jf (v„k—k'}.
=p„(k—k'})})„(v„k—k') .

The sum over n in (A19) excludes the two sound
modes since they do not contribute to the long-
time behavior. Denoting the two shear modes by
gi, and g„and the thermal diffusion mode by g„
these eigenfunctions have the general form for
small k', k-k',

)C),(v„k-k'}=e',."(k —k')(m/T)'i'(2, +(k —k'). C (U, k —k'),

)t),(v„k=k') = eI' (k —k')(m T)'i 'l)2, + (k —k'), C, , (l,„-k—k'),

)},(v. , k-k') =(1/T)(&)"(-,'mU' ,'T)+(k-k ),C, , (~„-k--k),
(t)(v„k')=1 +k,' A, (U22 k'),
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where eI'~(k-k') and e',."(k-k') are mutually or-
thogonal unit vectors, orthogonal to k —k'. Sub-
stitution of (A21) into (A20), using the fact that

(v„C ~) =0, a=1, 2, 3

o» 0~ 0 &iz 0, 0 v1,- = T,/Do~

yields

I', (k, R -k ) +W(k, 1 -k )

1 — - -, +k'a, (k', k -k')

M, (k', k —k') = k'a, (k', k —k') .

The functions b,,(k', k -k') and A, (k', k-k') are
analytic functions of k' and ]k-k'] (but not of k
and k') whose explicit form will not be required.
The fact that they are multiplied by a factor of
k' implies their contribution to the integral in
(A19} is less singular for small p than the other
terms in (A22), and hence does not contribute
to the long-time behavior. To see this, note that

c,{k',k-k') =A,'(k', k/k')

= c2(k') +c,(k')(k/k')

+ c,(k/k')'+. . . ,

where the c,.(k'} are analytic in k'. The first equa-
tion of (A22) is then, to order k',

M', (2', 2 —2'I+AP(2 2 —2',')=(—},([(1—*'I+0',(O'I]
0

+ [(1—x')2x+k'c, (k')] k/k' + [(1 —x')(4x' —1}+k'c, (k')](k/k'}'+. . .},
(A23)

where x=k k'/kk'. A change of variables in (A19),
k'- (P)'/'k', shows that the contributions from c,
in (A23} are less singular for small p by a factor
of (p)'/'. The functions a, and A2 are thus not
required for the long-time behavior here. For

similar reasons we can replace

D(k') -D k"
p, (k —k') =p, (k —k') - v(k —k')'.

Then to order k', we need only

(e v, ne v)- —, dk' 1 —
k, ]p+D,k" + v(k -k')'] '.

m ~Do2
k, & Afft

This integral gives the correct behavior for small
k and p, and it is instructive to give it explicitly
before performing the expansion to order k'.

T'B,/, -k, T'B(v +2D,/5)

(A26)
7.
' k

(e 'v FESe'v)
m Do(Do+P)

T'(p + ok2)'/'

6vm 8 2n(Do + v) /' f(p k)

(A25}
3 ok (z+D,k2}c2vf P& 6 (p + k2)l/2 D k2ak, +k

X
(p + ok2)1/2 g + ok2)1/2tan '

where o =- D, v/(D, + v). The nonanalytic dependence
on p and k about p =0, k =0 is the source of the
divergence of D, . To ordex O', Eqs. (A25) give

where B is defined in Eq. (16). Use of (A26) in
(A16)-(A16) give the results used in the text.

The dependence on the cutoff wave vector k has
been neglected in (A26). The origin of k is due
to the approximations involved in obtaining the low-
density ring operator and to consideration of the
contributions from hydrodynamic modes. For
sufficiently large k the hydrodynamic-mode analy-
sis breaks down. This occurs for k' of the order
of the inverse mean free path. If k is taken to be
of the order of the inverse mean free path, then
k -density, and should be neglected in the low-
density limit.
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