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By exploiting the soluble infinite tridiagonal (Jacobi)-matrix problem generated by evaluat-
ing a zeroth-order scattering Hamiltonian Ho in a certain L basis set, we obtain phase shifts,
wave functions, etc. , which are exact for a full Hamiltonian H in which only the potential V
is approximated, Only bound-bound (L ) matrix elements of the Hamiltonian and finite matrix
manipulations are needed. The method is worked out hex e for s-wave scattering using
Laguerre basis functions. Kato improvement of the results and necessary generalizations
to many channels are treated.

I. INTRODUCTION

In atomic and nuclear scattering, it is often
desirable to use Slater (Laguerre) or oscillator
(Hermite) basis functions. This paper is the first
of several in which we present a new method for
performing scattering calculations entirely with
square-integrable (L') functions. We develop tech-
niques in which we attempt to take full advantage
of the analytic properties of a given Hamiltonian
and also of the L' basis which is used to describe
the wave function. Specifically, in what follows,
we develop the basic theory using Laguerre-type
basis functions appropriate for s-wave scattering.
In the following paper, ' we will apply the method
to electron-hydrogen elastic ~-wave scattering
below the n = 2 threshold, and to inelastic radial-
limit scattering calculations above and below the
ionization threshold.

our basic approach is to treat an uncoupled
Hamiltonian 00 exactly in the space spanned by the
complete I.' basis. The remaining part of the
Hamiltonian (i.e. , the potential) is approximated
to some desired degree of accuracy, V'PP"", such
that the resulting Hamiltonian Ho+ V'PP"" is also
exactly soluble in the complete I ' space. Phase
shifts and cross sections can then be extracted
from the resulting wave function ~I)~. This wave
function has the desirable property of being an
exact solution to a well-defined scattering Hamil-
tonian. If V' "" is a good representation of the
exact potential, and if second-order accuracy is
desired, then g~ may be considered as a trial wave
function in the standard variational formulas.

By an exact solution y~ to the Hamiltonian H,
+ V, we mean of course,

(0, +v -E)ly ) =0.

In a space of complete L' functions (P„j, where

ys is expanded as Xs =Q,"b„g„, Eq. (1.1) is equiva-
lent to

for all m =0, 1, 2, . . .~. For most potentials con-
sidered in scattering theory, it will not be possible
to satisfy Eq. (1.2).

However, consider the basis set (P )"=, such
that

y (r) =(Zr)e ~"~'L' (zr),

where ~ is a scaling parameter. In Sec. IIA, we
show that by writing ros =Q,"hog„, the similar
equation

(P„l (H, —E)lxos) =0, m =0, 1, . . . , ~

where H, = ,'d'/dr=', leads to a soluble Jacobi-
matrix problem for the 6„'s. The properties of
the Jacobi matrix representation of Ho in the L'
basis play a central role in our method. For this
reason we call our approach the Jacobi (or J-)
matrix method.

In Sec. II 8, we construct a solution g~ for

where V" is an N~N matrix representation of V

in the set (Q„j, thus achieving the goal of obtaining
an exact solution to the Hamiltonian with an ap-
proximating potential. In Sec. III, we employ this
wave function as a trial function in the Kato varia-
tional formula. ' In Sec. IV, the necessary exten-
sion to multichannel scattering is developed. In
Sec. V, a brief discussion is presented.
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J'b =0 (2.1}

II. POTENTIAL SCATTERING

A. The unperturbed Hamiltonian Ho

Our task in this section is to determine the
coefficients 60 of the expansion of go+ in Eq. (1.4)
in terms of our basis set [P„}.Substituting the
expansion for yz in Eq. (1.4) results in an infinite
matrix problem for the set fb„'}:

independent solution to the three-term recursion
relation (2.3a}. Specifically, we wish to find a
set Ic„}such that the function

behaves as coskr when r-~. Since the c„'s form
an independent solution to (2.3a), they satisfy the
following equation:

where 4 is the matrix 2%en —cn-1 ~n+ 1

with the boundary condition

2xc, —e, =P&0.

(2.3c)

(2.3d)

= (-1/X)(n+ 1)(m + 1)(E+—,
' X')

x (2x5„—5„,-5„„), (2.2}

It is easy to verify, because P is nonvanishing,
that the differential equation satisfied by C(r) is

where x = (E -—,'a')/(E+&'). Note that J is an
infinite tridiagonal (Jacobi) matrix. Equation
(2.1) is thus a three-term recursion relation for
the s„'s [where ho = s„/(n+1)] of the form

(2.6)

By employing the Green's function g(r, r')
= (2 sinkr& coskr&)/k it can be readily shown that
the solution to (2.6) is

n n-1 n+i =0, for 8

with the initial relation

2xs —s, =0, for n=0.

(2.3a)

(2.3b)

2pc(r) =- z+—
8

r
sink'r'e ~" l'dr' cosk'r

s„=sin(n + 1}8, (2.4)

where cos8=x =(E--,'iP)/(E +X8'). &„/sin8 is then
an nth-order polynomial in x. A similar analysis
of H, in the basis (P„}has been provided by
Schmartz. ' The expression for g~ then becomes

Equation (2.3a), being a second-order difference
equation, naturally has two linearly independent
solutions. However, Eq. (2.3b) provides a bound-
ary condition and thereby completely determines
the s„'s. Equation (2.3a) is the recursion relation
satisfied by the Chebyschev polynomials, ' and
Eq. (2.3b) gives us those polynomials of the second
kind. Therefore, we may write

+ coskr' e ""~'dr' sintr
r

C(r) = -p(coskr —e ""i'). (2.7)

The requirement that C(r)- cos(kr) as r-~
means that P = -1. %'ith this value for P, it is
easily verified that c„=-cos(n+1)8 satisfies Eqs.
(2.3c}and (2.3d). Therefore C(r) now reads

C(r}=coskr —e "' '

vrhich, upon carrying out the integration, reduces
to

cos(n+1)8
g+1 (2.8}

sin(n+1) 8
Pl + 1

(2.5)
Note the interesting property that C(r) behaves
regularly at the origin.

Since we have now solved Eq. (1.4) exactly in the
basis set, it is not surprising that the s„'s are
simply the expansion coefficients of sinkr (with
E =-,'k') in terms of the P„'s.' Note that although
we have used a discrete (I ') basis, H, nonetheless
has a continuous spectrum. This stems from the
fact that the set (P„}is infinite and complete in
r on [0,~].

For the purpose of Sec. IIB, ere will require an

8. Adding an approximating potential

One way to introduce an approximation to V is
to truncate the representation of V in the basis
$P„}to an Nx& matrix; we call this new potential
VN.

V„" = „rVrg rdr, nm~E-1

otherwise. (2.9)
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Our task is to solve

(y.~(a, +v"-z)~y, )=0, m=0, 1, . . . ,

where Ps =Q„=,d„P„(r}. Schematically, these equations look like

(2.10)

0 (H-1) .
0 xxxxxx x~

XXXXXX X
XXXXXX X I

I
0

XXXXXX X)
XXXXXX X)

(x -1) x x x x x x x i x
) 0

XXX
0

~

xxx
) 0
I

)

dN
0

0

(2.11)

These equations can be solved in a number of
ways. For example, one may use R matrix par-
titioning technique similar to Feshbach's method, '
treating the infinite Jacobi "tail" of the matrix by
folding it in as an optical potential. However, we
approach the problem from a different viewpoint,
noting that V" couples only the first N functions

P, m = 0, 1, . . . , N —1, to each other. Thus out-
side the space spanned by these N basis functions,
we expect the sine-like and the cosine-like solu-
tions, derived in Sec. IIA, to be valid. Therefore
we write our solution as

(2.12)

where 4 =Q„":oa„P„, S is the sine-like expansion
Xso of Eq. (2.5}, and C is the cosine-like solution of
Eq. (2.8). The unknown coefficient t, then, cor-
responds to the tangent of the phase shift caused
by V". Since the a„'s are yet to be determined, we
can absorb the first N terms in the expansion of
8 and C into the a„'s, writing

(2.13}

cos(n+1)6
n+1 (2.14c)

P (J~„+V"„„)a„=0,m =0, 1, . . . , N —2.

In case two, we have the equation

(2.15a}

The two forms (2.12}and (2.13) for gs are, of
course, equivalent, but (2.13) is more convenient.

We now proceed to verify that the (K+ 1) un-
knowns Ia„, t j are sufficient to determine an exact
solution to the Hamiltonian 8, + V". Equation
(2.10) imposes a restriction on fs for each m,
m =0, 1, . . . , ~, %'e group these restrictions into
four cases: first, the N-1 conditions arising
from m =0, 1, . . . , N —2; second, the case for I
=N —1; third, the condition for M=X; and last,
the remaining set of conditions arising from m

=%+1,N+ 2, . . . , ~.
The first case leads to the N -1 equations

where

N-1

4 (r) = Q a„y„(r), (2.14a) In case three, V" is no longer operative. Ne con-
sequently get

CN CN
N, N-1~N-l + N, N ~ 1 N, N+1 ~

sin(n+1) 8 Q„r,
N 8 + 1

(2.14b)
N+1

N'N Q+ 1 N, N+1 ~+ 2
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which, upon using the three-term recursion rela-
tion satisfied by both c„and s„, reduces to

»,»-ls»-1». »-l(c»-l/N} t »» l(s-»-i/N}

(2.15c }
So far we have (N+1) equations in (N+1) un-

knowns. It would seem that we are left with an
infinite dumber of equations arising from case
four with no corresponding unknowns. Therefore,
if me claim that g=4+S+tC is an exact solution
for 0, + V", then the remaining case-four equations,
for m =N + I,N +2, . . . , ~, must be automatically
satisfied. Fortunately, this is the case, because

(y.i(a, +V"-E) ie+S+tC)=(y„i(a, -E)iS+tC)
(2.16}

if m~N+1. Equation (2.16}follows from the fact
that V" is defined to be zero in this region of
Hilbert space, and because (Ho-E) is tridiagonal
in the basis I p„}, and therefore does not connect
the N terms in the expansion of 4 or the first N
terms in the expansion of S and C with (1) for
e &X+1. Furthermore, for each m&8+1 the
right-hand side of Eq. (2.16) leads to the three-
term recursion relation (2.3a) and (2.3c) for the
coefficients s„'s and c„'s. Therefore the right-
hand side of Eq. (2.16) vanishes identically. Thus,
we now have exactly (N+1) equations to determine
the (N+1) unknowns ft, a„}. Hence the form
(2.13) for g» is indeed capable of giving an exact
solution to (2.10).

Equations (2.15) can be written in matrix form as

(&+v), , ~ ~ (z+ v), „,
(~+V}x.o ' ' ' (~+V4,»-o

0

(J+V)», o
~ ~

(~+ V)»-x.o
' '

(~+V}o.»-i
(

I

(&+V), „, (
0

I

I

(z+v)„,„,~ 0
( + V)»-1I»-I [» 1~~C/(N+ 1)

)
-~».»-i&»-x/N

aD

a~

0
-4», »s»/(N+ I )

(2.17)

Notice that the large X&Xblock of the coefficient
matrix is composed of the matrix elements of
(Ho+ V" —E) in the first N Laguerre basis func-
tions. To perform a calculation, me need merely
augment this N~N matrix with the extra rom and
column shown and with the right-hand side driving
term Equat.ion (2.17) can be immediately solved
for t by standard techniques. An illuminating
formula for tan6 =t can be obtained by prediago-
nalizing the inner NxN matrix (Ho+ V" -E) with
the energy-independent transformation 1, where

[I'(H, + V» -E)I"]„.= (E„-E)&„.. (2.16)

Augmenting I' to be the (N+1)x (N+1) matrix

(2.19)

and applying it to Eq. (2.1V), we obtain

[sinN8/N]+r(E) J„„,[sin(N+1)8/(N+1)]
[cosN8/N]+r(E) J»,», [cos(N+1)8/(N+I)] '

(2.20)

where r(E) =Q":o'I », /(E —E). In arriving at
(2.20), we have used the fact that s„=sin(s+ I)8

and c„=-cos(a+1)8. Note that the entire energy

tan5(E. ) = tan(N+1) 8(E.). (2.21a)

Also at the N 1points -E„, where r(E„)=0, we

have

tan6(E„) = tanN8(E„). (2.21b)

III. KATO CORRECTION

The results of Sec. II are sufficient for obtaining
the exact solution g~ and the exact tan& =t for the
Hamiltonian HD+V" at energy E. Compared to the
wave function and the phase shift for the exact
Hamiltonian HD+V, p~ and t in general contain
first-order errors. However, we may reduce
these errors to second order by employing g~ as
a trial function in the Kato' formula. If we write

g, for Ps of Eq. (2.12) and tan&, for tan6 of Eq.
(2.20), then the Kato formula reads

2
tan&, =tan&, —— y, (E —H)y, dr,

D

(3.1)

where tan~, is the stationary result.
Since (H, +V" -E}g,=0, we can write the last

equation as

dependence of the phase shift is given analytically
by Eq. (2.20). It is interesting that at the N Harris
eigenvalues' E, tan~ becomes simply
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IV. MANY-CHANNEL SCATTERING

In this section, we extend the previous potential
scattering formulas to allow collision with targets
possessing internal states. Basically we will be
treating the close-coupling equations, employing
an s-wave I.aguerre set to describe the projectile
wave function in each channel. As in the close-
coupling formalism, we can treat exchange by the
addition of a nonlocal potential.

Assuming the target possesses coordinates which
we collectively call p, the Schrodinger equation
for the many-particle wave function 8 reads

1 8
«, («) - z,„, &( ~) ~-«)e =«0. (4.1)

In the above equation, H~ is the given target Ham-
iltonian, r is the projectile coordinate, and V(p, ~)
is the interaction with the target constituents. %'e

assume that the target Hamiltonian posses a dis-
crete set of I «eigenfunctions y. „such that

&pXcf =&cf Xo.y
= &g ~ ~ ~ y ~ (4.2)

If the target has a dense or continuous spectrum,
the method of pseudotarget states may be em-
ployed. ' This is done in the following paper for
the case of electron-hydrogen scattering.

As in the one-particle case, we will not be able
to solve Eq. (4.1) for 8 exactly in the Hilbert space
which is spanned by the set

[lx.&I4."'&], ~=1, . . . ,

n=0, 1, . . . , . {4.3)

The functions [(t&("&] are the s-wave I aguerre set

y("&(r) = (~ ~) -""' 'I, '(X r). (4.4)

Here we have allowed the projectile basis to be
channel-dependent through the scaling parameter

%e again truncate V by defining an approxi-
mate potential V which has the matrix elements

{4.5)

for e, a'~N, and n~@ -1, n'~N„. -1. %e de-

tan5, =tan6, +(2/h)(q, l(V - V")l()),&,

-= tan6, + (2/a)((I, l
V"

l |t,&.

Equation (3.2) is )ust the distorted-wave Born
formula, where V" is the distorting potential and
V~ is the perturbation which has been excluded
from the calculation of tan6, . In order to perform
the integral in Eq. (3.2}, bound-free and free-free
matrix elements of the potential are required. An
approximation to the Kato correction (3.2) which
involves only bound-bound matrix elements of V
is considered in the next payer. '

cos (s + 1 ) 8«( ((«~&
n

n=NC

8 -cos '[(O' —'&(.Q/(h'+-'X')]

The internal function 4 „is given by

Nc Ncf& 1

ps, ~,4(&
ft 0

(4.7)

The a"i„'s are the expansion coefficients to be
determined. The number of these coefficients is

The remaining unknowns R„„are of
course the elements of a reactance matrix which

may be used to determine the S matrix as

3 =(1+f[R])(I —f[R])-', (4.9)

where [R] is the N, xN, open channel part of R.
The sum in (4.6) should formally be extended to

infinity, but since V-=0 for any channel &N„
R«. vanishes for a or a'&N, . Actually the sum
need only be over open channels. But if we do
things this way, we place the burden of describing
the exponentially decaying closed-channel asymp-
totic behavior on the internal function 4 „. Near
the threshold of channel +' =N, +1, however, the
decay will be so slow that 4 „will be incapable of
properly describing the asymptotic behavior. For-
tunately, we can allow the sum to include the
closed channels up to N, because we can find func-
tions C (r) that can describe the asymptotic be-
havior in the closed channels in the same way
that C„(r}and S„(v) do for open channels. The
proper asymptotic form in a closed channel &

is e '~~+. A function which has this asymptotic
form can be obtained by combining the expressions
for S„and C for imaginary ik = i(2lE„-El)'~'.

fine V '=-0 otherwise. The number N„ is the
truncation limit in the channel e and N, is the
total number of channels which are allowed to
couple.

To determine an 8 matrix, we will need No in-
dependent solutions e„of Eq. (4.1), where N, is
the number of open channels. In the same spirit
as in the single-channel case„we expand e„as

Hg
Xa~ a V +a'a'XN'C a'

a a ~k ~i ~k
f&f Cf f&f

(4.6)

The quantities k are the channel momenta k„
= (2lE„—El }'~I, where E~ is the channel energy
appearing in Eq. (4.2}. Analogous to the one-
channel case, the 8„'s and C 's for open channels
(see below for closed channels) are

sin(s + 1)8„
8+1
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The resulting function and its expansion in terms
of the basis Set ls given by

(&) e-k~r e- k~r/2

by 4
We wish to show that 8 of Eq. (4.6) is capable

of describing the exact solution for the problem

( 1 )Ils (tl+I)'g~
y( (X)

n+1 (4.10a)
820 —— +V-E 8 =0.r 2 bra CK

(4.11)

for k ~X„/2 and where

k'„+ x'/4
7j~ = cosh

For k„& A. ~/2 the formula reads

(4.10b)

The form (4.10b) is really not needed, since for
k„& A. /2 the decay is rapid enough to be described

We demand that all projections by (lt,P„"'I from
the left vanish:

8
/gggft)„' '~ H~ ——

2 +V —E 8 )=0. 4.12

We need not consider the g~'s for P - N„ for in
this case it is easy to show that the left-hand side
of (4. 12) is identically zero. Consider now a
typical projection for p &N, . It can readily be
written as

8N g~ N'~t- ~

4 (8) (F E ) ~ +
4

(Q) S~ ng RO, 8CB ~Q Pt8) QBlx Q nc( P(cg )
gr2 8 ~ 8N ~ +

~q/a +
~~/ Cf n

n=O 8 o."=I n=o
(4.13)

We will not consider the four cases for m as is
done in the single-channel case, but show instead
that for m &lV'8 the left-hand side of (4.13) also
vanishes identically. First, the potential term
vanishes by the definition of V for m &Ra. Second,
[=,'(s'/sr') —(E E8)] is trid-iagonal in the (p' 'j.
Thus, there will be no overlap between (t)' ' and
the first Nz functions p„'8'. Then (4.13) becomes

8 S 5—(E —E ) + ' ' =0. (4.14)
2 gr2 8 y&/2 +

y& i2
8

But this is automatically true for m &NB, in direct
analogy with the single-channel case, because of
the three-term recursion relation satisfied by the
coefficients of S8 and Cs. The remainder of the
equations; i.e. , Eq. (4.13) for m ~ 1Vs, lead to the
same number of conditions as there are unknowns.
The totality of these equations can be organized
in a similar fashion as done in the form (2.17),
with the L' matrix elements of V appearing in a
large inner block. One extra row' and column are
added to this block for each channel n~ N, . The
right-hand side driving term and the solution
"vector" containing the aa„'s and R„.'s have as
many columns as open channels. The R matrix
can then be obtained by solving the resulting linear
equations. As before, the calculation may be
facilitated by a prediagonalization of the inner
block using an energy-independent transformation.

U. DISCUSSION

The comparison between the approach taken in
this paper and the R-matrix method is considered
first. In R-matrix theory, Hilbert space is di-

vided into two parts, an inner coordinate-space
up to a radius A and the remaining space from
A to infinity. In the present work and in the spirit
of Feshbach's generalization of R-matrix theory, '
we have divided the Hilbert space into two function
spaces. %'e have an inner space consisting of
those functions coupled by V"(p„, n =0, 1, . . . , %-1),
and an outer space in which the Hamiltonian is
already solved and consists of the remaining func-
tions (p„,n=X, . . . , ~). It is interesting to com-
pare the %'igner R matrix which has the form

with what we have designated r(E) in Eq. (2.20):

If the set (g„j were orthogonal, l~, „would just be

Note that I„,„and y„are both the components
of the wave function tl)„at the boundary of their
respective inner spaces.

Recent work seems to indicate that the R-matrix
method works best using eigenfunctions of the
scattering Ho as a basis. '0 In this basis„H, is of
course diagonal, and may be treated exactly by
the addition of the Buttle correction. In our basis
set, H, is tridiagonal and is also treated exactly.
Qther types of basis sets can also be used in the
R-matrix method. In general, however, the ability
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It is easy to see that T possesses nonvanishing
matrix elements only in the same I.' subspace as
that of V". This means that we can solve the
finite matrix problem

Then, the on-shell T matrix is obtained as
N- j.

(5.1a)

(5.1b)

where ~E,) is the properly normalized continuum
eigenfunction of Ho. Compared to the approach
taken in Secs. II-IV, the separable approach leads
to a less convenient algorithm. The kernel of Eq.
(5.1a) is energy dependent and must be regener-
ated, and the linear equations must be resolved,
at each new value of the total energy.

Finally, we compare the Jacobi-matrix approach
to the recently developed L,' Fredholm tech-
niques. "" Both approaches enjoy the advantage
of requiring only L,' matrix elements of the poten-
tial. The I.' Fredholm method employs the devices
of analytic continuation, "dispersion correction„"
and contour rotation. " These techniques can be
viewed as supplying, in an approximate fashion,
information about the continuous spectrum of H,
which is not explicitly contained in a finite I '
matrix representation. Unfortunately, the amount
of information concerning H0 that can be extracted

to account for H, exactly is lost. The same is true
in the present method, in the analogous situation
when other basis functions not belonging to the
tridiagonal set I P„) are used.

As in the R-matrix approach, we expect to find
no Kohn-type pseudoresonances" appearing in
computed cross sections. Because in some sense
V~ uniformly approximates V, we expect g~ to
uniformly approximate g a,s N- ~. A series of
ever denser, but narrower pseudoresonances as
found by Schwartz in this limit seems rather un-
likely. This conjecture has been borne out by
extensive calculations, some of which appear in
the next paper. '

It is interesting to note that our truncated poten-
tial V" leads to a sepa, rable kernel" in the T-
matrix equation

r =v+vc'r.

decreases with the number of basis functions per
channel, and this can cause difficulties when basis
size is a restriction. On the other hand, approxi-
mate treatment of H, can be advantageous when
for exa.mple channel threshold details are of no

interest or are unwanted artifacts of particular
models. In the 4-matrix method, H, is accounted
for exactly independent of basis size. Thus we
start with a large part of the problem "diagonal-
ized" and the full analytic structure of the 8 ma-
trix is built into the problem, raising the hope
that quite small basis sets will be sufficient for
many problems. The analytic nature of the solu-
tions allows variational corrections to be made
and provides a solid footing for further theoretical
work.

%e now summarize the steps necessary to per-
form a calculation with the J-matrix method.
First„ the potential V" (or V) is evaluated in the
Laguerre basis set; and is then added to the N&R
tridiagonal representation of Ho-E. To this inner
matrix we add one extra row a.nd column, for each
asymptotic channel, containing matrix elements
of H, and the cos(n+1)8 terms The. right-hand
side "driving" terms are similarly constructed
with the sin(n+1)8 terms. The resulting linear
equations can be solved efficiently if a prediago-
nalizing transformation I' is applied to the inner
matrix as in Sec. II. If desired, the matrix ele-
ments of 8, +V" -E ean be evaluated in the Slater
set (Ag"e ~ " ', n = I, 2, . . . , lV, since these are
just transformed Laguerres. Then a different
transformation I" will be necessary to prediago-
nalize the inner matrix.

In the following paper we apply the method pre-
sented here to s-wave electron-hydrogen scat-
tering model. The generalization of the method
to all partial waves for both Laguerre and Hermite
basis sets has been derived and will be the subject
of a future publication. The ease where H, con-
tains the term o.'/v (i.e. , the Coulomb case) is
also worked out for Laguerre sets.
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