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The impulse approximation of Chew is applied to the calculation of the cross sections for
rotational and vibrational excitation of diatomic molecules by collisions with an atom. The
assumptions underlying the impulse approximation are discussed and found to be justified
for these processes. A closure approximation is used to perform the sums over rotational
quantum numbers in the expression for the vibrational-excitation cross section and the re-
sulting expression depends on two factors; an oscillator form factor and the scattering am-
plitudes for atom-atom scattering. Vibrational-transition probabilities, evaluated for oxy-
gen—carbon monoxide collisions assuming that the oscillator is harmonic and using a rough
estimate for the typical atom-atom scattering amplitudes, are in qualitative agreement with
experiment. Further refinements and extensions of the model are discussed.

1. INTRODUCTION

The study of vibrational and rotational energy
transfer in gases has occupied chemists and phys-
icists since the 1930’s. The various approaches
to the calculation of transition probabilities have
been reviewed by a number of authors.!”5 Recently,
the impulse approximation of Chew® has been
brought to bear on one-dimensional atom-~diatomic-
molecule collisions by Clinton, Cosgrove, and
Henderson” and by Eckelt and Korsch.® In this pa-
per we apply the impulse approximation to three-
dimensional atom-diatomic-molecule collisions.

The assumptions underlying the impulse approx-
imation are (1) the incident particle interacts with
only one particle of the composite system at a
time, (2) the amplitude of the incident wave falling
upon constituents of the system is nearly the same
as if that constituent were alone, and (3) binding
forces between the constituents are negligible
while the incident particle interacts strongly with
the system.®”!! Quantitative criteria for assump-
tions 1 and 2 have proven elusive®~!!; assumption
1, however, seems justified when the range of the
atom-diatomic-molecule interaction R is much
less than the interatomic spacing of the diatomic
molecule 7,,

) (1)
and assumption 2 will be satisfied when

0<< 4n7i(kT,)? , (2)

R«T,

where 0 is the cross section and & is the wave
number of the incident atom.®

When the relative kinetic energy E, is well above
the rotational threshold, the atom-diatomic-mole-
cule interaction is predominately a short-range in-
teraction and Eq. (1) will be satisfied. For example,

9

Herzfeld has shown that an exponential repulsive
potential of the form e~"/% with L~7, /17.5 matches
the Lennard-Jones 6-12 potential well for these en-
ergies where 7 is the Lennard-Jones length param-
eter.'? If we identify L with the range of the atom—
diatomic-molecule interaction, Eq. (1) will be
satisfied since 7, and 7, are of the same order of
magnitude.

The cross section is of the same order of magni-
tude as 4772, and Eq. (2) becomes

Eh /hC>> (‘J'r/“'r)Be> Be

where B, =h/(87%cu,72) is the rotational term con-
stant’® and u, and p, are the reduced masses for
vibrational motion and relative motion. Assump-
tion 2 will also be satisfied when the kinetic ener-
gy is well above the rotational threshold.

Assumption 3 is valid when the duration of the
collision 7. is small compared to the period of
oscillation of the bound system.® This is just the
condition for the interaction to proceed so rapidly
that the wave function cannot adjust itself adiabat-
ically and implies that the transition probabilities
will be appreciable.!* Typical rotational and vibra-
tional periods are 107'° and 1073 sec. If we let
the collision duration be 7,=L/V and L ~107° cm,
this assumption will be valid provided the relative
velocity remains above 0.1 km/sec for vibrational
excitation and 10 cm/sec for rotational excitation.
All velocities of interest in molecular excitation
are well above these limits except for the final
relative velocities when the energy is just above a
threshold.

We shall consider only vibrational excitation
here so that assumptions 1 and 2 will be well sat-
isfied and assumption 3 will be satisfied except
near energy thresholds. The impulse approxima-
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9 IMPULSE APPROXIMATION

tion allows us to separate the vibrational part of
the calculation from the scattering part. In Sec.
Il we derive the form that the impulse approxima-
tion takes for atom-diatomic-molecule scattering.
The contribution of the molecular vibrations to the
calculation is contained in a form factor that is
discussed and calculated for a harmonic potential
in Sec. III. In Sec. IV we discuss the scattering
part of the calculation and present a sample cal-
culation of the cross sections for the vibrational
excitation of carbon monoxide by collision with
atomic oxygen when both are in their electronic
ground states. Since the ground state of atomic
oxygen is a triplet state, the interaction will pro-
ceed along the potential curves for triplet CO,
which are all repulsive.!® We shall not consider
possible contributions to this process from the
crossing of the singlet and triplet CO, potential
curves.!®

Before proceeding, we should mention that the
“sudden” approximation is also claimed to be
valid when assumption 3 is justified.!”"*® In this
approximation, the vibrational part of the calcula-
tion separates from the collision part, as in the
impulse approximation, and the vibrational con-
tribution to the interaction is contained in a form
factor identical to ours. (In Treanor’s one-dimen-
sional theory as well, the same form factor ap-
pears.'®) The essential differences between our
approach and the sudden approximation are two-
fold. The first is that the scattering part is
typically treated in a semiclassical manner in the
sudden approximation, whereas our approach is
in principle entirely quantum mechanical. In this
paper we have used a rough estimate for the scat-
tering amplitude, which is certainly no better than
the semiclassical approach of the sudden approx-
imation. We shall see, however, that our result
does not depend strongly on this assumption, and
an extension to a more realistic model is straight-
forward.

The other difference between these approxima-
tions is that the sudden approximation treats the
scattering part of the interaction by letting the
atom-diatomic-molecule potential be represented
by a spherically averaged interaction and treating
the residual interaction as a perturbation. In the
impulse approximation, the atom-diatomic-mol-
ecule interaction is treated as the sum of two-
body potentials between the incident atom and the
constituents of the diatomic molecule and is
handled exactly (subject to assumptions 1-3). It
is this second difference that we feel makes the
impulse approximation preferable to the sudden
approximation.

Our results are summarized and discussed in
Sec. V.

FOR THREE-DIMENSIONAL... 1231

II. IMPULSE APPROXIMATION

We shall consider the scattering to be described
by a Hamiltonian of the fcrm

B G BRI

= - V2o — V2o —— V2 (T, -T
H 2”1,, a Zmb b zmc ¢t Vl(l r, re i)
+ V(I Fa=Tp )+ V(I Tp=Tc 1) . 3)

Although quantum-mechanical calculations of the
potentialfor H, +H, H,+H,, and H, + He show that the
interaction is not, in general, a sum of two-body
potentials,? our knowledge of the true potential
for heavier systems is so limited that this seems
to be a reasonable choice for the present.

We may separate out the center-of-mass motion
with the transformation to the center-of-mass
system,

MR =m,T, +m, Ty +m T, , (4)

T=Tg— (M, Ty +mTe)/ (my +m,) , (5)
and

T=Tp-T, , (6)

where M =(m,+m,+m.). The momenta conjugate
to these coordinates are

ﬁ=E¢"‘Eb“"Ec’ MEr'—:(”lb+mc)Ea_’na(Eb+Ec),
(my+m )k, =m Ky —my K,
and the Hamiltonian is
R .
H(R9 r, T)=—2_1W— Vg +Ho(f's T)
+Vb(IF+Bb?I)+VC(IF+BC?I); (7)
where
- n® _, h? -
Ho(r,T)=—§"I:Vf—2—“T vi+Ve(l7l), (8)

and where @, =my(m,+m )/ M, u, =mym_/(m, +m,),
Bp==m./(my+m,), and B.=m, /(m, +m,).
The R dependence of Schriddinger’s equation

H¥(R, T, T)=E¥R, T, 7T) (9)
may be factored
YR, T, )= RyE ), (10)

where ¢(r, T) is a solution of
[HyE, T)+ V(I T+ 8,71 + V(I T+ BT D9 (F, T)
=E'y(F,T) (11)
and where
E'=E -K2K?/2M . (12)

The solutions of Eq. (11) appropriate to the scat-
tering of a plane wave in the z direction of atom a
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by a bound state of molecule bc at rest with quan-
tum numbers 7,1, and m satisfy the integral
equation??’ 2!

VT =™ 9y o D4 b nE D)

n,i,m

s | 4 o7

elh;lr -1
/
T;T:‘;Twﬁ.x,m(‘?)

X[GUE+ BT [ )+ Ve (1T + B T 1) 9(F, 7)),
(14)

where the functions ¢, ;, (T) are the .solutions of
the equation

(13)

‘Pn,l . m(;, 'F) ==

X ‘Pn W m(?)

n? -~ -
(_-ZTL_VE + Va(| 7| )> P, () =€n,1Pn,i,m(T)
(15)

n,l, and mare the final quantum numbers of the
bound states, and

R2=2u, (E' - €,,)/R? . (16)

The sum on 7#,!, and m in Eq. (13) represents a
sum over all discrete quantum numbers and an
integral over all continuous quantum numbers.

We note that there is a contribution to the in-
tegral in Eq. (14) only from regions of ', 7' space
where the potential is appreciable. When |T| is
outside this domain, we have

(pn l.m(?)fn ] m(k Er)

‘yn 1 m(r T)"

as ¥ —-®
where

Fua &)= = s [ [ e BT g )

X[Vy(IF+ B, 1)+ Vo([F'+ BT DI, 7)
amn

and where ﬁ; is a vector in the T direction with
magnitude £,. The differential cross section for
excitation of the level n,1, m is given by?°' 2!

0(65 (p)z(kZ/ka)lfn,l.m(E:-y Er)lz y (18)

where kf = [k, +m,/M| .

The expression for the scattering amplitude in
Eq. (17) is exact, but can be calculated only if the
true wave function ¢(*', 7') is known. In the Born
approximation one assumes that the scattering is
weak, and one lets ¢(t', 7') =e“'"<p,,o, 1ommo(T') in
Eq. (17). This procedure will not work in the case
considered here because of the strongly repulsive

nature of V, and V,.
In the impulse approximation of Chew, the scat-
tering amplitude is separated;

fu®, &)=/ ,&},&,)+/. &}, &,), (19)

where
fi(iyl'7§r)=-4 h—zfd fd" -‘k (p*l.m(.l
Vil ;+Bﬁ| W (', ") (20)

and the wave function y; (T, 7) is approximated by
the exact expression for the scattering of atom a
with momentum k&, by atom ¢ with momentum E‘
in the center-of-mass system, ignoring the pre-
sence of the other atom of the molecule except to
average E,, and Ec over their momentum distribu-
tion in the initial state®; that is, for the case
when the molecule is initially at rest,

IPc(—{'a ’ ;b! Fc ) = (2")_3/2 deb f dEc

xe'(tb' [ -Fa « R) Go(kb; kc)éi T ('fm Fc) ,

where
Go(Eb’ Ec) = (217)-3 j arfb fd.f‘c

xe- o Tkt Tog, 7,27 (22)

and where o7, kc(ra, T.) is the exact wave functlon
for the scattering of atom @ with momentum k by
atom ¢ with momentum K,. The factor e=% X in
Eq. (21) removes the center-of-mass motion from
the wave function. The expression for GO(E,,, k.)
may be simplified;

- - = = (mK, - MK
Golky, ko) =0 (K, +kc)go<°T";m—°£)
b c

= [ R, g% 5[, ~K,)o@®, ), (23)

where
go(Er) = (2")-3/2 f d?e-iir ’ T‘pﬂo.lo-’"o(-;) : (24)

The expression for ¢} kc(r,,, T.) is also simpli-
fied in the a-c¢ center-of -mass system

ﬁ“:m:’iam,, ?,+ma"i°mc 7, (25)
and

p=T,-T., (26)
with the conjugate momenta

Koo =Kq +K, (27)
and
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(ma+m )k, =m K, —m K, ; (28) T (Fa, o) etfae Raex{O(p) (29)
P

J

When Egs. (23) and (29) are substituted into Eq.(21) we have

JelFa, T, T = @) 2 [ di, g, (B) explil k. - Ty Ko R+ Ko =K, ) (maFarmeF)/Omarmo)]}, (30)

r

where Ve(F, T) = (2m)-3/2 f d&, g,& X (B)
o

Ep:(mcEaeraET)/(mawnc) . (31)

We now may use the inverse of the transforma-

tion in Egs. (4)-(6), xexpli &= mik/)- [7 =mop/mormo)l}

Ta=R+ (my+m)F/M | (32)

- = - - i ..=.’— -’F 3 . k K =

o= e ), since £-5 =7/, o). When B =0, we
and Ro=ME,/(my +m,) , (33)

Fo=R=mo¥/M =myT/(m, +m.) , and so the expression (20) for the partial scatter-

to express ¢, in terms of p and T ; ing amplitude becomes
J
, 21 - . - - [ -
( rs )—_4 ﬁ'z 2”) 3/2f dk, go(kr)f d?eX'P(“" {k.,. +{mb/('nb+mc)]q}) (pl’l‘(,‘.mﬁ)
x [ dpett G Oy (5 (B) (34)
p
where
G=k; -k, . (35)

Equation (34) and the similar expression for fH&,K,),

SR ) == 2hs amy o2 [k, gR.) [ 47 expliT - (R, = e/, +m)GH@% 1n(7)

< [ e Ty, (5 G (36)
P
r
where Jo® 1,6, ) = (1t ac) el ae/ R, +8, (Hac/ 1)K, )
(mg+my)k, =myk,—m k. , 317)
XF, 1 min —-myq/(m,+m
constitute the impulse approximation to the di- oming lo e =/ (1 + ) 38)
atomic-molecule scattering amplitude.
All the quantities in Eqs. (34) and (36) may be and
. i 6 3 t >, > ~ > - >

calculated directly. Chew® has pointed out tha Fol@ ) = (1 1) T (12 /1y + 8y (/1))

since these equations (i) reduce to the Born ap-
proximation when X%, (p) is approximated by
LI and (ii) give the exact expressmn for scat-
tering when the binding potential Vg(| 7|) is ne- (39)
glected, they may be viewed as an interpolation where we have introduced the reduced masses
between these limits.

The function go(ET) becomes vanishingly small
for k, > L', where L is the size of the target. and
Whenever |k, | m R~ /m, (and &, m, R~ /m,), _
we may neglect the dependence of k, (and k) Hap =iy (Matmy) ,
upon k. and factor Egqs. (34) and (36); the bound-state form factor

x 5rl,l.m;rlo.lo '”‘0( me a/(mb +mc)) )

Hac=MgMo/(Mg+my) (40)
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gn.l.m:no.l Q,mo(;)E f at e-“(. T(pﬁ"""(‘%)"o"o-‘o-“o(?) ’

(41)

and the free scattering amplitudes

Jilly, k) =- 2ua./4ﬂh‘2)f dpe-ifa? QAQITH)

(42)

III. BOUND-STATE FORM FACTOR

A number of interesting properties of the bound-
state form factor follow immediately from its
definition (41). Since the bound-state wave func-
tions are orthonormal, we have

ﬂ:""'"”"o"o'"'o(o)=On,nodl.loém.mo . (43)
Also, since the bound-state wave functions are
complete, we may identify F, i ming.14,mo(K) as the
coefficient of ¢, ; ,(7) in an expansion of e~ T

X @1 mof T

e'iK‘T‘Pno.lo.mo(?)= Z Efn.l.m:"o-‘o--o(z)¢""""(?) ’

n,l,m

where the sum on #,!/, and ' represents a sum
over all discrete quantum numbers and an inte-
gral over all continuous quantum numbers. If we
multiply this by the similar expression for et T
x¢§l,,1.ml(?) and integrate over 7, we have

5 s} s}

gy lgedy T Moy
= Z t}n,l,m:no,lo,mo(z)g}:,l,m;nl.ll,ml(x) (44)
n,l,m
and, in particular,
2
Z Ign.l.m:no.lo.mo(K)‘ =1. (45)
n,b,m

Let us now approximate the binding potential
with a harmonic-oscillator potential

Va(IT1) =20, 03(T = 7,) . (46)
The solutions of Eq. (15) are of the form

Criym(T) = T U (§)Y (7, ¢7) (47)
where

£=(1-7,)/V2d (48)

d= (/20,2 (49)
and

£,=7,/V2d (50)

and where U, ({) satisfies the differential equation

%, l(l+1)
d;’:z nl(g) (ﬁwo' - (é +§e)2

for - £,< §< © with the boundary conditions

—€2> Un(§)=0  (51)

Unl(_ ‘ge) =0 (52)
and

lim U, (§)=0. (53)

£

The quantity 262 may be recognized as the ratio
of the vibrational level spacing to the rotational
constant and is large for most diatomic molecules
[for CO, &,=(w, /2B,)!/2=23.7].3 We now make
the approximation

-1l +1)/(E+ &=Ll +1)/8E (54)
and let the boundary condition (52) become

lim Uy (§)=0. (55)

[
The radial wave function U, (§) is then given by
2
Uni(8) = N Ho(E)e =2, (56)
where 7 is an integer,

26, l(l+1)

2”+1 =’iw0 gg ]

(57)
H,(¢) is a Hermite polynomial,?? and the normal-
ization constant N, is given by

N, =[wp . /ET22" (1)1 /2 (58)

The approximations (54) and (55) are conven-
tional in the treatment of diatomic-molecule
spectra. Approximation (54) is equivalent to ne-
glecting coupling between rotation and vibration.
The solutions of

agz Dy(V2E) + (2n +1 = £2)D,(V2¢) =0 (59)
which are bounded as &£~ +>are all parabolic
cylinder functions.?®* The approximation (55) re-
stricts n to be zero or a positive integer, in
which case D,(V2§) reduces to the product of an
exponential and a Hermite polynomial as in Eq.
(56). When the lower boundary condition is given
by Eq. (52) and &, is large, it can be shown that
n must be slightly greater than an integer; how-
ever, the error in the energy eigenvalue associated
with the approximation (55) is less than the error
associated with the neglect of anharmonic terms
in the potential.

When the bound wave functions are given by
Egs. (47) and (56), the form factor F, i miny.19,m(K)
is
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) I 1, L\l I, L
-\ _ 1/2 j=L(_ 1\m
Frsmingtouno® = 2 (424 D2l s DL D] £74(=1) (_m ” M)(O o L)Y 00
x [ g Hy()Hy (8)e™ NoNo (3 i, (VT k(s +5,), (60)

where we have expanded FT in spherical har-
monics and made use of the properties of spherical
harmonics and 3-j symbols Fsuch as (L2 )]

In the expression for the inelastic cross section
we require the square of the magnitude of the form
factor to be averaged over the initial magnetic
quantum numbers and summed over the final mag-

netic quantum numbers;

1 2
(21,+1) Z IEF"J.mmo.lo.mo(")l

L\

= Z 2L+1)(21+1)<0 5 0) | (n2"*monln 1)1 /2

x [ dg ), (6)e 0T k(s + EI?

(61)

where we have again used angular momentum iden-
tities.

The expression in Eq. (61) is suitable for calcu-
lations of rotational- and vibrational-excitation

(2, +1) Z [ Fotom: "o"o'"'o(.)lz‘ (n2"*"onin, |)-
Lym,mg

The integral on £ in Eq. (61) may be performed

fw dgeizl/zxdu(ﬁ»ge) e-Ez

r

cross sections. If we are interested only in the
excitation of vibrational levels, we may sum this
expression over the final orbital angular momen-
tum !. An additional complication | here is that
€., and hence &/ fc(kp,k ), and f,,( p) all
depend upon I. Fortunately, the dependence of
€,; upon ! is weak;

€ =(+3)Awy+ L+ 1w /262~ (n+3)hw,  (62)

and may be neglected to a good approximation
since the integral in Eq. (61) vanishes for large
L. With the approximation (60), we may use the
closure property of the 3—-j symbols

Z(zzu)(lo f)O é‘>2=1

and the relation®*

% ’[:du eiu(l -y) = Z (2L + 1)]L(3)]L(y) ,

L

to obtain

o 2
1du l f dt e(z"/zxdu(i +§9)H"(§)H"0(§)e'£2 . (63)
_1 -0

Hn(g)Hno(g) =ei2! /2kdutq e-x2¢2u2 29(ng +rp) J2 [ n (= ikdu)'e =™ LS::' -n,)(szzuZ) ,

where 7n; and 7, are the lesser and greater of n; and » and where L{®(x) is an associated Laguerre poly-

nomial.?® Equation (58) then becomes

(2_l '+' '1"') Z: [ Fntom: no,;o,,,.o(K)I 2./‘ du (n,!/n, !)e-Kza u (szzuz)n,-n,[L(n,_n, (k2d%u?)]? . (64)

The interference term in the expression for the inelastic-scattering differential cross section may be

reduced in a similar manner:

1 . et
m,;% S‘Fn,l.m:no,to,mo(“ﬁbq)sﬁ.l.m ingilgs mo( ch) j ducos(réey)e (B B%/z(n [/72 1)

where we have defined y =
cosine term.

X (ByBoy?Y'e ML (Bry )L (By )~ 0, (65)

qud and noted that the integral will vanish because of the rapidly oscillating

If the molecule is initially in the lowest vibrational state, the integral in Eq. (64) is
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1 . _ [k 2
mz Isn,l.m:o.lo,mo(")lz=("1Kd) Il dxe x2n
e =y(n+3, k%d?)/(2nlkd)

(66)
(67)

where y(a, 2) is the usual incomplete I function,?? This expression is plotted in Fig. 1.

IV. CALCULATION OF THE INELASTIC- SCATTERING CROSS SECTION

The differential cross section for excitation of the nth vibrational level of a diatomic molecule initially
unpolarized and in the lowest vibrational state is given by Eqs. (18), (19), (38), (39), (65), and (67);

(6, 9) = (kI /Rl (4,/ 1 ac) Fe (R oo/, K, +8, (Hac/B, K ) [Py (n + 3, B 2d®)/2n0qd B |

1y B Fo (B ap /1)Ky + 8, (an/ 1K) 2y (1 + 3, BigPd?)/2n) qd| Byl ] (68)

and does not depend on the initial angular momen-
tum quantum number !, (or on the distribution of
l, values). The initial momentum of atom a in the
system in which the molecule bc¢ is at rest is k,.
The initial relative momentum E, is given by

E'r:(mb*'mc)iza/My (69)
the final relative momentum satisfies
R2(kT = kP21, =€, = €, 4 =NAW, (70)

and the final momentum of atom a in the 6¢ rest
system is

kZ=k!+m.K,/(my+m,) .

We shall neglect the recoil of the molecule b¢
here so the ratio k%/k, becomes

0.2

I
—

0.081
0.06

v(n + 112, xAl2ntx

0.04

FIG. 1. Spherically averaged form factor for 0 —=»
transitions y(n + %, x¥¥)/2n!x. The parameter ¥ is the
product of the oscillator length parameter d and the
magnitude of the momentum transfer &.

r

kf /ky=k!/k, . (71)

In order to proceed further, we must calculate
the free scattering amplitude f;(k,, k,) defined in
Eq. (42). This is the Fourier transform of the
product of the potential V; and the true wave func-
tion for scattering of atom a by atom Zwhen the
initial relative momentum is El. When [Ezlz
= IEJ 2 this is simply the scattering amplitude
for elastic a-i scattering and may be determined
from scattering experiments. Here, we require
these scattering amplitudes for values of |k, |2
not equal to |k, |? as well. These “off-the-energy-
shell” T-matrix elements also appear in the inte-
gral equations of scattering theory?° where they
are related to the scattering wave function within
the range of the potential.

Although the wave function X'’z (/) and hence the
free scattering amplitudes may b:a calculated ex-
actly once the two-body potentials V,(p) are spec-
ified, we shall not make this calculation here but
characterize the free amplitude by

iy &) (2R 1 Fu(R,, B )1

=(LekrieFa-Fu™ Yy /g
(72)

This function is the sum of a constant term and a
peak in the forward direction (k,=k,). The total
elastic-scattering cross section in this approxi-
mation is

2" i . 2T 2 ho L k22
fo d(p‘L sinbd6é 1f,-(k2,k1)[k2:kl=o‘.(1 ~ze™ ")
(73)

with the constant part of |f;|* contributing 30, and
the forward peak contributing 33,(1 — e~%"%). The
angular integration is facilitated by noting that

ngIEZ—EJz:k?.;.kg—ZklszOS@

and hence



|©

foz" dy fc" sin6 do g(¢?) =21 f"‘””thuz(qz)/kxk2 .

Ry =k
(74)

The approximation f, is an attempt to characterize
the scattering amplitude for a wide class of poten-
tials for k,7;>> 1, where 7; is the range of the po-
tential V;(p). In the Born approximation, for ex-
ample, f, is given by

Fify 48, & Dporn = = (Zu.i/ﬁz)f p*dp Vi(p)singp/gp
0

(75)
and is clearly peaked about ¢ =0 with a width of
the order of 7.

When k,7, is large, the exact amplitude for scat-
tering by an infinitely repulsive sphere also ex-
hibits a diffraction peak of width 7;2% for values of
q both on and off the energy shell and satisfies
the relationship between the total elastic-scatter-
ing cross section 0; and the forward-scattering
amplitude

|F (&, &)I2=(1+Fr3)0, /8T .

The inelastic-scattering differential cross sec-
tion Eq. (68) is the sum of two similar terms

0,(8, ) =0 (6, @) +0{7(6, @), (76)
where
a{P(6, ) =G,(kL/k,)y(n +3, B2 ¢*d?)
(/a4 7 e mePrY/a
16mnlqd]| B;]

and where we have used Eqgs. (71) and (72). We
may use Eq. (74) to integrate Eq. (77);

(77)

2 L
O.S'()E f d(p J(; sin9d90,(.‘)(9, (P)

o

ut 1.2 2
~ n 7(n+§’x))[< By > -x2 }
=G, d =) +ne”X M
7 '[,,— X x< 2nly waug)

for (k,d=np,/p, (78a)
=0 otherwise, (78b)
where
n =(r,/28;d? (79)
and
ui=|B; |k, + k)d
= |8, |{k,dx [(k,d? —np,/u )/?. (80)

Since the range of the potential »; is of the same
order of magnitude as the equilibrium oscillator
spacing 7, and £2=772/2d? is very large, 7; will be
very large and will contribute to the integral (78a)
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only for y <1. We see from Fig. 1 that
yn +%,%%)/2nlx~ 5, , for x <1,

hence the diffraction peak will contribute only
when » =0, and Eq. (78a) becomes

o,:’i):_;_a.‘ [5"'0 +__1__ ( Yy >2[1n(“;) —ln(u;)ﬂ

+
n ! \Ug,uo

for (k,d’=npu,/p., (81)

where
u
1) = f axyn+3, X =uyln +3,u%) —yn +1,u% .
0

(82)

The factor (;1,/ua‘)2 in Eq. (81) arises from the
attempt to relate f, to the free particle scattering
amplitudes 7, in Egs. (38) and (39) and always ap-
pears in the final expression for the cross section
in the impulse approximation.?! This factor does
not appear multiplying the Kronecker § because we
have taken the height of the diffraction peak to be
proportional to (b, /p,)%k;.

Let us now consider the vibrational excitation of
a stationary CO molecule by collision with a beam
of oxygen atoms with velocity V,. The ratio (u,/
Lg) is given by

B, g = (my +m Y m  +m ) /m (m +m, +m ),
(83)

hence 1, /o= b, /pt, = 1.4849, 1 /pig,=1.2721,
[B,| =0.42857, and |B.[=0.57143. Since m,V,
=ik, we have
imaVi ((mb +mc)2ma>
hw, WM ’
where we have used Eqgs. (33) and (49).

When we insert 7w, =0.268 98 eV '* we find

k,d=1.8T43EY?=0.539 32V,

(k,d)*= (84)

where E, =3m,V* is the kinetic energy of the oxy-
gen atom in electron volts and V, is the velocity
in km/sec. The only remaining quantities re-
quired to calculate the inelastic-scattering cross
section are §, and §,.

The transition probability per collision is

Poy= (09 +09)/(0Q+09), (85)
where
o= E oW (86)
n

is the contribution to the total cross section from
a particular atom of the diatomic molecule. The
transition probability will be between the limits

PY., and P, depending on the value of the ratio
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TABLE I. Partial cross sections and excitation probabilities for oxygen-oxygen and oxygen-
carbon collisions.

00 oC
V (km/sec) n? o /6, P 0/ /6, Py
1 0 1,282 226 1.000 000 1.537623 1.000000
T 1.282 226 1.537623
2 0 1.2i1575 1.000 000 1.389568 1.000 000
T 1,211575 1.389568
3 0 1.123 927 0.937138 1.235458 0.903 083
1 0.075392 0.062 862 0.132 586 0.096 917
T 1.199319 1.368 044
4 0 1.040277 0,870113 1,111 232 0.816291
1 0.125 045 0.104 591 0.180834 0,132 837
2 0.028 720 0.024 022 0.062576 0.045 967
3 0.001523 0.001274 0.006 677 0.004 905
T 1.195 566 1.361319
5 0 0.969512 0.811919 1.017 983 0.749746
1 0.142 856 0.119635 0.183 843 (.135400
2 0.058 368 0.048 880 0.094 415 0.n9537
3 0.019671 0.016 473 0.046 064 0.033 926
4 0.003693 0.003 093 0.015466 0.01137
T 1.194100 1.357770
6 0 0.912 272 0.764 504 0.947774 0.698 691
1 0.144 015 0.120688 0.173 854 0.128164
2 0.074 241 0.062215 0.102 318 0.075428
3 0.038512 0.032274 0.064 560 0.047 593
4 0.017362 0.014 550 0.039382 0.029 032
5 0.005 796 0.004 857 0.020769 0.015310
6 0.001 067 0.00089%4 0.007452 0.005494
7 0.000019 0.000 016 0.000390 0.000 287
T 1.193286 1.356498
7 0 0.866 265 0.726 257 0.893677 0.659219
1 0.138525 0.116 137 0.161165 0.118883
2 0.079858 0.066 951 0.101251 0.074 687
3 0.049565 0.041 554 0.070216 0.051 795
4 0.030179 0.025301 0.049 989 0,036 874
5 0.016 838 0.014 117 0.035101 0.025893
6 0.007 968 0.006 680 0.023 289 0,017179
7 0.002 871 0.002 407 0.013 603 0.010 034
8 0.000 654 0.000 549 0.006 042 0.004 457
9 0.000057 0.000 048 0.001 328 0.000 980
T 1.192 780 1.355661
8 0 0.828 941 0.695161 0.850 944 0.628 021
1 0.130911 0,109784 0.148767 0.10979%4
2 0.080286 0.067329 0.097081 0.071 648
3 0.054 337 0.045 567 0.070583 0.052 092
+ 0.037679 0.031598 0.053 546 0.039518
5 0.025 733 0,021 580 0.041227 0.030427
6 0.016 708 0.014 012 0.031633 0.023 346
7 0.009 900 0.008 302 0.023 757 0.017533
8 0.005 083 0.004 262 0.017037 0.012574
9 0.002 108 0.001 768 0.0111% 0.008 262
10 0.000636 0.000534 0.006 240 0.004 605
11 0.000115 0.000 096 0.002509 0.001 851
12 0.000007 0.000 006 0.000444 0.000327
T 1.192445 1.354 961

9 0 0.798241 0.669545 0.816429 0.602 762
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TABLE I, (Continued)

IMPULSE APPROXIMATION FOR THREE-DIMENSIONAL...

(0.0} oC
V (km/sec) n? o /5, PP o /8, P

9 1 0.122 963 0.103139 0.137481 0.101501
2 0.078383 0.065 746 0.091 967 0.067 898
3 0.055670 0.046 694 0.068 778 0.050 778
4 0.041180 0.034 540 0.053 983 0.039 855
5 0.030 809 0.025 842 0.043 388 0.032 033
6 0.022 853 0.019169 0.035237 0.026 015
7 0.016490 0.013 832 0.028 648 0.021150
8 0.011 322 0.009496 0.023117 0.017 067
9 0.0071%4 0.006 034 0.018333 0.013535
10 0.004 085 0.003 427 0.014 093 0.010405
11 0.001 983 0.001 663 0.010273 0.007 585
12 0.000 775 0.000 650 0.006 839 0.005 049
13 0.000223 0.000187 0.003 886 0.002 869
14 0.000 041 0.000 034 0.001 653 0.002 220
15 0.000003 0.000 003 0.000378 0.000279

T 1.192215 1.354 481
10 0 0.772 628 0.648150 0.788010 0.581 920
1 0.115357 0.096 772 0.127446 0.094115
2 0.075496 0.063 333 0.086 751 0.064 062
3 0.055271 0.046 366 0.066 102 0.048 814
4 0,042 429 0.035593 0.052 991 0.039132
5 0.033285 0.027 922 0.043 655 0,032238
6 0.026 300 0.022 063 0.036 522 0.026 971
7 0.020 704 0.017 368 0.030 804 0.022 748
8 0.016 069 0.013480 0.026 053 0.019239
9 0.012 149 0.010192 0.021 996 0.016 243
10 0.008816 0.007 396 0.018451 0.013 626
11 0.006 025 0.005 055 0.015295 0.011295
12 0.003 789 0.003178 0.012435 0.009183
13 0.002 130 0.001 787 0.009808 0.007 243
14 0.001 033 0.000 866 0.007374 0.005 446
15 0.000413 0.000 346 0.005135 0.003 792
16 0.000127 0.000107 0.003 154 0.002 329
17 0.000 027 0.000 023 0.001568 0.001158
18 0.000003 0.000 003 0.000532 0.000393
19 0.000 000 0.000 000 0.000074 0.000 055

T 1.192 050 1.354155

2 The row labeled T contains the ratio of the total cross section to ¢ in the 0,/ column.

6,/6,, where

1) =) /()
IJ(O"n— n' ’/aT .

87

The quantities ¢%/5;, 0%/5,, and P, do not

depend upon G, and are listed in Table I for inci-
dent velocities in the km/sec range. The bounds

on Py, (P9, and P9, ) are also plotted in Fig.

2 for transitions up ton=4.

The probability per collision of vibrational ex-
citation of carbon monoxide by oxygen in a shock
wave for temperatures between 1800 and 4000 °K

has been measured by Center?® and found to be
of the order of 1072, This agrees with our findings
when we multiply our average probability per col-
lision above threshold by the fraction of collisions

1239

in an equilibrium gas of temperature T for which
the relative energy is above the threshold energy
E,. This factor is?’

e *(1+x),

(88)

where x=E,/kT and lies between 0.48 and 0.82
for these temperatures.

V. SUMMARY

We have found that the assumptions leading to
the impulse approximation are justified for atom-
diatomic-molecule collisions provided the inter-
action is dominated by short-range forces. In the
impulse approximation, the expression for the

inelastic-scattering amplitude factors into a
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FIG. 2. Vibrational-excitation probabilities for col-
lisions between carbon monoxi-!'c at rest in the lowest
vibrational state and atomic c.ygen with velocity V.
The transition probability P, _,, lies within the shaded
region depending on the ratio 8,/8,. The boundaries of
the shaded regions are P}, and Po(o)

bound-state form factor and an atom-atom scat-
tering amplitude that must be evaluated off the
energy shell. We have found a closed-form expres-
sion for the bound-state form factor for vibrational

|©

excitations by using a closure approximation to
evaluate the sums over final angular momentum
quantum numbers. We find that the vibrational
inelastic-scattering cross sections do not depend
on the initial angular momentum quantum number
L.

Vibrational -transition probabilities evaluated
using a fairly rough estimate for the atom-atom
scattering amplitudes are in qualitative agreement
with experiment. An improved estimate of the
atom-atom scattering amplitude may be obtained
semiclassically, quantum mechanically, or from
atom-atom cross-section experiments.

We have found that the impulse approximation
provides a rigorous tool for the calculation of
atom-diatomic-molecule inelastic-scattering
cross sections. We suggest that the application
of the impulse approximation to diatomic-diatom-
ic-molecule and various polyatomic collisions be
investigated.
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FIG. 2. Vibrational-excitation probabilities for col-
lisions between carbon monoxi-lc at rest in the lowest
vibrational state and atomic ciygen with velocity V.
The transition probability P, _., lies within the shaded
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