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Rigorous upper and lower bounds to dipole oscillator strengths have been calculated for 17 of the
low-lying singlet and triplet transitions in He and Li using accurate Hylleraas-type wave functions of
some 135-138 terms. About a third of the calculated f values can be guaranteed to 1% or better, and
in the best case (Li+ 2'S -2'P) the bounds tighten to about 0.05%%uo, some two orders of magnitude
better than corresponding experimental determinations. By compjElring with an extensive compilation of
experimental results, we 6nd the quahty of the rigorous bounds to generally match or excel that of
experimental deterxninations, and about a dozen experiments can be ruled out entirely. Trends with

respect to nuclear charge, spin multiplicity, and principal quantum number are examined, and special
emphasis is given throughout to sources of uncertainty in the calculated oscillator strengths which are
revealed by the error-bound formulas.

I. INTRODUCTION

From both theoretical and experimental stand-
points, accurate determinations of atomic os-
cillator strengths (f values) continue to be of
considerable interest. Recent advances in lab-
oratory plasma physics and in satellite astronomy
have reemphasized the importance of these fun-
damental atomic data. In the astrophysical do-
main, accurate oscillator strengths provide in-
formation on the abundance of elements in the
spectrum of the solar corona and chromosphere,
and aid in the establishment of models for stellar
atmospheres where highly excited states of highly
ionized atoms may be of particular importance. '
In the laboratory, oscillator strengths are basic
parameters in the study of shock waves, dis-
charges, and electron temperatures in plasmas. '

Oscillator strengths are determined experimen-
tally by a variety of techniques of uneven accu-
racy. ' The older emission and absorption meth-
ods, by which the bulk of the experimental data
has been obtained, require a knowledge of the
number of radiating or absorbing species, and
as such are subject to rather large errors (par-
ticularly systematic errors) from inaccurate
vapor-pressure data, inadequate spectral reso-
lution or scattered light, and non-Boltzmann
population distributions. The newer lifetime
measurements, while applicable to fewer spec-
tral lines and generally more difficult to carry
out, seem less susceptible to large systematic
error. Nevertheless, even in the fruitful applica-
tions of the beam-foil techniques, ~ some system-
atic error may intrude through repopulation of
a given level by cascades from higher levels.
Thus, in spite of improvements in the experi-
mental methods, there are few experimentally
determined f values appearing certain to within

5/0, and an estimated accuracy of 10-2&p seems
more typical. ' Of course, ~elative oscillator
strengths of much greater precision are readily
obtained in the emission and absorption methods,
and a few determinations of high absolute accu-
racy would be sufficient to calibrate the experi-
mental methods and place large quantities of such
data on a firm absolute basis.

Many theoretical methods have also been de-
veloped to calculate osci1lator strengths, but the
estimated errors (when indeed they were esti-
mated at all) have tended to widely exceed those
of experimental studies, ' Perhaps the most trou-
blesome aspect of such calculations is that the
accuracy of the calculated oscillator strength
is largely conjectural. Approximate wave func-
tions chosen from an energy-minimization cri-
terion may be wholly inadequate in describing
regions of configuration space which are impor-
tant for the oscillator strength, and one can thus
be led to erratic or spurious values. '

Traditionally, attempts to judge the accuracy
of computed f values have resorted to three main
lines of argument.

l. Agreement saith experiments. Seen even in
its best light, this criterion clearly fails to re-
solve the accuracy question to within the limits
set by the experimental errors themselves. More-
over, in cases where theoretical efforts might
provide genuinely. new information (as opposed to
modest interpolation, extrapolation, or mere
reproduction of existing data), this criterion
would be unavailable in practice as well, as un-
satisfactory in principle.

2. Agreement of "length, " "velocity, " and
"acceleration" forms off values. As is well
known, these various forms of the osci'ilator
strength wouM be equivalent if the true wave func-
tions were employed, but will generally disagree
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when computed with approximate wave functions. '
This furnishes a very useful criterion of inaccu-
racy, in the sense that one is properly alerted
to skepticism if these forms disagree widely
(though there is still the problem of judging which
form might be least error prone). But experience
shows that one cannot reliably employ this cri-
terion in the opposite sense, i.e., to conclude
that the quality of the calculations is good because
the several forms happen to agree. Examples
now abound where calculations which provided
good agreement between, say„"length" and "ve-
locity" forms were nonetheless shown to be great-
ly in error, and it is now genera11y recognized
that such fortuitous agreement can occur under
rather weak conditions. '

3. Apparent numericaL convergence in calcu-
Lations. Persuasive evidence of reliability can
sometimes be offered when numerical convergence
appears to set in as the variation calculations
are pressed toward the limit of mathematical
completeness. The foremost examples of such
extensive calculations are the results of Pekeris
and co-workers (based on correlated Hylleraas-
type wave functions of hundreds or thousands of
terms), which have apparently established f val-
ues for members of the helium isoelectronic
series with an estimated accuracy of "1%or
better for the lax ge majority of the transitions. "'
Careful studies of the convergence patterns, how-
ever, may be impractical even for those few
systems where they might be numerically feasible.
More frequently, the source or nature of any
apparent numerical convergence is completely
unknown. The well-known calculations of Taylor
and Parr furnish an instructive example in which
the apparent "numerical convergence" settled on
a spurious limit. "

Recently, one of the authors proposed a pro-
cedure for calculating rigorous upper and lower
bounds to dipole oscillator strengths. " The meth-
od was illustrated with simple variational trial
functions on the hydrogen-molecule ion. In the
present work we have used highly correlated wave
functions consisting of some 135-138 terms to
investigate the transitions of the two-electron
atoms He and Li'. %'e have obtained rigorous
error bounds of considerably less than 1% (down
to about O.OS% in the best case) for several impor-
tant singlet and triplet transitions of both He and
Li', while other transitions are guaranteed to
within S-10%. We are able to give a detailed
breakdown of the error sources for each transi-
tion, based on the specific quantities which ap-
pear in the error-bound formulas.

In Sec. II we review the basic equations for upper
and lower bounds to dipole oscillator strengths.

Section III describes the method of calculation,
including a description of the wave functions, the
determination of overlap, and the handling of
important terms within the error-bound formulas.
The numerical results are presented in Sec. IV,
while Sec. V comprises an error analysis of the
calculations, including a detailed discussion of
the interdependence of error-bound, quantities.
Section VI presents some final conclusions.

fI. UPPER AND LQVfER BOUNDS

For the electric-dipole transition from state
4„ to state 4b with respective energies 8, and
E, , the oscillator strength f„may be expressed
in several equivalent forms when employing the
true wave functions. %'e have employed the length
formulation in which f„is expressed in terms
of the usual dipole-moment operator p. for N elec-
trons (hartree atomic units, 5 =e =m=1, are used
throughout),

g =Jr„

in the form

f., =2(E, -E, ) I(+.Iy. , l +, & I',
where the incident radiation is taken polarized
along the z axis. %'e assume the energy levels
E, and Eb are known accurately, thus leaving
the weight of the calculation entirely upon the
transition moment ~„,

u.~=(+.Iv. l @~&.

Such an assumption is exceptionally well justified
in the case of two-electron atoms, for which
Perkeris and co-workers have calculated highly
accurate nonrelativistic eigenvalues.

In terms of approximate wave functions 4„4b,
the approximate transition moment ~„ is

~.~=(c'. Iw. lc~) .
The following additional quantities are required
for the calculation of error bounds: the overlap
integrals S„Sbbetween the exact wave functions
and their approximate counterparts,

s.-=l(e. le. &l, s, =-l(e, lc,&l,

the corresponding overlap errors c„cb,
(S)

the "uncertainty*' 4„,
~'.~ -=( 4'b I gg I C'~& s'.~, -

and the integral (4, I g', I%,&. Upper and lower
bounds to the transition moment m, b can then be
calculated from the inequalities derived previously, "
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TABLE I. Number of terms, values of &, and restric-
tions upon indices comprising the final wave functions
for states of He and Li+.

No. Terms Restrictions

The subscript a signs in (7) indicate as usual that
the corresponding quantities should be replaced
by their upper (+}or lower (-) bounds. A sub-
sidiary restriction assumed in the derivation of
(7), that the overlap S, be sufficiently near unity
to satisfy

~ a+ ~So- - s'ao ~~as ~

is easily met by the wave functions considered in
this work.

III. METHOD OF CALCULATION

A. V4ve functions

The wave functions were obtained by a variation-
al solution to the Schrodinger wave equation, 3N
=Et, where X-is the nonrelativistic spin-inde-
pendent Hamiltonian,

and Z is the nuclear charge. The trial wave func-
tions were of the form

consisting of linear combinations of Hylleraas-
type basis functions containing positive integral
powers of ~„x„and the interelectronic distance

The basis functions were specifically of the
form

}Ir(1,2}= (1 +P,2)r,'r,'rf, I','(l)y'o(2) e

(10)

where P„ is the permutation operator, F', are
the usual (m =0) spherical harmonics chosen to
give either S (I =0) or P (I =1) symmetry, and
the singlet and triplet spin states are associated
with the inclusion of the plus or minus sign, re-
spectively. We have ordered the terms of (9) in
a conventional manner according to the value of
co = i +j+k. Certain terms containing the highest
values of i, j, or (especially) k were thought
less likely to be important and were deleted in
order to obtain maximum values of & within the
computer storage limitations. The restrictions
j &i for S-state singlets and j& i for S-state trip-
lets were imposed to ensure the linear indepen-
dence of the basis set as E-g. The number of
terms in the final wave functions, the resultant

i$
3$

1,3~

135
138
137

i, j&9, 0 &6
i j&9, k &7
i j&8, 0&5

values of u, and the restrictions on indices are
summarized in Table I.

Although in principle we could have varied the
linear as well as the nonlinear parameters to
optimize both upper and lower bounds in ( I), in-
vestigations on smaller wave functions showed
small profit from this procedure. The benefits
certainly w'ould not be significant for the more
complex functions considered here. Instead, the
linear coefficients cI, were obtained in the usual
manner from appropriate secular equations, which
were solved by an "inverse-power-moment" a,l-
gorithm for eigenvectors and eigenvalues. The
nonlinear parameters E, q were roughly optimized
for the 'S ground states. For other states, non-
linear parameters interpolated from available
literature" (based on wave functions of comparable
size and constitution) proved nearly optimal, and
their adoption resulted in significant savings in
computer time. Table II contains the final val-
ues of the nonlinear parameters $ and g for each
state, as well as the energy eigenvalues, the over-
lap errors e, and other expectation values to which
we will refer later. The underlined portions of the
eigenvalues are those digits which differ from the
accurate eigenvalues as calculated by Pekeris
and co-workers. " The eigenvalues calculated
here are seen to be of high quality, especially
for states which are lower roots of the secular
determinant, and the calculated wave functions
are considerably more compact than corresponding
Pekeris wave functions of equivalent accuracy.

B. Determination of overlap and

other error-bound quantities

It is evident from inequalities (7) that overlap
between the approximate and true wave functions
is an important constraint upon the oscillator-
strength bounds. The upper bounds to overlap
can be simply set to unity, but the effective use
of (7) demands a strenuous effort to achieve the
best possible value for the lower bound to over-
lap. To calculate this lower bound, we have em-
ployed %'einberger's formula for overlap, "which
uses the higher roots Z& of the secular deter-
minant and can be written in the form
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TABLE II. Nonlinear parameters $ and g, energy eigenvalues, overlap parameters e, and

expectation values |,'p )' for states of He and Li+.

Atom State Energy Eigenvalueb e &x10

He

Li+

1'S
2 S
3'S
2 S

3'S
4'S
2P
3 I
4 P
1'S
2'S
23S

3'S
2 P

2.60
2.00
2,00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
3.90
3.00
3.00
3.00
3,00
3.00

2.60
0.98
0.62
0.94
0,8S
0.56
0.37
0.88
0.56
0.39
3.90
1.71
1.56
1.65
1.11
1.65

—2.903 724 3662
—2.145 973 6783
—2.061 270 2515
—2.175 229 3740
—2.123 S43 0314
—2.055 145 6017
—2.031 065 6469
—2.133164 1620
—2.058 080 5852
—2.032 321 7663
—7.279 9133960
—5.040 876 4018
—5.110727 3684
—4,993 351 0230
—4.720 205 5999
—5.027 715 6590

0.1144
1.8104
6.6819
0.1701
0.7700
4.6924

15.4549
0.5353
3.6879

12.2281
0.0810
0.8932
0.0904
0.3751
2.2033
0.2778

0 752497c
1O.684'
57 3
7.603 693

18.699 231
109.996 120
365.264 382
15.479 716
98.254 214

336.417 473
O.286 O17'
3 114444~
2.5O3 557'
4.787 617

27.629 928
3.968 165

'For S states, (p, ) = (p, tp, Ig, ) is taken from the Pekeris calculations (see text).
Those digits which differ from the accurate values are underlined. See d and also

K, Frankovrski and C. L. Pekeris, Phys. Rev. 146, 46 (1966).
OC, I. Pekeris, Phys. Rev. 115, 1216 (1959).
Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516 (1971).

~C. L. Pekeris, Phys. Rev. 126, 143 (1962).

where n is the largest integer for which J„~E
Any roots of the secular determinant which cor-
respond to states higher than the one of interest
will increase the Weinberger bound to overlap,
provided these roots still interleave the true
eigenvalues. The true eigenvalues F., were ob-
tained from highly accurate nonrelativistic cal-
culations, "and eigenvalues which appeared cer-
tain to )ess than 12 decimals were arbitrarily
rounded downward by one unit in the last secure
digit. Overlap calculated with inequality (11) gave
significant improvement over those obtained using
the well-known Eckart criterion"; in addition,
formula (11}is applicable to excited states for
which Eckart's formula is no longer valid. Table
III lists some comparisons of the Eckart and
Weinberger formulas for states where both are
still valid. The overlap-error parameter

e ={1-S')'~'

is convenient for such comparisons, the best over-
lap values corresponding to the smallest ~ values.

Another important feature of the calculations
concerns the integrais (4, [p, ', [0,& and (4 big', lC'b)

over the operator

p, ', = (z, + z,)' .

Since (12} involves only ordinary expectation val-
ues, little loss of rigor results from the replace-
ment

(+.Ip', I+.& =~(@.l ~,'I @.&-~(C'. Ib",, l~'. &, (13)

to be calculated in terms of the highly accurate
wave function C„or the still more accurate wave
functions of Pekeris and co-workers. In the pres-
ent work, for example, the uncertainty in
(0', [ p, ', )g, & is probably several orders of magni-
tude smaller than the uncertainty in the oscillator
strength. For a completely rigorous result, an
upper bound to (q, t p, ', ~+,& might be calculated
with the rather weak Rebane-Braun inequality"

TABLE IO. Comparisons of the overlap parameter c
for several states of He computed by the Eckart and
%'einberger formulas.

& (~10-') ~ (x1O-')
He State Eckart Weinberger $ Improvement

1 8

2 S
2'I

0.120
0.890
0.200
0.616

0.114
0,770
0.170
0.535

We take 4, to be an 8 state, and use the full spher-
ical symmetry of the wave function to write

&@.Iu!I+.&= ~b&+. Ib', I+.&-', &+.Ir,'. I+.& (12)
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(+. I v! I +.) - z
' z,

e
(14)

IV. NUMERICAL RESULTS

We have calculated oscillator strengths with
rigorous error bounds for 17 of the low-lying
dipole-allowed n'9-m'P and n'5-m'P transi-
tions in He and Li'. The selected transitions
included

or generalizations thereof for excited states, ""
but this was deemed superfluous in the present
application. The error-bound formulas (7) are,
in any event, quite insensitive to the value adopted
for (4, [g', (%,)„and even the use of the weak
Rebane-Braun criterion (14) would not significantly
detract from the accuracy of the calculated error
bounds we report '8

The integral(C,

[gal@,

) over the P-state ap-
proximation cannot be simplified as in (12), due
to the lack of spherical symmetry inherent in the
P -state wave functions. Such a simplification w'as

unjustifiably carried out in a previous application
of semirigorous bounds for oscillator strengths
by Jennings and Wilson. " The numerical effect
of this replacement is so pronounced that several
general conclusions of the Jennings-%'ilson study
(such as that concerning the relative accuracy of
length and velocity forms) must be reopened to
consideration. Our final calculated values of
(4, ) p, ', [ 4, ) and the adopted values for (4, [ p', [4,)
are given in Table II.

n'5-m'P: 1+n~3, 2&m&4 for He;

1 ~n&2, 2&m&3 for Li+;

2'8-m'P: 2~m~4, for He;

for Li+.

These selections were expected to reveal various
trends with respect to spin multiplicity, principal
quantum number, and nuclear charge which could
be of wider general interest.

In Table IV we present our direct estimate of
the transition moment g ~, together with the cal-
culated error bounds for each oscillator strength
in the form

mean value + error, % error,
where

mean value-=~(f~+f,, ),
1error =- 2(f;, —f;, ),

% error = (error-/mean value) x 100,

and f~ are the calculated upper and lower bounds.
For comparison we also list the values calculated
for these same transitions by Pekeris and co-
workers. " The mean value of the upper and lower
bounds essentially coincides with the direct es-
timate of f~ calculated from our approximate
wave functions, and can be seen from Table IV
to agree quite well with the corresponding Pekeris
value.

The general quality of the error bounds is quite
good. For example, all the Li' transitions con-

TABLE IV. Calculated transition moments gy and rigorous error bounds for oscillator
strengths f~ in various He and Li transitions. The f values calculated by Pekeris and co-
w'orkers are included for comparison

Atom Transition f~ (mean) +error % Error f,&
{I}'ekeris)~

He 11S 2 1P

1'S-3 'P
1 fs 4'
2 'S-2 'P
2 S~3P
2S 4P
3 'S 2 'P
3 S~3P
3S 4P
2S 2P
2'S-3'P
2 S~4P

0.420 742
0.208 064
0.130 V51

2.916290
0.91143Q
0,465 629
1.077 430
7.149288
1,544 448
2.531 352
0.524 525
Q,299 929

0.2761 + 0.0014
O.Q735 +0.0036
0.0303 + 0.0071
0.3764 +0.0018
0.151 + 0,011
0.052 + 0.018

—0,1454 +0.0091
0.626 + 0.011
0.148 + 0.045
0.53909+0.00047
0.0645 + O.Q029
0,0261 + 0.0063

0.51
5.0

23
0.48
7.4

35
6.3
1.8

31
0.087
4.5

24

0.2762
0.073
0.030
0.3764
0.1514
0.049

—0.1454
0.626
0.144
0.539086
0.064 46
0.025 77

1'S-2 'P
1'S-3 'P
2S 2P
2 'S-3 'P
2S 2P

0.315 657
0.14V 006
1.495 471
0 ~ 632 961
1.361 910

0.4566 + 0.0010
0.1106 +0.0023
0.21258 +0.00051
0.2570 + 0.0067
0.30794+ 0.00016

0.21
2.1
0.24
2.6
0.052

0.4566
Q.1106
0.2126
0.257 07
0.307 940

~See Ref. 8.
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sidered have been bounded to within 3%, and about

—,
' of the transitions (both He and Li') can be guar-
anteed to well within the 1% accuracy estimated
overall by Pekeris and co-workers to apply to
their results. " The most accurately calculated
transition is Li' 2'9- 2', where the uncertainty
has been reduced to about 0.05%, some two orders
of magnitude smaller than the estimated errors
in the best experimental determinations. The
same transition in He can be guaranteed to within
O. l%, again quite suitable for calibration purposes
On the other hand, the (percentage) theoretical
uncertainties become much larger —ranging up to
35%—for weak transitions involving high principal
quantum number. Qne can see in a general way
from Table IV that the tightness of the error
bounds tends to roughly follow the number of sig-
nificant figures quoted by Perkeris and co-workers,
but we emphasize that our rigorous bounds are
obtained directly in a single calculation, without
recourse to convergence studies, comparisons of
length, velocity, and acceleration forms, and so
forth.

The availability of rigorous theoretical bounds
allows one to considerably sharpen the usual com-
parisons of theory with experiment. We have
assemb1. ed a fairly comprehensive list of the vari-
ous experimental determinations for nine of the
transitions treated theoretically, and have com-
pared these measurements —together with their
estimated experimental uncertainties, where
specified —with our theoretical bounds in Table
V." The entries within each transition are in
approximate chronological order, and include
both lifetime and intensity measurements by vari-
ous methods. Where the data sources were life-
time measurements in which decay to more than
one lower state was possible, we have extracted
an experimental oscillator strength by employing
theoretical f values for all but the main transi-
tion. This procedure was followed only for life-
times in which one transition was so clearly
dominant that effects of minor uncertainties in
the remaining transitions couM be ignored, and
the experimental lifetime error was therefore

associated fully with the f value of the dominant
transition. In addition, some relative data have
been put on an absolute basis by using the theo-
retical f value for the He resonance transition as
a standard.

The comparison of theoretical and experimental
values in Table V shows that the more recent es-
timates of experimental error have generally been
quite realistic. The dozen or so experimental
determinations (most of which appeared prior to
the calculations of Pekeris and co-workers) which
completely fail to overlap the theoretical error
bounds are enclosed in square brackets. Figure
1 depicts some recent entries of Table V for the
helium resonance transition, 1'S-2'P, in a more
graphic manner, illustrating the rather substantial
improvements in experimental accuracy which
have been reported in recent years.

Both Fig. 1 and Table V show that the theoreti-
cal error limits generally compare quite reason-
ably with corresponding experimental error
ranges. Even in the worst cases, such as those
involving the 4'P state in He, the theoretical
accuracy does not appear to be significantly lower
than that claimed for representative experimen-
tal measurements. In making such comparisons,
one should recall that experimental error limits
are expressed at some arbitrarily chosen level
of confidence (for example, one or two standard
deviations), and may require estimates of sys-
tematic error having some additional subjective
element. The theoretical error bounds, by con-
trast, represent absolute limits outside of which
the exact result of nonrelativistic quantum me-
chanics could never fall. Thus, it is interesting
and significant that theoretical methods, in spite
of their more stringent definition of "error
limits, " manage in several cases to achieve an
accuracy considerably beyond that accessible to
current experimental methods.

V. ERROR ANALYS1S

The form of the error-bound equations (7) is
particularly well suited to analysis of the uncer-

TABLE V. Comparison of experimentally determined f values and rigorous theoretical bounds for various transi-
tions in He and Li . Experimental values vrhich are ruled out by the theoretical bounds are enclosed in brackets.

f Value Accuracy Reference f Value Accuracy Reference

He 1'S—2 'P 0.312
[o.37~
[0.26
0.28
0.26
0.27
0.273
0.27

+ 0.04
+ 0.0351
~ 0.012]
+ 0.02
+ 0.07
+ 0,02
+ 0.011
+ 0.01

13@
[9.3@
[4.6'g
7g

27+
7+
4.0
4+

He1iS 2 lP

He 1 8 O'P

0.275
0.2761
[0.0898
[o.o67}
0.073
0.080
[0.07841
0.0737

*0.007
+ O.0O14
+0.0061

3
0.51+

[7'g

5.8$;

h

this work
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T&BLE V (Continued)

He 1 S-3 iP

He 1'S-4 'P

He O'S-3'P

He2'S 4P

0,073
0.0711
0.073
0.0703
0,0735
0.030

Eo.o5o
0.037
0,032
Q.Q305
0.0303
0.150
0.155
0.15
0.153
0.164
0,151
0.14
0.17
O.15
0.19
0.151
0.037
0.057
0.041

+0.0040
+ 0.005
+0.004
~ 0.0036

+0.003

+ 0.0071
+ 0.002
+ 0.014
+ 0.015
+ 0.011
~ 0.027
+ 0.002
*0,01
~ 0.02
+ 0.01
+0.06
+ 0.011
+ 0.004
+ 0.009
+ 0,014

f Value

5,6
7%

5,0%

23$
1%
9.0

1O%
7.1

17$
1%
7

11%
7$

33
7.4%

10@
16@
35%

m
n

h

0
this work

k

1

g

this work

this work

t

Accuracy Reference

He 2 iS-4 'P

He 3'S 2'P

He23S 2P

He O'S-3 P

Bi+2 S 2P

f Value

+ 0.006
+ 0.018
+ Q.008
+ 0.007
~ 0.008

0.01
+ 0.0091
+0.063

+ 0,032
+0.024
+ 0.03
+ 0.063
+ 0,045
+0.000 47
~0.0031

+ 0.005]
~ 0.006
+ 0.0029
+ 0.013[
*O.OOj

+ 0.03)
+0.03
+ 0.000 16

0.0527
0.052

—0.147
—0.143
—0.147
—0.13
—0„1454

0.582
[-0.53]

0.533
0.502
0.54
0.583
0.533
0.539 09

Eo.o54
[o.o57)
E0.053
0.057
0.0645

Eo.249
Eo.282
Eo.41
0.30
0.307 94

Accuracy

lip
35@

5@
5p

6.3%
12@

4.8
5%

'i l f)
8.5$
0.087

E6%]

E9V)
109'
4.5$

E5%l

I7%]
E7%]

10@
0.052'$

Reference

this work

aa
bb

this work

t
dd
ee

ff
this work

P

gg

qr
this work

hh

il

kk
this work

aJ. Geiger, Z. Phys. 175, 530 (1963).
bH. G. Kuhn and J. M. Vaughn, Proc. R. Soc. A 277, 297 (1964); see, however, H. G. Kuhn, E. L. Lewis, and J. M.
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tainties entering the calculated f values, and
therefore makes possible a detailed insight into
sources of error which could only be inferred
indirectly from convergence studies or other
means. When the overlap integrals 8, and S, are
nearly unity, so that only terms of the order of
e, and e» need be included, Eqs. (I) reduce to the
simpler form

~.»- ~„+[~.(«» iw'i@»&-~'„)"

+ e»((4. iW'l4. )-u~)'~*],

mhere W is the transition moment operator

W= p. ,=z, +z2.

Equation (15) may be further abbreviated as

'w»» ~ K»» k (6» 5» + E» 5» ) &

(15)

(16)

"error from 4,"= z, 5,

=~.((e, iW'iC )-k' P"

"error from 4&"=e&5j),

=~» ((q. iw'Iq'. )-~~)'

(18a)

(18b)

The three key indicators of error are therefore
(i) the»: factor, which measures the overall qual-

thereby suggesting a very useful breakdown of the
total error. We stress that no calculations mere
carried out with the simplified equation (15), which
is introduced only for more qualitative purposes.

The two terms in brackets in Eq. (15) serve to
partition the total uncertainty into contributions
chiefly attributable to the errors in 4, and 4„
respectively:

ity of the trial wave function in some global sense;
(ii) the average value of W», which can be taken
as a measure of diffuseness of the state to which
a transition is being made; (iii) the magnitude of
the transition moment gg„ itself.

Of these three indicators, the overlap param-
eter & is clearly of dominant importance, for
once the trial wave functions are sufficiently accu-
rate to establish the rough magnitude of 5, fur-
ther significant tightening of the bounds can only
be effected by successively improving the bound
for c. However, the ~elative accuracy in a se-
ries of transitions mill more frequently be sen-
sitive to the factors (W'), ge„which enter 6.

Examples of the interplay of these factors may
be readily found in Table VI, in which we have
gathered values of c, ~„, (W'), and e5 for each
of the various transitions. If we compare the
He 1'8 —O'P and 1'S —3'P transitions, for ex-
ample, we can see that the poorer reliability of
the latter f value stems from three distinguishable
effects.

(a) The O'P state corresponds to a higher root of
the secular determinant, so both the eigenvalue
and the overlap parameter e for this state are
considerably poorer than for 2'I'. The effect on
overlap becomes progressively more severe with
degree of excitation because the true energy levels
bunch together more closely, leading to possible
"contamination" of the trial function by compo-
nents from adjoining levels [see Eq. (11)], even
if the absolute size of the energy error is not
much changed.

(b) The O'P is markedly more diffuse than 2'P,
as reflected in the five or sixfold increase in
(W'). The calculated f values will therefore de-
pend on much smaller features of the chosen S
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function, e.g. , its details at large distances from
the nucleus, which are not so mell fixed by an en-
ergy-minimization criterion.

(c) The transition moment gv, ~ to 3'P is smaller
by a factor of 2 than that for 2'P, so that the over-
all 5 factor is increased still further beyond that
expected from the diffuseness difference discussed
above. A stronger value of u„ therefore tends to
diminish the absolute size of the error as well
as, of course, its relative size as a percentage
of the transition moment.

The three effects alt. work together in the pres-
ent instance to make the percentage error in the

S-3'P f value some ten times greater than that
for 1'S -2'P.

In other cases, these various effects may tend
to cancel one another. For example, the error
for He 3'S-O'P (1.8%) is actually less than that
for He 1'S-3'P (5.0%), even though the e and
(W') values are larger by factors of 60 and 80,
respectively. These effects are negated, how-
ever, by the increased magnitude of gg, & between
the two states of equal principal quantum number,
which tends to reduce 5 both in absolute size and
(what is much more important here) as a fraction
of Lcgyi

When applying the general idea that stronger
transitions tend to be associated with smaller
errors in both an absolute and relative sense,
we should note that it is the transition moments,
rather than final f values, which are to be com-
pared. For example, the Li+ 1' -S'3fP value
is about twice as large as that of Li' 2'$-2'P,
although the corresponding transition moment is
sma/ler by a factor of 5.

If we compare corresponding transitions in He
and I.i', we can see that two of the three effects
discussed above tend to enhance strongly the accu-
racy of calculated f values with increasing nu-
clear charge Z. Although the transition moments
are somewhat smaller in Li+, the higher value of
Z tends to (i) spread the true energy levels, so
that the overlap parameter e is improved even if
the energy errors are roughly similar, and (ii)
strongly contract the wave functions so that (W'),
and thus 5, are reduced. As a result of these
two effects, the oscillator strengths for I i+ are
calculated with uniformly higher accuracy than
those for He, and such an improvement with in-
creasing nuclear charge can probably be expected
to hold rather generaBy.

A similar uniform improvement in accuracy
can be seen in the triplet transitions relative to
corresponding singlet transitions. This effect is
due primarily to the better overlap value, the
triplet abvays corresponding to a lower root of
its secular determinant and thereby leading to
a more quickly convergent energy value. The
triplet states are also somewhat more compact,
as reflected in the smaller (W') integrals, but
the differences in a values (for example, the ten-
fold reduction from He 3'S to 3'S) tend to dominate
the comparisons.

A most important application of the error break-
down furnished by (17) and (18) is to assist in
judging how much attention should be given to
each of the trial functions 4„4, for any given
transition. This point is illustrated in Table VII,
which lists values of e& and 5, (i =S or P), and
of the percent error contributed by each function

TABLE &I. Numerical values for various parameters which affect the accuracy of the calculated f values; see text.

Atom Transition Error (x10 3) (x].0-')
'a&a, &a%,

Q [w Ig~) (e~(w )e~) gr~ (xl0 ) (xl0 )

1S 2P
1S 3P
1S 4P
2 S~2P
2 S~3P
2S 4P
3S 2P
3'S-3'P
3 'S-4 'I
2S 2P
2S 3P
2s 4P
1S 2P
1'S-3 'P
2 'S-2 'I
2'S-3'P
2S 2P

0.2761
0.0735
0.0303
0.3764
0,151
0.052

—0.1454
0.626
0.148
0.539 09
0.0645
0.0261
0.4566
0.1106
0.212 58
0.2570
0.307 94

0.51
5.0

23
0.48

35
6.3
1,8

31
0.087
4.5

24
0.21
2.1
0.24
2.6
0.052

0.11
0.11
0.11
1,8
1.8
1.8
6.7
6,7
6.7
0.17
0.17
0.17
0,081
0.081
0,89
O.S9
0.090

0.77
4.7

15
0,77
4.7

15
0,77

15
0.54
3.7

12
0.38
2.2
0.38
2.2
0.28

0.75
0.75
0.75

11
11
11
57
57
57
7.6
7.6
7.6
0.29
0.29
3.1
3.1
2.5

19
110
370
19

110
370

19
110
370

15
98

340

28
4.8

28
4.0

0.42
0.21
0.13
2.9
0.91
0.47
1.1
7.1
1,5
2.5

0.52
0.30
0.32
0.15
1.5
0.63
1.4

0.49
1,2
2.2
5.8

19
35
28
51

130
0.52
1.7
3.2
0.18
0.43
1,4

7
0.13

0.5S
4.0

13
1.1

15
50
5.8

12
110

0.59
10
34
0.16
1.1
0.35
3.6
0.22
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4, to the total error. In the transition He 1'S
-3 'P, for example, about 77% of the total error
can be attributed to the P function, so there would
be little advantage in further refining the S func-
tion. ' In He 2'S - 2'P, on the other hand, the S
function is responsible for about 84% of the error,
so that any reserve effort should clearly be allo-
cated to its improvement; in particular, the over-
all accuracy of the calculated f value might well
be improved by substituting a poorer 2'P repre-
sentation if the computational capacity thus freed
could be transferred to improve the 2'S function
sufficiently. For still other transitions, such as
He 1'S -2'P, the errors are fairly well "bal-
anced, " and an optimum strategy for further im-
provement would involve simultaneous improve-
ment of both functions. Such considerations could
be of practical value in many circumstances, and
we note that partial information of this character
might be deduced even if the overlap parameter
e were unavailable (or could only be judged in a
qualitative sense). We hope to return to this point
in a forthcoming paper.

VI. CONCLUSION

We have applied rigorous error-bound formulas
to the calculation of dipole oscillator strengths in
order (a) to cast light upon the general factors
which affect the theoretical errors in such calcu-
ls.tions, and (b) to systematically determine vari-
ous He and Li+ f values at a level of accuracy
which could be of practical utility. We find that

many of these f values can be rigorously bracket-
ed with an accuracy which matches or exceeds
that currently accessible to experimental methods;
for transitions in which this gain in accuracy ap-
proaches one or more orders of magnitude, one
has a suitable bas.'s for confidently calibrating
experimental setups and/or identifying sources
and magnitudes of systematic error. In this con-
nection, one can note that these two-electron sys-
tems would generally be of greater experimental
convenience than corresponding one-electron
species for which definitive theoretical values
are known.

The calculations given here were carried out
entirely within the dipole "length" formulation,
and have revealed various trends with respect
to nuclear charge and to degree of excitation,
angular and spin symmetry, and spatial diffuse-
ness of the participating states. It can be ex-
pected that calculations in the "velocity" formula-
tion would exhibit somewhat different patterns
of dependence on these various factors. We ex-
pect in the near future to carry out dipole velocity
calculations on these same two-electron species,
so as to gain additional insight on the relative
error susceptibility of length and velocity cal-
culations for the various classes of transitions,
as well as, possibly, to further tighten the error
bounds for several of the f values.

While the error-bound formulas might be applied
in a fully rigorous manner to somewhat larger
systems, as recently demonstrated by Sims and

TABLE VII. Error parameters and percentage contributions to total error' arising from
each of the tw'o trial functions 4, , 4 .

Transition (x10 )

Error E'g,

{xl0 )

j~ Error

He 1'8-2 'P
1S 3P
1 8~4P
2 8~2P
28 3P
2S 4P
3 S~2P
38 3P
38 4P
28 2P
2 8~3P
2 8~4P

0.11
0.11
0.11
1.8
1.8
1.8
6.7
6.7
6.7
0.17
0.17
0.17

4.3
11
19
3.2

10
19
4.2
7.9

19
3.0
9.9

18

46
23
14
84
56
41
S3
81
54
47
15

8

0.77
4.7

15
0.77

4.7

15
0.77
4.7

15
0,54
3.7

12

0.75
0.84
0.86
1.5
3.1
3.2
7,5
2.6
7 4
1.1
2.7

2.7

54
77
86
16
44
59
17
19
46
53
85
92

Li 1 8~2/
1'8-3 'P
2S 2P
2S 3P
~ '8-2'P

O.OSl
0,081
0,89
O.S9
0.090

2.2
5.3
1,6
5.2
1.5

53
28
80
57
37

0.38
2.2
0.38
2.2
0.28

0.43
0.51
0,94
1.7
0.81

47
72
20

63

'Percentage error from 4, —= [~,6,/(e, b, + e~bplx100, etc.; see text.
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Whitten on the beryllium atom, "it seems likely
that their greatest utility would arise in more
qualitative applications in which only some por-
tions of the error-bound expressions (such as
the factors i), and i), of Sec. V) would be evaluated
as a guide to the expected errors. The recent
resurgence of activity in oscillator-strength cal-
culations for small and medium-sime atoms has
been characterized by new standards of accuracy
and sophistication, ' to the extent that partial or
full employment of the error-bound equations no
longer seems completely out of the question. One
can expect that, as the computational techniques
continue to evolve in the direction of greater accu-
racy, the need for criteria of reliability which are
internal to the theoretical calculations themselves
(and thus independent of the availability of ex-

perimental comparisons) will be increasingly
perceived.
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