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Rigorous upper and lower bounds to dipole oscillator strengths have been calculated for 17 of the
low-lying singlet and triplet transitions in He and Li* using accurate Hylleraas-type wave functions of
some 135-138 terms. About a third of the calculated f values can be guaranteed to 1% or better, and
in the best case (Li* 23S —2°3P) the bounds tighten to about 0.05%, some two orders of magnitude
better than corresponding experimental determinations. By comparing with an extensive compilation of
experimental results, we find the quality of the rigorous bounds to generally match or exceed that of
experimental determinations, and about a dozen experiments can be ruled out entirely. Trends with
respect to nuclear charge, spin multiplicity, and principal quantum number are examined, and special
emphasis is given throughout to sources of uncertainty in the calculated oscillator strengths which are

revealed by the error-bound formulas.

I. INTRODUCTION

From both theoretical and experimental stand-
points, accurate determinations of atomic os-
cillator strengths (f values) continue to be of
considerable interest. Recent advances in lab-
oratory plasma physics and in satellite astronomy
have reemphasized the importance of these fun-
damental atomic data. In the astrophysical do-
main, accurate oscillator strengths provide in-
formation on the abundance of elements in the
spectrum of the solar corona and chromosphere,
and aid in the establishment of models for stellar
atmospheres where highly excited states of highly
ionized atoms may be of particular importance.!
In the laboratory, oscillator strengths are basic
parameters in the study of shock waves, dis-
charges, and electron temperatures in plasmas.?

Oscillator strengths are determined experimen-
tally by a variety of techniques of uneven accu-
racy.® The older emission and absorption meth-
ods, by which the bulk of the experimental data
has been obtained, require a knowledge of the
number of radiating or absorbing species, and
as such are subject to rather large errors (par-
ticularly systematic errors) from inaccurate
vapor-pressure data, inadequate spectral reso-
lution or scattered light, and non-Boltzmann
population distributions. The newer lifetime
measurements, while applicable to fewer spec-
tral lines and generally more difficult to carry
out, seem less susceptible to large systematic
error. Nevertheless, even in the fruitful applica-
tions of the beam-foil techniques,* some system-
atic error may intrude through repopulation of
a given level by cascades from higher levels.
Thus, in spite of improvements in the experi-
mental methods, there are few experimentally
determined f values appearing certain to within

|©

5%, and an estimated accuracy of 10-20% seems
more typical.® Of course, relative oscillator
strengths of much greater precision are readily
obtained in the emission and absorption methods,
and a few determinations of high absolute accu-
racy would be sufficient to calibrate the experi-
mental methods and place large quantities of such
data on a firm absolute basis.

Many theoretical methods have also been de-
veloped to calculate oscillator strengths, but the
estimated errors (when indeed they were esti-
mated at all) have tended to widely exceed those
of experimental studies.® Perhaps the most trou-
blesome aspect of such calculations is that the
accuracy of the calculated oscillator strength
is largely conjectural. Approximate wave func-
tions chosen from an energy-minimization cri-
terion may be wholly inadequate in describing
regions of configuration space which are impor-
tant for the oscillator strength, and one can thus
be led to erratic or spurious values.”

Traditionally, attempts to judge the accuracy
of computed f values have resorted to three main
lines of argument.

1. Agrveement with experiments. Seen even in
its best light, this criterion clearly fails to re-
solve the accuracy question to within the limits
set by the experimental errors themselves. More-
over, in cases where theoretical efforts might
provide genuinely.new information (as opposed to
modest interpolation, extrapolation, or mere
reproduction of existing data), this criterion
would be unavailable in practice as well as un-
satisfactory in principle.

2. Agreement of “length,” “velocity,” and
“acceleration” forms of f values. As is well
known, these various forms of the oscillator
strength would be equivalent if the true wave func-
tions were employed, but will generally disagree
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when computed with approximate wave functions.®
This furnishes a very useful criterion of inaccu-
racy, in the sense that one is properly alerted

to skepticism if these forms disagree widely
(though there is still the problem of judging which
form might be least error prone). But experience
shows that one cannot reliably employ this cri-
terion in the opposite sense, i.e., to conclude
that the quality of the calculations is good because
the several forms happen to agree. Examples
now abound where calculations which provided
good agreement between, say, “length” and “ve-
locity” forms were nonetheless shown to be great-
ly in error, and it is now generally recognized
that such fortuitous agreement can occur under
rather weak conditions.®

3. Apparent numevrical convergence in calcu-
lations. Persuasive evidence of reliability can
sometimes be offered when numerical convergence
appears to set in as the variation calculations
are pressed toward the limit of mathematical
completeness. The foremost examples of such
extensive calculations are the results of Pekeris
and co-workers (based on correlated Hylleraas-
type wave functions of hundreds or thousands of
terms), which have apparently established f val-
ues for members of the helium isoelectronic
series with an estimated accuracy of “1% or
better for the large majority of the transitions.”*°
Careful studies of the convergence patterns, how-
ever, may be impractical even for those few
systems where they might be numerically feasible.
More frequently, the source or nature of any
apparent numerical convergence is completely
unknown. The well-known calculations of Taylor
and Parr furnish an instructive example in which
the apparent “numerical convergence” settled on
a spurious limit.!

Recently, one of the authors proposed a pro-
cedure for calculating rigorous upper and lower
bounds to dipole oscillator strengths.’? The meth-
od was illustrated with simple variational trial
functions on the hydrogen-molecule ion. In the
present work we have used highly correlated wave
functions consisting of some 135-138 terms to
investigate the transitions of the two-electron
atoms He and Li*. We have obtained rigorous
error bounds of considerably less than 1% (down
to about 0.05% in the best case) for several impor-
tant singlet and triplet transitions of both He and
Li*, while other transitions are guaranteed to
within 5-10%. We are able to give a detailed
breakdown of the error sources for each transi-
tion, based on the specific quantities which ap-
pear in the error-bound formulas.

In Sec. II we review the basic equations for upper
and lower bounds to dipole oscillator strengths.

Section III describes the method of calculation,
including a description of the wave functions, the
determination of overlap, and the handling of
important terms within the error-bound formulas.
The numerical results are presented in Sec. IV,
while Sec. V comprises an error analysis of the
calculations, including a detailed discussion of
the interdependence of error-bound quantities.
Section VI presents some final conclusions.

II. UPPER AND LOWER BOUNDS

For the electric-dipole transition from state
¥, to state ¥, with respective energies E, and
E,, the oscillator strength f,, may be expressed
in several equivalent forms when employing the
true wave functions. We have employed the length
formulation in which f,, is expressed in terms
of the usual dipole-moment operator [ for N elec-
trons (hartree atomic units, Z#=e=m=1, are used
throughout),

N

- -
M= rn
n =1

in the form

T =2(Ep —Eq) [(¥olp, ¥, 12, (1)

where the incident radiation is taken polarized
along the z axis. We assume the energy levels
E, and E, are known accurately, thus leaving
the weight of the calculation entirely upon the
transition moment y,, ,

wap = (Walbel ¥p) . ()

Such an assumption is exceptionally well justified
in the case of two-electron atoms, for which
Perkeris and co-workers have calculated highly
accurate nonrelativistic eigenvalues.

In terms of approximate wave functions &,, ®,,
the approximate transition moment w,, is

Wap = Ballie®y) . ®)

The following additional quantities are required
for the calculation of error bounds: the overlap
integrals S,, S, between the exact wave functions
and their approximate counterparts,

Se=l{ ¥l @01, Sp=1(¥,1 &)1, 4)
the corresponding overlap errors €,, €,,

€a=(1-S2, &=(1-$3)"2, (5)
the “uncertainty” 4,

A% =@ | pil &)l (8)

and the integral (¥,|u2|¥,). Upper and lower
bounds to the transition moment w,, can then be

calculated from the inequalities derived previously,?
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M

The subscript + signs in (7) indicate as usual that
the corresponding quantities should be replaced
by their upper (+) or lower (-) bounds. A sub-
sidiary restriction assumed in the derivation of
(7), that the overlap S, be sufficiently near unity
to satisfy

€a+/sa- s {bab /Aab ’

is easily met by the wave functions considered in
this work.

III. METHOD OF CALCULATION
A. Wave functions

The wave functions were obtained by a variation-
al solution to the Schrédinger wave equation, JC¥
=EV¥, where JC is the nonrelativistic spin-inde-
pendent Hamiltonian,

zZ Z 1

=_i¢2 va < 8
==2VYyT2Vy ™ -+, ()
Yy Y2 72

and Z is the nuclear charge. The trial wave func-
tions were of the form

®=) cxxx, (9)
K

consisting of linear combinations of Hylleraas-
type basis functions containing positive integral
powers of r,, r,, and the interelectronic distance
¥,,. The basis functions were specifically of the
form

xx(1,2)=(1£P)rivirt, Y)Y (2)e-tT1-""2,
(10)

where P, is the permutation operator, Y are
the usual (m=0) spherical harmonics chosen to
give either S (I =0) or P (I =1) symmetry, and
the singlet and triplet spin states are associated
with the inclusion of the plus or minus sign, re-
spectively. We have ordered the terms of (9) in
a conventional manner according to the value of
w=17+j+k. Certain terms containing the highest
values of i, j, or (especially) £ were thought
less likely to be important and were deleted in
order to obtain maximum values of w within the
computer storage limitations. The restrictions
j=1 for S-state singlets and j> i for S-state trip-
lets were imposed to ensure the linear indepen-
dence of the basis set as £§=17. The number of
terms in the final wave functions, the resultant

TABLE I, Number of terms, values of w, and restric-
tions upon indices comprising the final wave functions
for states of He and Li*,

States No. Terms w Restrictions
1g 135 10 i,j<9, k<6
3g 138 11 i,7<9, k<7

1.3p 137 9 i,7<8, k<5

values of w, and the restrictions on indices are
summarized in Table I.

Although in principle we could have varied the
linear as well as the nonlinear parameters to
optimize both upper and lower bounds in (7), in-
vestigations on smaller wave functions showed
small profit from this procedure. The benefits
certainly would not be significant for the more
complex functions considered here. Instead, the
linear coefficients cx were obtained in the usual
manner from appropriate secular equations, which
were solved by an “inverse-power-moment” al-
gorithm for eigenvectors and eigenvalues. The
nonlinear parameters £, n were roughly optimized
for the 'S ground states. For other states, non-
linear parameters interpolated from available
literature'® (based on wave functions of comparable
size and constitution) proved nearly optimal, and
their adoption resulted in significant savings in
computer time. Table II contains the final val-
ues of the nonlinear parameters ¢ and n for each
state, as well as the energy eigenvalues, the over-
lap errors €, and other expectation values to which
we will refer later. The underlined portions of the
eigenvalues are those digits which differ from the
accurate eigenvalues as calculated by Pekeris
and co-workers.!* The eigenvalues calculated
here are seen to be of high quality, especially
for states which are lower roots of the secular
determinant, and the calculated wave functions
are considerably more compact than corresponding
Pekeris wave functions of equivalent accuracy.

B. Determination of overlap and
other error-bound quantities

It is evident from inequalities (7) that overlap
between the approximate and true wave functions
is an important constraint upon the oscillator-
strength bounds. The upper bounds to overlap
can be simply set to unity, but the effective use
of (7) demands a strenuous effort to achieve the
best possible value for the lower bound to over-
lap. To calculate this lower bound, we have em-
ployed Weinberger’s formula for overlap,'* which
uses the higher roots J; of the secular deter-
minant and can be written in the form
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TABLE II, Nonlinear parameters £ and 7, energy eigenvalues, overlap parameters €, and
expectation values (u2)?2 for states of He and Li*.

Atom State £ n Energy Eigenvalue® € (x107% e ?)

He 1ls 2.60 2.60 —2.903724 3662 0.1144 0.752497¢
21s 2,00 0.98 —2.145 973 6783 1.8104 10.6844
3!s 2,00 0.62 —2.0612702515 6.6819 57.34
23s 2.00 0.94 —2.,175229 3740 0.1701 7.603 6939
2'p 2.00 0.88 -2,1238430314 0.7700 18.699 231
3lp 2.00 0.56 —2.055 145 6017 4.6924 109.996 120
a'p 2.00 0.37 ~2.031065 6469 15,4549 365.264 382
2% 2.00 0.88 -2,133164 1620 0.5353 15.479716
3% 2.00 0.56 —2.058080 5852 3.6879 98.254 214
4°%p 2.00 0.39 —2.032 3217663 12.2281 336.4174173

Li* 1ls 3.90 3.90 —17.279 913 3960 0.0810 0.286017¢
21s 3.00 1.71 ~5.040 8764018 0.8932 3.114 444°
23%s 3.00 1.56 —5.110 727 3684 0.0904 2.503557¢
2'p 3.00 1.65 —4.993 3510230 0.3751 4.787 617
3'p 3.00 1.11 —4.720205 5999 2.2033 27.629 928
2°%p 3.00 1.65 —5.027 7156590 0.2778 3.968165

aFor S states, (u2)= (y,lu?ly,) is taken from the Pekeris calculations (see text).
bThose digits which differ from the accurate values are underlined. See d and also
K. Frankowski and C, L. Pekeris, Phys. Rev. 146, 46 (1966).

¢C, L, Pekeris, Phys. Rev, 115, 1216 (1959).

dy, Accad, C. L. Pekeris, and B, Schiff, Phys. Rev. A 4, 516 (1971).

eC. L, Pekeris, Phys. Rev. 126, 143 (1962).

En-l-L"'Jk ﬁ Eu‘J& Jy—E,

Eu+1_Ek v=0 Eu"Ek Jv—Jk ’
(v= k)

(Te|@p)? 2 (11)

where n is the largest integer for whichJ, <E,,,.
Any roots of the secular determinant which cor-
respond to states higher than the one of interest
will increase the Weinberger bound to overlap,
provided these roots still interleave the true
eigenvalues. The true eigenvalues E; were ob-
tained from highly accurate nonrelativistic cal-
culations,'® and eigenvalues which appeared cer-
tain to less than 12 decimals were arbitrarily
rounded downward by one unit in the last secure
digit. Overlap calculated with inequality (11) gave
significant improvement over those obtained using
the well-known Eckart criterion's; in addition,
formula (11) is applicable to excited states for
which Eckart’s formula is no longer valid. Table
III lists some comparisons of the Eckart and
Weinberger formulas for states where both are
still valid. The overlap-error parameter

€= (1 __32)1/2

is convenient for such comparisons, the best over-
lap values corresponding to the smallest € values.

Another important feature of the calculations
concerns the integrals (¥,|u2|¥,) and (®,|u2|®,)
over the operator

ui= (2, +2,)%.

We take ¥, to be an S state, and use the full spher-
ical symmetry of the wave function to write

(Wl u21Wa)=4(T, 172 |, ) =3(¥,lri, | ¥,) . (12)

Since (12) involves only ordinary expectation val-
ues, little loss of rigor results from the replace-
ment

(TaluZl¥,) =3(@al r1] @) - 3(2al 71,120, (13)

to be calculated in terms of the highly accurate
wave function &,, or the still more accurate wave
functions of Pekeris and co-workers. In the pres-
ent work, for example, the uncertainty in
(¥,|p2|¥,) is probably several orders of magni-
tude smaller than the uncertainty in the oscillator
strength. For a completely rigorous result, an
upper bound to (¥,|u2|¥,) might be calculated
with the rather weak Rebane-Braun inequality!®

TABLE III, Comparisons of the overlap parameter €
for several states of He computed by the Eckart and
Weinberger formulas.

€ (x1073) € (x1079)
He State Eckart Weinberger % Improvement
1ls 0.120 0.114 5
2'p 0.890 0,770 13
23s 0.200 0.170 15
2%p 0.616 0.535 13
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N
E,-E,’

o=

(o luil¥y) < (14)

or generalizations thereof for excited states,!?:!”
but this was deemed superfluous in the present
application. The error-bound formulas (7) are,
in any event, quite insensitive to the value adopted
for (¥,|u2|¥,),, and even the use of the weak
Rebane-Braun criterion (14) would not significantly
detract from the accuracy of the calculated error
bounds we report.!®

The integral (®,|u%|®,) over the P-state ap-
proximation cannot be simplified as in (12), due
to the lack of spherical symmetry inherent in the
P -state wave functions. Such a simplification was
unjustifiably carried out in a previous application
of semirigorous bounds for oscillator strengths
by Jennings and Wilson.!'® The numerical effect
of this replacement is so pronounced that several
general conclusions of the Jennings-Wilson study
(such as that concerning the relative accuracy of
length and velocity forms) must be reopened to
consideration. Our final calculated values of
(®,|p2|®,) and the adopted values for (¥,|u2|¥,)
are given in Table II.

IV. NUMERICAL RESULTS

We have calculated oscillator strengths with
rigorous error bounds for 17 of the low-lying
dipole-allowed n'S-~m!P and 73S ~m?3P transi-
tions in He and Li*. The selected transitions
included

n'S—m'P: 1sn<3, 2sms4 for He;
lsn<2, 2sms<3 for Li*;
23S =-m3P: 2sms4, for He;
m=2 for Li*.

These selections were expected to reveal various
trends with respect to spin multiplicity, principal
quantum number, and nuclear charge which could
be of wider general interest.

In Table IV we present our direct estimate of
the transition moment w,,, together with the cal-
culated error bounds for each oscillator strength
in the form

mean value t error, % error,
where

mean value=3(fl +f5),

error=3(f5-fa),

% error = (error/mean value)x 100,

and f} are the calculated upper and lower bounds.
For comparison we also list the values calculated
for these same transitions by Pekeris and co-
workers.'° The mean value of the upper and lower
bounds essentially coincides with the direct es-
timate of f,, calculated from our approximate
wave functions, and can be seen from Table IV
to agree quite well with the corresponding Pekeris
value.

The general quality of the error bounds is quite
good. For example, all the Li* transitions con-

TABLE IV, Calculated transition moments #%,, and rigorous error bounds for oscillator
strengths f,, in various He and Li* transitions. The f values calculated by Pekeris and co-

workers are included for comparison

Atom Transition T [ (mean) error % Error fap (Pekeris)?

He 1ls—-2'p 0.420 742 0.2761 +0.0014 0.51 0.2762
1's—-3'p 0.208064 0.0735 +0.0036 5.0 0.073
1ls—~4'p 0.130 751 0.0303 +0.0071 23 0.030
2ls—21p 2.916 290 0.3764 +0.0018 0.48 0.3764
2ls—~3'p 0.911 430 0.151 0,011 7.4 0.1514
2's—~41p 0.465 629 0.052 +0.018 35 0.049
3ls—2lp 1.077 430 —0.1454 0.0091 6.3 —0.1454
3ls—3'p 7.149288 0.626 +0.011 1.8 0.626
3ls—4'p 1.544 448 0.148 +0.045 31 0.144
2%s—2°%p 2.531 352 0.53909+0.00047 0.087 0.539086
23s—~3%p 0.524 525 0.0645 +0.0029 4.5 0.064 46
23s—~4%p 0.299 929 0.0261 +0.0063 24 0.025 77

Li* 1is—2'p 0.315 657 0.4566 +0.0010 0.21 0.4566
1ls—3'p 0.147006 0.1106 +0.0023 2.1 0.1106
2is—2'p 1.495471 0.21258 +0.00051 0.24 0.2126
2!s—~3lp 0.632 961 0.2570 +0.0067 2.6 0.25707
23s—23%p 1.361 910 0.30794 +0.00016 0.052 0.307 940

2See Ref. 8.
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sidered have been bounded to within 3%, and about
1 of the transitions (both He and Li*) can be guar-
anteed to well within the 1% accuracy estimated
overall by Pekeris and co-workers to apply to
their results.'® The most accurately calculated
transition is Li* 23§~ 23P, where the uncertainty
has been reduced to about 0.05%, some two orders
of magnitude smaller than the estimated errors

in the best experimental determinations. The
same transition in He can be guaranteed to within

0.1%, again quite suitable for calibration purposes.

On the other hand, the (percentage) theoretical
uncertainties become much larger —ranging up to
35% —for weak transitions involving high principal
quantum number. One can see in a general way
from Table IV that the tightness of the error
bounds tends to roughly follow the number of sig-

nificant figures quoted by Perkeris and co-workers,

but we emphasize that our rigorous bounds are
obtained directly in a single calculation, without
recourse to convergence studies, comparisons of
length, velocity, and acceleration forms, and so
forth.

The availability of rigorous theoretical bounds
allows one to considerably sharpen the usual com-
parisons of theory with experiment. We have
assembled a fairly comprehensive list of the vari-
ous experimental determinations for nine of the
transitions treated theoretically, and have com-
pared these measurements—together with their
estimated experimental uncertainties, where
specified—with our theoretical bounds in Table
V.2° The entries within each transition are in
approximate chronological order, and include
both lifetime and intensity measurements by vari-
ous methods. Where the data sources were life-
time measurements in which decay to more than
one lower state was possible, we have extracted
an experimental oscillator strength by employing
theoretical f values for all but the main transi-
tion. This procedure was followed only for life-
times in which one transition was so clearly
dominant that effects of minor uncertainties in
the remaining transitions could be ignored, and
the experimental lifetime error was therefore

associated fully with the f value of the dominant
transition. In addition, some relative data have
been put on an absolute basis by using the theo-
retical f value for the He resonance transition as
a standard.

The comparison of theoretical and experimental
values in Table V shows that the more recent es-
timates of experimental error have generally been
quite realistic. The dozen or so experimental
determinations (most of which appeared prior to
the calculations of Pekeris and co-workers) which
completely fail to overlap the theoretical error
bounds are enclosed in square brackets. Figure
1 depicts some recent entries of Table V for the
helium resonance transition, 1!S—2'P, in a more
graphic manner, illustrating the rather substantial
improvements in experimental accuracy which
have been reported in recent years.

Both Fig. 1 and Table V show that the theoreti-
cal error limits generally compare quite reason-
ably with corresponding experimental error
ranges. Even in the worst cases, such as those
involving the 4'P state in He, the theoretical
accuracy does not appear to be significantly lower
than that claimed for representative experimen-
tal measurements. In making such comparisons,
one should recall that experimental error limits
are expressed at some arbitrarily chosen level
of confidence (for example, one or two standard
deviations), and may require estimates of sys-
tematic error having some additional subjective
element. The theoretical error bounds, by con-
trast, represent absolute limits outside of which
the exact result of nonrelativistic quantum me-
chanics could never fall. Thus, it is interesting
and significant that theoretical methods, in spite
of their more stringent definition of “error
limits,” manage in several cases to achieve an
accuracy considerably beyond that accessible to
current experimental methods.

V. ERROR ANALYSIS

The form of the error-bound equations (7) is
particularly well suited to analysis of the uncer-

TABLE V. Comparison of experimentally determined f values and rigorous theoretical bounds for various transi-
tions in He and Li*. Experimental values which are ruled out by the theoretical bounds are enclosed in brackets.

f Value Accuracy Reference f Value Accuracy Reference

He 1's—2'p 0.312  20.04 13% a He 1!s—2'p 0.275  +0.007 3% h

[0.377  +0.035] [9.3%) b 0.2761 +0,0014 0.51% this work

[o.26  +0.012] [4.6%)] c He 1's—3'p [0.0898 +0.006] [7%] a

0.28 +0.02 7% c [0.067) i

0.26  +0.07 27% d 0.073 j

0.27 0,02 % e 0.080 +0.017 21% k

0.273  +0.011 4.0% f [0.0784] 1

0.27  £0.01 4% g 0.0737 +0.0044 5.8% g
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TABLE V (Continued)
f Value Accuracy Reference f Value Accuracy Reference
He 1's—3'p 0.073 m He 2's—4'p 0.0527 +0.006 11% z
0.0711 +0.0040 5.6% n 0.052 £0.018 35% this work
0.073  +0.005 % h He 3's—2'p -0.147  +0.008 5% s
0.0703 +0.004 6% o —0.143  £0.007 5% t
0.0735 10.0036 5.0% this work ~0.147 +0.008 5% aa
He1's—4'pP 0.030 j ~0.13  20.01 5% bb
[0.050 :0.011] [229] k -0.1454 +0.0091 6.3% this work
0.037 1 He 235—2°%p 0.582  +0.063 129 s
0.032 £0.003 11% g [~0.53] ce
0.0305 m 0.533  0.032 5.9% t
0.0303 +0.0071 23% this work 0.502  +0.024 4.8% dd
He 2's—3'p 0.150  £0.002 1% p 0.54  0.03 5% ee
0.155 +0.014 9.0% q 0.583  +0.063 11% aa
0.15  +0.015 10% r 0.533  +0.045 8.5% ff
0.153 0,011 7.1% s 0.53909+0.00047 0.087% this work
0.164 0,027 17% t He 235—3°P [0.054 +0.003] [6%) p
0.151  +0.002 1% u [0.057] gg
0.14 20,01 % v [0.053  +0.005] 199) q
0.17  £0.02 119 w 0.057 +0.006 109 r
0.15  +0.01 % x 0.0645 +0.0029 4.5% this work
0.19  £0.06 33% y Li*2%s—2%p [0.249 £0.013] 5% hh
0.151  £0.011 7.4% this work lo.282  20.02] 17%] ii
He 2's—4'P 0.037  +0.004 10% r [0.41  +0.03] 17%) ii
0.057  £0.009 16% s 0.30  £0.03 10% kk
0.041 £0.014 35% t 0.307 94 £0,000 16 0.052% this work

2J. Geiger, Z. Phys. 175, 530 (1963).

PH. G. Kuhn and J. M, Vaughn, Proc. R. Soc. A 277, 297 (1964); see, however, H. G. Kuhn, E. L. Lewis, and J, M.
Vaughn, Phys. Rev. Lett, 15, 687 (1965).

€F. A. Korolyov and V. 1. Odintsov, Opt. Spectrosc. (USSR) 18, 547 (1965).

R, Lincke and H. R, Griem, Phys. Rev. 143, 66 (1966).

°W. L. Williams and E. S. Fry, Phys. Rev. Lett, 20, 1335 (1968).

fE, S. Fry and W, L, Williams, Phys. Rev. 183, 81 (1969).

8I. Martinson and W. S, Bickel, Phys, Lett. 30A, 524 (1969).

hJ. M. Burger and A, Lurio, Phys. Rev. A 3, 64 (1971).

1E, N. Lassettre, M, E, Krasnow, and S. Silverman, J. Chem. Phys. 40, 1242 (1964).

iA. M. Skerbele and E. N, Lassettre, J. Chem, Phys. 40, 1271 (1964).

kH, Boersch and H. J. Reich, Optik 22, 289 (1965).
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tainties entering the calculated f values, and
therefore makes possible a detailed insight into
sources of error which could only be inferred
indirectly from convergence studies or other
means. When the overlap integrals S, and S, are
nearly unity, so that only terms of the order of
€, and €, need be included, Egs. (7) reduce to the
simpler form

WarS Wapt [€, (B |W? | Dy) "'171?:»)1/2

se(awlyg-agya), 1Y
where W is the transition moment operator
W=le=2,+2,. (16)
Equation (15) may be further abbreviated as
WapS Wapt (€50, +€50;), an

thereby suggesting a very useful breakdown of the
total error. We stress that no calculations were
carried out with the simplified equation (15), which
is introduced only for more qualitative purposes.

The two terms in brackets in Eq. (15) serve to
partition the total uncertainty into contributions
chiefly attributable to the errors in &, and &,,
respectively:

“error from &,” =¢€,6,
=€, (@, |W? | 8,) =3 )2,
(18a)
“error from ¢,” =¢,5,
=€y (U W2 W,) =3 )2
(18b)

The three key indicators of error are therefore
(i) the € factor, which measures the overall qual-

ity of the trial wave function in some global sense;
(ii) the average value of W2, which can be taken
as a measure of diffuseness of the state to which
a transition is being made; (iii) the magnitude of
the transition moment w,, itself.

Of these three indicators, the overlap param-
eter € is clearly of dominant importance, for
once the trial wave functions are sufficiently accu-
rate to establish the rough magnitude of 5, fur-
ther significant tightening of the bounds can only
be effected by successively improving the bound
for e. However, the relative accuracy in a se-
ries of transitions will more frequently be sen-
sitive to the factors (W?), w,, which enter 6.

Examples of the interplay of these factors may
be readily found in Table VI, in which we have
gathered values of €, 4, (W?), and €6 for each
of the various transitions. If we compare the
He 1'S—~2!P and 1'S ~ 3'P transitions, for ex-
ample, we can see that the poorer reliability of
the latter f value stems from three distinguishable
effects.

(a) The 3'P state corresponds to a higher root of
the secular determinant, so both the eigenvalue
and the overlap parameter € for this state are
considerably poorer than for 2'P. The effect on
overlap becomes progressively more severe with
degree of excitation because the true energy levels
bunch together more closely, leading to possible
“contamination” of the trial function by compo-
nents from adjoining levels [see Eq. (11)], even
if the absolute size of the energy error is not
much changed.

(b) The 3'P is markedly more diffuse than 2'P,
as reflected in the five or sixfold increase in
(W?). The calculated f values will therefore de-
pend on much smaller features of the chosen S
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tunction, e.g., its details at large distances from
the nucleus, which are not so well fixed by an en-
ergy-minimization criterion.

(c) The transition moment i, to 3'P is smaller
by a factor of 2 than that for 2P, so that the over-
all 6 factor is increased still further beyond that
expected from the diffuseness difference discussed
above. A stronger value of w,, therefore tends to
diminish the absolute size of the error as well
as, of course, its relative size as a percentage
of the transition moment.

The three effects all work together in the pres-
ent instance to make the percentage error in the
115 —3!P f value some ten times greater than that
for 1'S = 2'P,

In other cases, these various effects may tend
to cancel one another. For example, the error
for He 3'S—3'P (1.8%) is actually less than that
for He 1'S—-3'P (5.0%), even though the € and
(W?) values are larger by factors of 60 and 80,
respectively. These effects are negated, how-
ever, by the increased magnitude of w,, between
the two states of equal principal quantum number,
which tends to reduce 6 both in absolute size and
(what is much more important here) as a fraction
of w 4.

When applying the general idea that stronger
transitions tend to be associated with smaller
errors in both an absolute and relative sense,
we should note that it is the transition moments,
rather than final f values, which are to be com-
pared. For example, the Li* 1!S=2!P f value
is about twice as large as that of Li* 21§—-2'P,
although the corresponding transition moment is
smaller by a factor of 5.

|

If we compare corresponding transitions in He
and Li*, we can see that two of the three effects
discussed above tend to enhance strongly the accu-
racy of calculated f values with increasing nu-
clear charge Z. Although the transition moments
are somewhat smaller in Li*, the higher value of
Z tends to (i) spread the true energy levels, so
that the overlap parameter € is improved even if
the energy errors are roughly similar, and (ii)
strongly contract the wave functions so that (W?),
and thus 8, are reduced. As a result of these
two effects, the oscillator strengths for Li* are
calculated with uniformly higher accuracy than
those for He, and such an improvement with in-
creasing nuclear charge can probably be expected
to hold rather generally.

A similar uniform improvement in accuracy
can be seen in the triplet transitions relative to
corresponding singlet transitions. This effect is
due primarily to the better overlap value, the
triplet always corresponding to a lower root of
its secular determinant and thereby leading to
a more quickly convergent energy value. The
triplet states are also somewhat more compact,
as reflected in the smaller (W?) integrals, but
the differences in € values (for example, the ten-
fold reduction from He 2'S to 23S) tend to dominate
the comparisons.

A most important application of the error break-
down furnished by (17) and (18) is to assist in
judging how much attention should be given to
each of the trial functions &,, &, for any given
transition. This point is illustrated in Table VII,
which lists values of €; and §; (¢ =S or P), and
of the percent error contributed by each function

TABLE VI. Numerical values for various parameters which affect the accuracy of the calculated f values; see text.

% € € Eaéa €b6b
Atom  Transition fa Error (x107%)  (x10-%) @, Iw?ly,) @Iwtle,) @, (x10°%)  (x107%
He 1ls—~21'p 0.2761 0.51 0.11 0.77 0.75 19 0.42 0.49 0.58
1's=-31p 0.0735 5.0 0.11 4.7 0.75 110 0.21 1.2 4.0
1is—~4'p 0.0303 23 0.11 15 0.75 370 0.13 2.2 13
2ls—~2'p 0.3764 0.48 1.8 0.77 11 19 2.9 5.8 1.1
2is—~3lp 0,151 7.4 1.8 4.7 11 110 0.91 19 15
2!s—~4'p 0.052 35 1.8 15 11 370 0.47 35 50
3ls—2'P  -0.1454 6.3 6.7 0.77 57 19 1.1 28 5.8
3ls—3'p 0.626 1.8 6.7 4.7 57 110 7.1 51 12
3ls—4'p 0.148 31 6.7 15 57 370 1.5 130 110
23s—~2%p 0.53909  0.087 0.17 0.54 7.6 15 2.5 0.52 0.59
235—33%p 0.0645 4.5 0.17 3.7 7.6 98 0.52 1.7 10
235—4°%p 0.0261 24 0.17 12 7.6 340 0.30 3.2 34
Li* 1ls—2'p 0.4566 0.21 0.081 0.38 0.29 4.8 0.32 0.18 0.16
1ls—3'p 0.1106 2.1 0.081 2.2 0.29 28 0.15 0.43 1.1
21s—21p 0.21258  0.24 0.89 0.38 3.1 4.8 1.5 1.4 0.35
21s—~31p 0.2570 2.6 0.89 2.2 3.1 28 0.63 4.7 3.6
235—23%p 0.30794  0.052 0.090 0.28 2.5 4.0 1.4 0.13 0.22
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@, to the total error. In the transition He 1'S
—-3!p, for example, about 77% of the total error
can be attributed to the P function, so there would
be little advantage in further refining the S func-
tion.?? In He 2'S—2'P, on the other hand, the S
function is responsible for about 84% of the error,
so that any reserve effort should clearly be allo-
cated to its improvement; in particular, the over-
all accuracy of the calculated f value might well
be improved by substituting a poorer 2'P repre-
sentation if the computational capacity thus freed
could be transferred to improve the 2!S function
sufficiently. For still other transitions, such as
He 11S—2'P, the errors are fairly well “bal-
anced,” and an optimum strategy for further im-
provement would involve simultaneous improve-
ment of both functions. Such considerations could
be of practical value in many circumstances, and
we note that partial information of this character
might be deduced even if the overlap parameter

€ were unavailable (or could only be judged in a
qualitative sense). We hope to return to this point
in a forthcoming paper.

VI. CONCLUSION

We have applied rigorous error-bound formulas
to the calculation of dipole oscillator strengths in
order (a) to cast light upon the general factors
which affect the theoretical errors in such calcu-
lations, and (b) to systematically determine vari-
ous He and Li* f values at a level of accuracy
which could be of practical utility. We find that

many of these f values can be rigorously bracket-
ed with an accuracy which matches or exceeds
that currently accessible to experimental methods;
for transitions in which this gain in accuracy ap-
proaches one or more orders of magnitude, one
has a suitable bas.s for confidently calibrating
experimental setups and/or identifying sources
and magnitudes of systematic error. In this con-
nection, one can note that these two-electron sys-
tems would generally be of greater experimental
convenience than corresponding one-electron
species for which definitive theoretical values
are known.

The calculations given here were carried out
entirely within the dipole “length” formulation,
and have revealed various trends with respect
to nuclear charge and to degree of excitation,
angular and spin symmetry, and spatial diffuse-
ness of the participating states. It can be ex-
pected that calculations in the “velocity” formula-
tion would exhibit somewhat different patterns
of dependence on these various factors. We ex-
pect in the near future to carry out dipole velocity
calculations on these same two-electron species,
so as to gain additional insight on the relative
error susceptibility of length and velocity cal-
culations for the various classes of transitions,
as well as, possibly, to further tighten the error
bounds for several of the f values.

While the error-bound formulas might be applied
in a fully rigorous manner to somewhat larger
systems, as recently demonstrated by Sims and

TABLE VII. Error parameters and percentage contributions to total error? arising from

each of the two trial functions &,, &,.

€, % Error € % Error
Transition (x1079 8, 3, (x1079 Sy &,
He 1is—21'p 0.11 4.3 46 0.77 0.75 54
1ls—3'p 0.11 11 23 4.7 0.84 77
1ls—41'p 0.11 19 14 15 0.86 86
2ls—2'p 1.8 3.2 84 0.77 1.5 16
2's—-3'p 1.8 10 56 4.7 3.1 44
21s—4'p 1.8 19 41 15 3.2 59
3ls—2'p 6.7 4.2 83 0.77 7.5 17
3ls—3'p 6.7 7.9 81 4.7 2.6 19
3ls—~41'p 6.7 19 54 15 7.4 46
23s—~23p 0.17 3.0 47 0.54 1.1 53
235—33%p 0.17 9.9 15 3.7 2.7 35
235—~43%p 0.17 18 8 12 2.7 92
Li* 1ls—~2'p 0.081 2.2 53 0.38 0.43 47
1ls—-3'p 0.081 5.3 28 2.2 0.51 72
21ls—2'p 0.89 1.6 80 0.38 0.94 20
21s—~3'p 0.89 5.2 57 2.2 1.7 43
23s—2%p 0.090 1.5 37 0.28 0.81 63

2Percentage error from &,= [€,6,/(€,6, +€,6,)1X100, etc.; see text.
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Whitten on the beryllium atom,? it seems likely
that their greatest utility would arise in more
qualitative applications in which only some por-
tions of the error-bound expressions (such as

the factors 6, and 6, of Sec. V) would be evaluated
as a guide to the expected errors. The recent
resurgence of activity in oscillator-strength cal-
culations for small and medium-size atoms has
been characterized by new standards of accuracy
and sophistication,? to the extent that partial or
full employment of the error-bound equations no
longer seems completely out of the question. One
can expect that, as the computational techniques
continue to evolve in the direction of greater accu-
racy, the need for criteria of reliability which are
internal to the theoretical calculations themselves
(and thus independent of the availability of ex-

perimental comparisons) will be increasingly
perceived.
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