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atom —diatomic -molecule collisions
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The impulse approximation of Chew is applied to the calculation of the cross sections for
rotational and vibrational excitation of diatomic molecules by collisions with an atom. The
assumptions underlying the impulse approximation are discussed and found to be justified
for these processes. A closure approximation is used to perform the sums over rotational
quantum numbers in the expression for the vibrational-excitation cross section and the re-
sulting expression depends on two factors; an oscillator form factor and the scattering am-
plitudes for atom-atom scattering. Vibrational-transition probabilities, evaluated for oxy-
gen-carbon monoxide collisions assurrling that the oscillator is harmonic and using a rough
estimate for the typical atom-atom scattering amplitudes, are in qualitative agreement with
experiment. Further refinements and extensions of the model are discussed.

I. INTRODUCTION

The study of vibrational and rotational energy
transfer in gases has occupied chemists and phys-
icists since the 1930's. The various approaches
to the calculation of transition probabilities have
been reviewed by a number of authors. ' ' Recently,
the impulse approximation of Chewe has been
brought to bear on one-dimensional atom-diatomic-
molecule collisions by Clinton, Cosgrove, and
Henderson' and by Eckelt and Korsch. ' In this pa-
per we apply the impulse approximation to three-
dimens ional atom-diatomic-molecule collisions.

The assumptions underlying the impulse approx-
imation are (1) the incident particle interacts with
only one particle of the composite system at a
time, (2) the amplitude of the incident wave falling
upon constituents of the system is nearly the same
as if that constituent were alone, and (3) binding
forces between the constituents are negligible
while the incident particle interacts strongly with
the system. " Quantitative criteria for assump-
tions 1 and 2 have proven elusive "; assumption
1, however, seems justified when the range of the
atom-diatomic-molecule interaction 8 is much
less than the interatomic spacing of the diatomic
molecule T, ,

and assumption 2 mill be satisfied when

o«4wr', (kr, )',
where o is the cross section and 4 is the wave
number of the incident atom. '

When the relative kinetic energy EI, is well above
the rotationaI. threshoId, the atom-diatomic-mole-
cule interaction is predominately a short-range in-
teraction and Eq. (1) will be satisfied. For example,

Herzfeld has shown that an exponential repulsive
potential of the form e "~~ with I.= r, /17. 5 matches
the Lennard- Jones 6-12potential mell for these en-
ergies where &o is the Lennard- Jones length param-
eter. " If we identify I with the range of the atom-
diatomic-molecule interaction, E|l. (1) will be
satisfied since ro and 7, are of the same order of
magnitude.

The cross section is of the same order of magni-
tude as 4nT,', and Eg. (2) becomes

&~/A'&" (~, /i, )&.' &.

where B,=&/(Bw'cg, T,') is the rotational term con-
stant" and p, , and p.„arethe reduced masses for
vibrational motion and relative motion. Assump-
tion 2 will also be satisfied when the kinetic ener-
gy is well above the rotational threshold.

Assumption 3 is valid when the duration of the
collision 7, is small compared to the period of
oscillation of the bound system. ' This is just the
condition for the interaction to proceed so rapidly
that the wave function cannot adjust itself adiabat-
ically and implies that the transition probabilities
will be appreciable. '4 Typical rotational and vibra-
tional periods are 10 "and 10 "sec. If we let
the collision duration be r, =I./V and L 10 ' cm,
this assumption will be valid provided the relative
velocity remains above 0.1 km/sec for vibrational
excitation and 10 cm/sec for rotational excitation.
A11 velocities of interest in molecular excitation
are well above these limits except for the final
relative velocities when the energy is just above a
thr eshold.

We shall consider only vibrational excitation
here so that assumptions 1 and 2 will be well sat-
isfied and assumption 3 will be satisfied except
near energy thresholds. The impulse approxima-
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tion allows us to separate the vibrational part of
the calculation from the scattering part. In Sec.
II we derive the form that the impulse approxima-
tion takes for atom-diatomic-molecule scattering.
The contribution of the molecular vibrations to the
calculation is contained in a form factor that is
discussed and calculated for a harmonic potential
in Sec. III. In Sec. IV we discuss the scattering
part of the calculation and present a sample cal-
culation of the cross sections for the vibrational
excitation of carbon monoxide by collision with
atomic oxygen when both are in their electronic
ground states. Since the ground state of atomic
oxygen is a triplet state, the interaction will pro-
ceed along the potential curves for triplet CQ,
which are all repulsive. " We shall not consider
possible contributions to this process from the
crossing of the singlet and triplet CQ, potential
curves.

Before proceeding, we should mention that the
"sudden" approximation is also claimed to be
valid when assumption 3 is justified. ""In this
approximation, the vibrational part of the calcula-
tion separates from the co1.1ision part, as in the
impulse approximation, and the vibrationa1, con-
tribution to the interaction ls contained ln a form
factor identical to ours. (In Treanor's one-dimen-
sional theory as well, the same form factor ap-
pears. "c) The essential differences between our
approach and the sudden approximation are two-
fold. The first is that the scattering part is
typically treated in a semiclassical manner in the
sudden approximation, whereas our approach is
in principle entirely quantum mechanical. In this
paper we have used a rough estimate for the scat-
tering amplitude, which is certainly no better than
the semiclassical approach of the sudden approx-
imation. Vfe shal. l see, however, that our result
does not depend strongly on this assumption, and

an extension to a more realistic model is straight-
forward.

The other difference between these approxima-
tions is that the sudden approximation treats the
scattering part of the interaction by letting the
atom-diatomic-molecule potential be represented
by a spherically averaged interaction and treating
the residual interaction as a perturbation. In the
impulse approximation, the atom-diatomic-mol-
ecule interaction is treated as the sum of two-
body potentials between the incident atom and the
constituents of the diatomic molecule and is
handled exactly (subject to assumptions 1-3). It
is this second difference that we feel makes the
impulse approximation preferable to the sudden
approximation.

Our results are summarized and discussed in

Sec. V.

II. IMPULSE APPROXIMATION

We shall consider the scattering to be described
by a Hamiltonian of the farm

+ V,(ir. -r& I)+ I's(lrc —r. I) .

Although quantum-mechanical calculations of the
potential for H, + H, H, +H„and H, + He show that the
interaction is not, in general, a sum of two-body
potentia1. s, ' our knowledge of the true potential
for heavier systems is so limited that this seems
to be a reasonable choice for the present.

We may separate out the center-of-mass motion
with the transformation to the center-of-mass
system,

MQ =m, r, +re& r&+rn r, ,

r I c (inc rc +inc rc )/(inc +i1lc ) ~

(&)

(5)

where M = (m, + m„+m,). The moments conjugate
to these coordinates are

K = k, +kc + k, , Mk„=(m c + m, )k, —m, (kc + k, ),

(inc+in, )k„=m,kc —mck, ,

and the Hamiltonian is

+v(I +P I)+I'.(I +tI. I), (7)

may be factored

4(R, r, T) =e'x' Ry(r, T),
where y(r, T) is a solution of

I&.(r, T)+ vc(l r+P&&l )+ V.(lr+P, &l)lt(r, &)

=&'~(r, T)

and where

E'=F. —II2EC'/2M .
The solutions of Eq. (11) appropriate to the scat-
tering of a plane wave in the ~ direction of atom a

A2 62
&o(r T)= v v +I (lrl)

2$,„2p~

and where g„=m,(m, +m, )!itf, ii, , =m, m, /(m, +m, ),
P, = —m, /(m, + m, ), and P, =m, /(m, + m, ).

The A dependence of Schrodinger's equation

H4'(R, r, r) = E4'(R, r, T)
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by a bound state of molecule bc at rest with quan-
tum numbers no, l~, and mo satisfy the integral
equation 0' '

e(r, T) =&'~'9).,i„,(&)+ g 0. , (, (r, T),
n, 1, m

(13)

(, ')= —
d «'. jd ' jd '

elk~ ]r'-I' I

() i-, -i v. . ..( )

&()«(lr'+0 T'I )+ I", (I r'+0, r'i)] 0(r', r'),

(14}

where the functions y„, (7) are the solutions of
the equation

( &! ~ k (l «()) d, .P) = ~.. d. . ,('),

&, ~, and m are the final quantum numbers of the
bound states, and

nature of V, and V, .
In the impulse approximation of Chew, the scat-

tering amplitude is separated;

f,„(K,', k„)=f,(k „',k „)+f,(k'„k,),
where

f (k'„i,)= — "„",jd ' jdv'k '" '' d„,„(r')

"V;(I r + P(T I )& i(&', r') (20)

and the wave function p, (r, 7) is approximated by
the exact expression for the scattering of atom a
with momentum k, by atom i with momentum k,
in the center-of-mass system, ignoring the pre-
sence of the other atom of the molecule except to
average k, and k, over their momentum distribu-
tion in the initial state~; that is, for the case
when the molecule is initially at rest,

d.( .,„.)=(«)-"*jdijdk. ,
x ei(1&«' k« -rd ' R) G (k k )4, {r r )

(21)

k„"= 2id.„(E' k„,)/g2-. (16} where

The sum on n, l, and m in Eq. (13) represents a
sum over all discrete quantum numbers and an
integral over all continuous quantum numbers.

We note that there is a contribution to the in-
tegral in Eq. (14) only from regions of r', v' space
where the potential is appreciable. When i ri is
outside this domain, we have

eik„'~
(r, T) - i()„, P)f„, (k„',k, )

as r-~
where

f„,„(k„',k, )=—;jdP jd« ' ' d„, (7)

(i '+P 'I)+&(i '+p, T', )]({)( ', ')

d,(i„i.) =(«k)-' jdk, jd.

where

dk~ go k~ 6 kT —k~ 5 k~+k,

xe ~ () «+"c ' 'c)y (r r ) (22)

and where 4«((', J (r, , r,} is the exact wave function
for the scattering of atom a with momentum k, by
atom c with momentum k, . The factor e ~' in

Eq. (21) removes the center-of-mass motion from
the wave function. The expression for G,(k„,k, )
may be simplified;

d (k .- ) = '(k .k ) ('" ' -'" ')
ma+me

and where k„' is a vector in the r direction with
magnitude &,'. The differential cross section for
excitation of the leve1. +, l, m is given by'0' "

g,(k,) =(2)i) '~' (fr e '~''&p (i)

The expression for 4) ( (r„r,) is also simpli-
fied in the a-c center-of-mass system

o(~, y) = (~.'/&. ) if. ..(k,', k, ) I ', (16)

where k~= ik„'+rn,k, /Mi .
The expression for the scattering amplitude in

Eq. (17) is exact, but can be calculated only if the
true wave function (})(r', r') is known. In the Born
approximation one assumes that the scattering is
weak, and one lets P(r', v') =e' k' V)„,», (8) in

Eq. (17). This procedure will not work in the case
considered here because of the strongly repulsive

fPl ~ Nc
Roc re+ rcm, +m, m, +an,

p =ra —rc &

with the conjugate momenta

k„=k,+k,

(26)

(27)
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(md+md)k{) = md kg —mck, (28} m (r r ) -e({(CC ' RCC Q(C)(p )
kp

When Eqs. (23) and (29) are substituted into Eq. (21) we have

d( ., r, , r )=(xr) 'r* f dk, g(k, )xrd(p)rxx{({k, , -k. )r+(k. -k, ) (m. r.+m. r )/( .rm))),
tp

(30)

where

k ~
= (mk, +,mk, )/, (m+,&n, ) . (31)

d.t, r) =(x ) "fdk, g.(k, )x-"(d )
kp

and

rc =R —m, r/M m+, r/( m+cm),

r, =R —m, r/M -m„7/(m, +m, ),
to express g, in terms of p and T;

%e now may use the inverse of the transforma-
tion in Eqs. (4)-(6),

r, =it+(m, +m, )r/M,

&&exp(i(k, —m,k,/kI) [T-m, p/(m, +m, )jj,
(32)

since r=p m, T—/(m, +m, ). When k, +k, =0, we
have

k, =Mk„/(mc+m, ),
and so the expression (20) for the partial scatter-
ing amplitude becomes

/. (k„k.)--d g* (k''l f dk. g (k. )f drrxk((' {k,~ { /('" rm ))t()) C:. ..(g)

dp " '" "'V.(I pl)X-"(p),
k

(34)

where

Equation (34) and the similar expression for fc(k'„k,),

/(k„',k, )= — g', (xrl ' ' dk, g()r, )f drrxg(ir {k,—{m/(, +m, )]r())rr"„,, ( )

dp' e-'&' '(:~}'"V p' X'"
kp

(36)

(m, + m)kc' =cmck, -m, k

constitute the impulse approximation to the di-
atomic -molecule scattering amplitude.

All the quantities in Eqs. (34) and (36) tnay be
calculated directly. Chew' has pointed out that
since these equations (i) reduce to the Born ap-
proximation when g-„(p)is approximated by
e' c c and (ii) give the exact expression for scat-
tering when the binding potential Vg)() 7'

( } is ne-
glected, they may be viewed as an interpolation
between these limits.

The function g,(k, ) becomes vanishingly small
for k, &I- ', where L is the size of the target.
Whenever ~k, j»mQ '/m, (and &,»m, 8 '/mc),
we may neglect the dependence of kc (and k~}
upon k, and factor Eqs. (34) and (36);

f.(k„,k, ) =(p,/p. ,)f,((p.,/p, )k„+q,({ ../{ „)&,}

b „(-m,q/(m, +m, )}

fc(kg r kg) = (P g/u cgr)fa((u c()/P g)kg +qr (Pc()/P g)kr }

~6.„...„„.(m. q/(m, +m,)},

where we have introduced the reduced masses

p„=-m,m, /(m, +m, )

p~ =-m, mc/(m, +mc),

the bound-state form factor
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and the free scattering amplitudes

and where U„t(F)satisfies the differential equation

2e„t l (f + 1)
t(5)+ ff (~ g )

t U t(5) =0

for —8,& (& ~ with the boundary conditions

A(K, &)=--(t~.;/«+') f &t~ ' ' ')'(n)x'-"'tn

(42)

U„,(- (,) =0 (52)

(53)

tn; mn, , ,tnnm(0)=0„„0(t 0m (43)

Also, since the bound-state wave functions are
complete, we may identify 3'„t, ,„.t. , ~(tt) as the
coefficient of y„t (T) in an expansion of e ' '

„ f&);

A number of interesting properties of the bound-

state form factor follow immediately from its
definition (41). Since the bound-state wave func-
tions are orthonormal, we have

—~(&+1)/(4+ &.)'=- &(&+1)ig

and let the boundary condition (52) become

lim Unt(() =0 .

(54)

(55)

The radial wave function U„t($) is then given by

U„,(g) =A„a„(~)e-"('"', (56)

The quantity 2(', may be recognized as the ratio
of the vibrational level spacing to the rotational
constant and is large for most diatomic molecules
[for CQ, 5, =( «,t/2&, )' =23.7].t3 We now make

the approximation

,(T) = Q &. t;., t,,, , ,(tt)v'. ,t(T), ,

n, l, m

0 0no, n1 lo, l 1 mo, m 1

n, l, m

'ntmn t m' ~ ntm', t, mt() (44)~~ ~~

where the sum on n, I, and ln represents a sum

over all discrete quantum numbers and an inte-
gral over all continuous quantum numbers. If we

multiply this by the similar expression for e'"'
(7') and integrate over T, we have

where + is an integer,

2e„t l (l + 1)

1'f„((}is a Hermite polynomial, 22 and the normal-
ization constant N„ is given by

N„=[«),it, , /0'tt2'"(n!)' l
' i' (56)

The approximations (54) and (55) are conven-
tional in the treatment of diatomic-molecul. e
spectra. Approximation (54) is equivalent to ne-
glecting coupling between rotation and vibration.
The solutions of

and, in particular,

(45)

d2

,—,D„(&2g)+(2n+1-t )D„(&2t)=0 (59}

n, l, m

(46)

The solutions of Eq. (15) are of the form

w.„,(T)= T 'U. t(&)yt.(s„w,),
where

g =- (T —T,)/42d,

d =- (R/2ur0it, )t ~',

(47)

(48)

(49)

g, =- T, /v 2d,

Let us now approximate the binding potential
with a harmonic-oscillator potential

1',(lri) =ai, ~0(T —T.)' .

which are bounded as (-+~ are all pa"abolic
cylinder functions. " The approximation (55) re-
stricts n to be zero or a positive integer, in
which case D„(v2$) reduces to the product of an

exponential and a Hermite polynomial as in Eq.
(56). When the lower boundary condition is given

by Eq. (52) and (, is large, it can be shown that
& must be slightly greater than an integer; how-

ever, the error in the energy eigenvalue associated
with the approximation (55) is less than the error
associated with the neglect of anharmonic terms
in the potential.

When the bound wave functions are given by
Eqs. (47) and (56), the form factor g„t, ,„,t ~(t&)
i,s
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(T() = Q [4s(21+1)(21,+l)(2L+1)]'/' & (-1) ' ~ 0
' &* (8„,(/)„)

l l, L, l l, I.
L, N 0

d)H„)H„4,e 'N „2~j 2~~ (+(, ), (60)

where we have expanded e' ' in spherical har-
monics and made use of the properties of spherical.
harmonics and 3-j symbols such as (' 0 „)]."
In the expression for the inelastic cross section
we require the square of the magnitude of the form
factor to be averaged over the initial magnetic
quantum numbers and summed over the final mag-
netic quantum numbers;

(2! 1 ) ~ ( (( ( Is ((0 (0 mo'(
0 nc, mo

= g (2L+1)(2l +1) '
j
(s2"'"()s!n!)-'/'l l L, ~

0 0 0

x d4H„(H„ke ~ j~~2 ad $+g, } ',
(61)

where we have again used angular momentum iden-
tities.

The expression in Eq. (61) is suitable for calcu-
lations of rotational- and vibrational-excitation

cross sections. If we are interested only in the
excitation of vibrational levels, we may sum this
expression over the final orbital angular momen-
tum l. An additional complication here is that
e„„andhencek„',f,(k~, k~}, and f(,(k, k~), all

depend upon l. Fortunately, the dependence of
~nl upon l ls weaks

e„,= (n+ ~)k(a( + l (I + l)k~o/28~ = (n+ ~)g(() (62)

and may be neglected to a good approximation
since the integral in Eq. (61) vanishes for large
L With .the approximation (60), we may use the
closure property of the 3-j symbols

Q (21+1) ' =1l l

and the relation"

to obtain

(63)~(i)(l'= ( 2"'"+(a,() ' —
J ck f d(e"' '"'"""'«„((((((()e ~'„

The integral on 5 in Eq. (61) may be performed

d~ e(2 ((d((()+Ez) &-4 If (~}ff (() e42 ((d((Ke &-K d (( /22(ng +(() ) /2~& s !( f&«)n&-n( I (n& -n()()(ad 2+2)
0 Ng

where n, and &, are the lesser and greater of &, and n and where L„' '(x) is an associated I.aguerre poly-
nomial. " Equation (58'} then becomes

1 2 ] K 842142
~(~)l =- «(n, !/n, l)e " ' " ()('(I'u')"~ " [L'"& "&'()('(f'u')]'

),a, w(0

The interference term in the expression for the inelastic-scattering differential cross section may be
reduced in a similar manner:

(65}

where we have defined y =-
gaud and noted that the integral will vanish because of the rapidly oscillating

cosine term.
If the molecule is initially in the lowest vibrational state, the integral in Eq. (64) is
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(66)

(67}

kd g2 ppgii) I
i =(iilKd)

~ s lotted in I"igexpression ls pl te I function.s z) is the us ual incomp

~ CROSS SE~IO&OF THE INELASTIC- SCAOUI.AT&ON O" TH

l. f a diato
the lowest vibratioolarized and in the ow

0'd')/2&tld
I P. Iii, /ii, ) k, ) I

'~(n+ -.. .Waeo.(6, V) =(~.'/?. )(I ii )f.((ii /ii, )k, +q, ((,
k. )i'1'("+ a, Pi,+ I (pe/paw i pan r)f (( /ii, )k, +&4(p,i/'0, , (66)

whe y(

mlc mmolecule initiallysection for exci io rational lev
unp

(69)

th

= 8)%~0 )k'(k2 —?i,")/2p, „=e„,—
t a in the &~ restntum of atom a iand the final momentu

system is

k ~ = k „'+ m, k „/(mi+m, ) .

ol.ecule bce shall neglect e re sh th recoil of the moWe sh
k~/0, becomeshere so the ratio

('?0)

1.0

0.8

0.4

end on the initial. angun lar momen-
turn quantum num ber & (or on e ' ' ' t

f atom a in theinitial momentum ovalues). The im i
bc is at rest is k, .

0
system in whic

ntum k„is given byThe initia r' ' ' l elative momentum

k„=(m,+m, )k,/M,

mentum satisfiese final relative momen

t calculateceed further, we must cop o
the free scatt g

is the Fourier ran
1th tp o o potential V; an e
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etion for scattering
's k . When Ik, i

' e momentum isinitial relativ
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I k I, this ts simp yl the sca
-i scattering and may efor elastic a-z sca

Here, we requiree eriments.
2am litudes or vg p

k j' as well. These onot equal to
appear in the inte-shel. l" T-matrix elements also ap

heory~o where theyral equations of scattering theory
ave function within
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the scattering waveare related to e

g o " po
o g ave function X k p

free scattering p
'am litudes may e c

t' 1 V (p) are spec-o-body potentia sactly once the two-
ake this ca cu1 lation here butified, we shall not m

c ' the free amplitude bycharacterize e

0.2—
jK

+ 0.08

~ 0.06

0.04-

0.02
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0
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the oscillator length paproduct of e

Dtum traDsfex k.magDl 'tude of the momentum

Ifi(k„k,) I'= Ifi(~., &, I

—I k&-i&I 2r2/4.
)&=- (1 + Ii ',r ',. e

(72)

he sum of a constant term and aThis function is the sum o
ward direction k, =peak in the forwar ' k
in cross section inelastic -scatter ing

mation ls

-A rJ dy i 6d8 if;(k„k,) i i,=,„=;1—
0 0

(7
] A
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& and
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2 = k + k —2k, k cos6)q =ik, -k, =,+,—, os8

and hence
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~&~2 .
0 0 Ai -42

(V4)

The approximation f, is an attempt to characterize
the scattering amplitude for a wide class of poten-
tials for kp;» 1, where &, is the range of the po-
tential V, (p). In the Born approximation, for ex-
ample, f, is given by

only fog y «1. We see from Fig. 1 that

y(n +-'„)(')/2n!X =5„„for !(« I,
hence the diffraction peak mill contribute only
when n =0, and E(I. (78a} becomes

(81)

f (k, +(I, k,}...= —(2P. /g'. ) P'dP V(P) sin(fP/VP

(V5}

and is clearly peaked about q=0 with a width of
the order of &)

When kp', is large, the exact amplitude for scat-
tering by an infinitely repulsive sphere also ex-
hibits a diffraction peak of width &,

25 for values of
q both on and off the energy shell and satisfies
the relationship between the total elastic-scatter-
ing cross section ~, and the forward-scattering
amplitude

!f(k„k,) i

o = (1 + kp', )o,/8|( .

The inelastic-scattering differential cross sec-
tion E(I. (68) is the sum of two similar terms

(76)

where

o('~(8, (p) = 5( k„' /k, y}( n+~, P', q'd')

(g /p )2 + ko y 2e oo1'(/4

16sn!qd[ P, [

pu
~.(«) =

J dX~(n+o, X')=«~(n+o, «') -~(n+I, «').

The factor (P.„/P,„)'in E(I. (81) arises from the
attempt to relate f, to the free particle scattering
amplitudes j( in E(ls. (38) and (39) and always ap-
pears in the final expression for the cross section
in the impulse approximation. " This factor does
not appear multiplying the Kronecker 5 because me
have taken the height of the diffraction peak to be
proportional to (p„/p.„)'k'„.

Let us nom consider the vibrational excitation of
a stationary CO molecule by collision with a beam
of oxygen atoms with velocity V,. The ratio (p„/
p.„)is given by

p, ,/p, „=(m, +m, )(m, +m, )/m, (m, +m, +m, ),

hence p„/((„=p„/p,, = 1.4849, p,/goo= 1.2727,
[ P, (

=0.428 57, and ( P, )
= 0.571 43. Since m, V,

= AA;„we have

and where we have used E(ls. (71) and (V2). Vfe
may use E(I. (74) to integrate E(I. (7'7);

2g
o(„"= d(p sin8d8a„"~(8, (p)

k(+ / +1 2) 2 2X

(k,d) ='
hen,

where we have used E(ls. (33) and (49).
Vfhen me insert Scu, =0.26898 eV" we find

A.„d=1.SV43Z'~2 = 0 539 32y

(84}

for (k„d)'& np, /p,
= 0 otherwise,

q, = (~, /2 !l;d)'

«„'=~P, ~(k„~k„)d
=

~ P( ~ (k„d+[(k„d)' np„/p, ]'~') . -, ,

(78a)

(78b}

(80)

where E, =-,'m, v-'is the kinetic energy of the oxy-
gen atom in electron volts and V, is the velocity
in km/sec. The only remaining (Iuantities re-
quired to calculate the inelastic-scattering cross
section are o, and g, .

The transition probability per collision is

P (&(o)+&(o))/(&(o) + o(o))

where

Since the range of the potential r, is of the same
order of magnitude as the equilibrium oscillator
spacing v, and $2, = 7,2/24' is very large, q, will be
very large and will contribute to the integral (78a)

is the contribution to the total cross section from
a particular atom of the diatomic molecule. The
transition probability mill be between the limits
Po „andP; „depending on the value of the ratio
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'FABLE I. Partial cross sections and excitation probabilities for oxygen-oxygen anc1 oxygen-
carbon collisions.

0
1

2

3

T

(o) g"
On ~o

1.282 226
l. .282 226

.1.2i1 575
'. .211 575

1.123 927
0.075 392
1.199319

1.040 277
0.125 045
0.028 720
0.001 523
1,195 566

0.969512
0.142 856
0.058 368
0.019671
0,003 693
1.194 100

Q. 912 272
0.144 015
O. 074 241
Q.038 512
0.017 362
0.005 796
0.001 067
0.000 019
1,193286

0.866 265
0.138 525
0.079 858
0.049 565
0.030 179
0.016 838
0.007 968
0.002 871
0.000 654
0.000 057
1.192 780

(o)

1.000 000

1.000 000

0.937 138
0.062 862

0.870 113
0.104 591
0.024 022
0.001 274

0.811 919
0.119635
0.048 880
0,016473
0.003 093

0.764 504
0.320688
0.062 215
0.032 274
0.014 550
0.004 857
0.000 894
Q. OQQ 016

Q. 726 257
0.116137
0.066 951
0.041 554
0.025 301
0.014 117
0.006 680
0.002 407
0.000 549
0.000 048

g(c) gg

1.537 623
1.537 623

1.389 568
l .389 568

1.235458
0.132 586
I .368 044

1.111232
0.180 834
0.06" 576
0.006&i 7

1.361 319

1.03 7 983
0.183 843
O.Q94 415
0.046 064
0.015466
1.357 770

0.947 774
0.173 854
0.102 318
0.064 560
0.039382
0.020 769
0,007452
0.000390
3. .356 498

0.893 677
0.161 165
0.101 251
0.070216
0.049 989
0,035 101
0.023 289
0.013 603
0.006 042
0.001 328
1.355 661

1.00f'& 000

1.000 000

0.903 083
0.096 917

0.816 291
0.132 837
{).045 967
0.004 905

0.749 746
C'. 135400
" ~)'l9537
0 0"3 '-)'~6

0.01]. . '.)1

0„698691
0.128 164
0.075 428
0.047 593
0.029 032
O. 015:310
0.005494
0 000'&7

0.659'19
0.118883
0.074 687
0.051 795
O. 036 874
0.025 893
0„017179
0.010 034
0.004 457
0.000 980

0
1

4
5
6
7
8

10
11
12
T

0.828 941
0.130 911
0.080 286
0.054 337
0.037 679
0,025 733
0,016 708
0.009 900
0.005 083
0.002 108
0.000 636
0.000 115
0.000 007
1.l. 92 445

0.695 161
0,109 784
0.067 329
0.045 567
0.031 598
0.021 580
0.014 012
0.008 302
0.004 262
0.001 768
0.000 534
0.000 096
0.000 006

0.850 944
0.148 767
0.097 081
0.070 583
0.053 546
0.041 227
0.031 633
0.023 757
0.017 037
0,011194
0.006 240
0.002 509
0.000 444
1.354 961

0.628 021
0.109 794
0.071 648
0.052 092
0.039518
0.030 427
0.023 346
0.017 533
O. O12 574
0.008 262
0.004 605
Q. OO1 851
O. QOO 327

0.602 762
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TABLE I, (Continued)

V {km/sec) (C)

10

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
T

0
1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
T

0.122 963
0.078 383
0.055 670
0.041 180
0.030 809
0.022 853
0.016490
0.011322
0.007 194
0.004 085
0.001 983
0.000 775
0.000 223
0.000 041
0.000 003
1.192 215

0.772 628
0.115357
0.075 496
0.055 271
0,042 429
0.033 285
0.026 300
0.020 704
0.016 069
0.012 149
0.008 816
0.006 025
0.003 789
0.002 130
0.001 033
0.000413
0.000 127
0.000 027
0.000 003
0.000 000
1.192 050

0.103 139
0.065 746
0.046 694
0.034 540
0.025 842
0.019169
0.013 832
0.009496
0.006 034
0.003 427
0.001 663
0.000 650
0.000 187
0.000 034
0.000 003

0.648 3 50
0.096 772
0,063 333
0.046 366
0.035 593
0.027 922
0.022 063
0.017 368
0.013480
0.010 192
0.007 396
0.005 055
0.003 178
0.001 787
0.000 866
0.000 346
0.000 107
0,000 023
0.000 003
0.000 000

0.137481
0.091 967
0.068 778
0.053 983
0.043 388
0.035 237
0.028 648
0.023 117
0„018333
0.014 093
0.010273
0.006 839
0.003 886
0.001 653
0.000378
1.354 481

0.788 010
0.127446
0,086 751
0.066 102
0.052 991
0.043 655
0.036 522
0.030 804
0.026 053
0.021 996
0.018451
0.015 295
0.012 435
0.009 808
0.007 374
0.005 135
0.003 154
0.001 568
0.000 532
0.000 074
1.354 155

0.101 501
0.067 898
0.050 778
0.039 855
0.032 033
0.026 015
0.021 150
0.017 067
0.013 535
0.010405
0.007 585
0.005 049
0.002 869
0.001 220
0.000 279

0,581 920
0.094 115
0.064 062
0.048 814
0.039 132
0,032 238
0.026 971
0.022 748
0.019239
0.016 243
0.013 626
0.011295
0.009 183
0.007 243
0.005 446
0.003 792
0.002 329
0.001 158
0.000 393
0.000 055

' The row labeled T contains the ratio of the total cross section to o in the o„/o column.

a, /&„where
P(& I o(i) yes)=

O~tg n ' T' (87)

in an equilibrium gas of temperature 7.' for which
the relative energy is above the threshold energy
F, This factor is"

The quantities o„"'/s„o'r'~/g„andP,"„donot
depend upon g, and are listed in Table I for inci-
dent velocities in the km/sec range. The bounds
on P, „(P,"'„and Po'~ „)are also plotted in Fig.
2 for transitions up to n =4.

The probability per collision of vibrational ex-
citation of carbon monoxide by oxygen in a shock
wave for temperatures between 1800 and 4000 K
has been measured by Center" and found to be
of the order of 10 '. This agrees with our findings
when we multiply our average probability per col-
lision above threshold by the fraction of collisions

e *(1+x),

where x =E,/kT and lies between 0.48 and 0.82
for these temperatures.

V. SUMMARY

%e have found that the assumptions leading to
the impulse approximation are justified for atom-
diatomic-molecule collisions provided the inter-
action is dominated by short-range forces. In the
impulse approximation, the expression for the
inelastic-scattering amplitude factors into a
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