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J-matrix method: Application to s-wave electron-hydrogen scattering
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The method of the px eceding paper is here applied to s-wave electron-hydrogen collisions.
A pseudo-state model is developed and applied to elastic and inelastic scattering above and
below the ionization threshold where we compare with the results of Burke and Mitchell.
Additional calculations show the effect of Kato correction, the effect of the closed-channel
asymptotic forms, and include a comparison with the results of Schwartz.

f. INTRODUCTION

In this paper, we consider several applications
of the theory given in the preceding paper, ' here-
after called I, to a model s-wave electron-hydro-
gen scattering problem. In Sec. II, we present
the most straightforward applications of the meth-
od. To illustrate the utility of the method for
small basis sets, we give results for static-ex-
change scattering using a 3 ~ 3 potential matrix.
In Sec. II B, we present an approximate Kato'
correction scheme involving only bound-bound
matrix elements of the potential which demon-
strates, for the case of static hydrogen scattering,
the improvement in accuracy which results from
this correction.

The main numerical results of this work deals
with s-wave "radial limit" (i.e., only s-symmetry
allowed for each electron) cross sections above
and below the ionization threshold, using a model
pseudo-state target Hamiltonian. The model is
introduced in Sec. ID. Applications of the model
begin in Sec. IV. In Sec. IVA the effect of includ-
ing closed-channel asymptotic forms in both the
elastic- and inelastic-scattering regions is shown.
In Sec. IV 8 we present results for the cross sec-
tions o(ls, 1s), a (Is, 2s), and o„,(ls, ss) n e 1, 2,
comparing our results with the work of Burke and
Mitchell. Section IV C contains correlated el.astic
electron-hydrogen scattering results, which we
compare with the results of Schwartz.

B. Approximate Kato correction

In I we have shown that second-order accuracy
may be obtained w'ith the assistance of the Kato'
correction formula
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and we used %=3 (i.e., Y" is a sx3 matrix repre-
sentation of the static-exchange potential in the
set (Q„}). We employed the single-channel for
mula of Sec. II of I. Figure 1 shows the smooth
nature of the resulting phase shift; each dot repre-
sents an independent calculation. The squares are
the "exact" results given in the Burke and Smith
review article. ' %'e note that our results in Fig. 1
are not Kato-corrected; we consider this correc-
tion in Sec. II 8.

II. SiMPLE APPLICATIONS

A. e-8 static exchange scattering

To show' the utility of the method presented in
Paper I even for small basis sets, we consider
first the scattering of an electron from the static
1s ground state of hydrogen, including exchange.
The basis set used was
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FIG. 1. Static exchange e-H scattering, with N= 3
and & =2.0. Each dot represents a separate calculation.
The squares show the results given in Burke and Smith,
Ref. 3.
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where

g, =4+8 +(tan6, }C,

snd where 6, is the stationary result and (6,, f~)
are the results of the J-matrix calculation. The
correction (2.2) can be carried out exactly if the
bound-free and free-free matrix elements of the
potential are known. However, the Kato correction
can be approximated using onl. y bound-bound inte-
grals by utilizing the L' expansion of P, in the
basis set. We take the first M terms past jV

(M~ 0}„ i.e.,

dinate at the exact phase shift. ' From this figure
it is seen that whenever 5t is in substantial error,
the partial Kato correction provides, for large
enough I, significant improvement. In circum-
stances where the bound-free and free-free ma-
trix elements of V are not known or difficult to
compute, the approximate correction may be use-
ful. In none of the following calculations have we
applied an exact or approximate Kato correction.

III. SINGLET ELECTRON-HYDROGEN SCATTERING

MODEL

N+ N-1

P =P'a„y„+ Q (s„+tan6, c„) (2.3) The radial limit electron-hydrogen Hamiltonian,
in atomic units, reads

putting g, into Eq. (2.2), we have 1 92 —1 18 = ——
2 +H~, (r, ) + +—

2 Br', ~' ' r, r,

~ "'" 's V„(s +tan6, c')
where r, is the greater of r, and r„and

18' 1
target 2 g 2

2 r2
(2.2)

"~s '(s„+tan6, c )V„„.(s ~ +tan6, c .}
(m+ 1)(m'+ 1)

{2.4)

tan 6,= tan 6„=tan 6, +(P I
V"
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Figure 2 shows the effect of this partial Kato cor-
rection on an N= 3 static electron-hydrogen cal-
culation for several values of M and k. In each of
the four examples the abscissa intersects the or-

Since the coefficients a, s, c„,tan5, are known

from the method of I, and since the V ~ are pre-
sumed known, it is easy to carry out the sum in
Eq. (2.4). Defining tan6„as our partially correct-
ed result (tan6„=tan6, , for M=O), we have

The separation of H into target part and free-
electron part corresponds to the initial configura-
tion of particle 2 bound to the nucleus and particle
1 incident on particle 2. H~~t generates the well-
known hydrogenic states. We could, in the manner
of the multichannel section of I, truncate the po-
tential [in this case (- 1/r, + 1/r, )] so that a small
number of hydrogenic states would be coupled.
This would correspond simply to the usual close-
coupling procedure without pseudostates. This
approach, as a function of the number of hydrogen-
ic states retained, mould be slowly convergent
below the ionization threshold and virtually impos-
sible above it. The introduction of pseudohydro-
genic states is known to significantly improve con-
vergence, and mas recently shown to yield rea-
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FIG. 2. Effect of approx-
ilnate Kato correction to
static e-H phase shifts.
The uncorrected results
(M=0) are the result of a
calculation with ~ =3.75
and N =3. The intersection
of the abscissa and ordin-
ate gives the exact result
(see Ref. 3) for each value
of@. M=~ would corre-
spond to exact Kato cor-
rection; see text for pre-
cise definition of M.
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basis for the free electron, and in the target space
spanned by b„}.This procedure is the same as
first evaluating the close-coupling pseudostate
matrix of V in the target space consisting of the
y„'s followed by a truncation of the resulting
potential matrix, each element of which is a func-
tion of r„ in the free-electron space consisting
of the Q„'s. Since the target space is finite, me
have the option of retaining up to N of the X

's
as channels coupled by V.

The basic approach of the J-matrix method is to
solve a mell-defined model scattering Hamiltonian
exactly. The Hamiltonian me are dealing with here
ls

Q72 O.73 0.74 075 0.78

FIG. 3. Effect of the addition of asymptotic closed-
channel forms on the elastic s-vrave radial limit e-H
resonance helot the e =2 threshoM. Shove are 6-s, S-s,
and 10-s results, vrhich included only the open 1s chan-
nel asymptoticaQy, and the 6-s result with all asymp-
totic forms included.

sonable results even above the ionization thresh-
old. ' One may to generate a set of pseudostates
is to diagonalize the hydrogen Hamiltonian [Eq.
(3.2}] in a finite set of fixed-exponent Laguerre
functions of the type (2.1). Using N such functions
as a basis, me obtain N pseudostate wave functions

g~ with eigenvalues E~, some of which may be in
the continuum for hydrogen. The set (}(~},a
=0, ..., N- 1 defines the finite model space for the
target. The uncoupled Hamiltonian for the free
electron -~(s'/sr, ') is to be treated exactly in
the 4-matrix sense. FinaLly, the potential V
= (-1/r, + 1/r, ) must be truncated in the Laguerre

X„(1}X(2)+r„(2)y, (1), m~n, n&N,

where the )('s are expanded in the first N
Laguerres, and by }(„(i)we mean }(„(r,), and
secondly of the unsymmetric configurations

(3.4)

(3.5)

In this Hilbert space me expand the wave function
as

mhere T signifies the truncations referred to above.
One may well ask what has happened to the sym-

metry of the original Hamiltonian. If the same
basis set is employed for both the target and free
electron, me notice that within the subspace of
I aguerre functions below the truncation limit, the
Hamiltonian X is symmetric, mhile above the
truncation limit the Hamiltonian is no longer sym-
metric. These symmetries of X dictate the
symmetry of the Hilbert space in which the mave
function 8 is to be expanded. The complete space
of functions corresponding to K consists firstly of
the symmetric tmo-electron functions (for singlet
scattering)

0,05 TABLE I. s-wave radial limit phase shifts for singlet
e-8 scattering.
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A' {a.u. 3 Adelman and Reinhardt
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0.2
0.202 499
0.386 936
0.4
0.584173'
0.6
0.8
0.810 305

1.8987
1.887 64
1.302 51
1.2700
0.934 96
0.9115
0.7319
0.726 12

1.8973
4 ~

0 4

1.2696
~ 0 ~

0.9105
0.7261

FIG. 4. Effect of closed-channel asymptotic forms on
0& 2, (6-8 radial-limit calculation, ~ =2.03.

'Exponent A. = 2.0, present method.
S.A. Adebnan and %'. P, Reinhardt, Ref. 7.
Phase shift computed it eigenvalues of full 10-s

P. =2.03 CI 'natrix, using Eq. (2.21a3 of I.
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X (2)& (1) & X (2)C (1) (26}

where

@ =f& lx.(1)x (2)+x (1)x.(2)l, (3.7)

and N, ~¹Note that 4 fully accounts for ex-
change in the correlation region and that, since
8„(1)and C„(1)begin their expansions with P„,
the remaining terms in Eq. (2.6) are truly asymp-
totic and thus need not include exchange.

If we wish to retain aB the pseudochannels in the
calculation, we project from the left on

182 1H, = 2+ ——+ — ie) =0fargo (2.8}

by the basis functions given in (3.4} and (2.5).
W'e then arrive at a finite set of equations very
similar to the multichannel equations discussed
in I. Since we are using the same Laguerre ex-
ponent for both electrons, the inner con5guration-
interaction matrix is of dimension Nx (&+1)l2.

Since in the applications to follow we have used
a single basis set to describe both electrons, only
the 1s target state is exact with the exponential
parameter used (X = 2.0); all other ss states are
pseudostates. However, with six or more basis
functions the 2s state is so accurately described
that we consider it to be essentially exact.

Having defined the model, we can now turn to
the applications which are presented in the next
section.

IV. APPLICATIONS OF THE MODEL

A. Effect of asymptotic closed channels

In I, we pointed out that adding the closed-chan-
nel asymptotic forms to the expansion of 8 has

the effect, near thresholds, of including diffuse
functions in the basis set. These diffuse functions
are expected to improve threshold behavior, and
may be especially helpful in describing Feshbach
closed-channel resonances. This expectation is
borne out in Figs. 3 and 4. In Fig. 3, we have
shown the phase shift just below the 2s threshold
using 6, S, and 10 s-type Laguerre functions in-
cluding the asymptotic form for only the open 1s
channel. Shown also in the same figure the result
for 6-s Laguerres including all asymptotic chan-
nels. While the 6-, 8-, and 10-s calculations are
attempting unsuccessfully to describe the reso-
nance' at k =0.747, the addition of the closed-
channel asymptotic forms to a 6-s calculation gives
proper resonance behavior. Similarly, in Fig. 4
we have plotted o(ls-2s) with and without closed
channels. The behavior below the pseudostate
threshold is altered by the addition of the closed-
channel forms, and yields more realistic thresh-
old effects. In Sec. IIIB, our results will include
the closed-channel asymptotic forms.

B. Elastic and inelastic results

Table I shows elastic s-wave phase shifts for
our 10-s model comparing with the work of Adel-
man and Reinhardt, ' who used the Fredholm meth-
od with an optical potential. Ne have also given
the phase shifts at, the Harris eigenvalues 8 using
the formula

tan6(Z ) =tan(++1)e(Z ),
where in this case X=10. [This is E|l. (2.21a) of
I].

In Fig. 5, we show the o(is-ls) results for 6-s
and 10-s calculations, along with the 1s-2s-3s-4s
results of Burke and Mitchell' both above and be-
low the ionization threshold. Note that the 10-s
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——IO- S

8 IS-2S —3S-4S BUR KE

AND MITCHEl L
FIG. 5. Elastic s-wave

radial limit e-H cross sec-
tions (0&a„&), above and
below the ionization thresh-
old. Results of 6-s and
10-s calculations, and
comparison with Burke and
Mitchell (Ref. 5).
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of basis functions used, compared with the exact
&r(ls-2s), which is expected to be smooth above
the ionization threshold. This kind of convergence
may be a result of the nature of our pseudostates
which, above ionization threshold, are quite dif-
fuse; e.g., the 10-s case contains pseudostates
which are as diffuse as ()u")"e

In Table II we have compared our results for
o(ls-ls), o(ls-2s), o„,(ls-ns), se l, 2, and

o„,(ls-ns) with those of Ref. 5. Considering the
presence of pseudostates in both methods (and of
course the fact that the number and position of the
thresholds are different in the two methods), the
agreement is quite good.

FIG. 6. Inelastic-scattering 0'i~ & cross sections for
6-s and 10-s functions. Note that the 2s state is really
a pseudostate in our model, since our choice of ~ =2.0
makes ls the only exact hydrogenic state.

TABI E II. Various radial limit cross sections, com-
paring with the vrork of Burke and Mitchell. ~

Present work,
1s-2s-3s-4~s 10-s, A, = 2.0

02=1.0
a(ls, ls}
0'(ls, 2s)
0,(ls,es},

n &1,2
0't f gs 88)

0.3281
0.0373
0.0089

0.3743

0.3458
0.0362
0.0134

0.3S53

model agrees well with the 6-s model, except that
it possesses suppressed pseudostate threshold
anomalies. The agreement with the results of
Burke and Mitchell is quite satisfactory.

Figure 6 shows the inelastic-scattering o(is-2s)
results for 6-s and 10-s models. One interesting
feature of the figure is the apparent reduction in
the maximum error, with the increasing number

C. Elastic s-wave scattering with p and d coupling

So far we have exclusively considered s-type
configurations for both target and incident elec-
trons. Within the context of our s-wave asymp-
totic forms, it is possible to include one electron
P, d, ..., etc. configurations with total I.= 0, as
long as one stays below the n =2 threshold where
the corresponding P, d, ..., etc. , target channels
are closed. In this way, we need only the s-wave
asymptotic forms. Of course, threshold behavior
below @=2 would be improved by the addition of
the 2s, 2P, Ss, Sp, 3d, ... asymptotic forms. How-

ever, these additions fall outside the domain of
this paper.

So, restricting the correlation terms in 8 to s, p,
and d states, while keeping only the is asymptotic
open channel term, we have calculated phase
shifts which are compared with the- results of
Schwartzs in Table III The results shown are
not Kato-corrected. Figure 2 would seem to in-
dicate that significant increase in precision would
result by the addition of Kato correction.

V. DlSCUSSION
cr(ls, ls)
a(ls, 2s)
r„,(ls,ns),
n"12

0„,(ls-ns)

0'(ls, ls}
0 (ls, 2s)
g~t {ls,M},

n "1.2
a~, (ls -ss)

0{is,ls)
0'(ls, 2s)
Otof(ls es)

8&1,2
(l,es)

0.2290
0.0499
0.0179

0.2968

0.1542
0.0240
0.0269

0.2051

0.1323
0.0168
0.0270

0.1761

0.2450
0.0400
0.0162

0.1610
0.0222
0.0302

0.1355
0.0165
0.0311

0.1831

TABLE III. El,ectron-hydrogen singlet correlated
phase shif'ts, using 8-s, 5-P, and 5+ type Laguerre
functions, X = 2.0 for each symmetry.

Present

0.01
0.04
0.09
0.16
0.25
0.36
0.4S
0.64

2.553
2,0673
1.6964
1.4146
1.202
1.041
0.930
0.886

2.605
2.0803
1,6962
1.4337
1.197
1.0425
0.937
0.881

Vfe wish to emphasize the simplicity of the cal-
culations. Basically, an atomic configuration inter-

Burke and Mitchell, Ref. 5. 'C. SchwartE, Ref, 8,
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action (CI) matrix is augmented with an easily
constructed extra row and column for each asymp-
totically important channel. If the prediagonaliza-
tion, discussed in I, which is performed only
once, is applied, the method is very efficient.
In fact, the computation of the cross sections at
each new energy requires the same effort as in
the Wigner 8-matrix method. This can easily be
shown along similar lines as the single channel
comparison made in I.

In this paper, we have used the same basis set
for both target and free electron for our e-H
model. This is not a necessary procedure in
order to apply the method, nor is it a desirable
one in applications to more complex systems. One
way to apply our method to collision with many-
electron atoms is to first find the close-coupling

direct and exchange potential matrix using any
desired atomic wave functions, and then to trun-
cate the multichannel matrix in the Laguerre rep-
resentation for the free-electron coordinate.
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