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A model to describe the slowing down of fast-moving heavy particles in matter owing to
inelastic collisions is devised using the binary-encounter approximation, and stopping cross
sections are calculated specifically for helium in hydrogen. In performing the calculations,
each incident-beam charge-state component is treated separately, and the results are com-
bined using the best available experimental information on the equilibrium charge-state
fractions. The results, both for the partial stopping cross sections of the individual charge-
state components and the total stopping cross section of the equilibrium mixture, are com-
pared as a function of incident energy with the results of various experiments and with other
theories. The calculated total stopping cross section is in reasonable agreement with ex-
periment over a rather wide energy range and is superior at energies below 1 MeV to the
results of the Bethe theory, but discrepancies exist between calculated and experimentally
determined partial stopping cross sections. These discrepancies are discussed and possible
explanations for them are suggested.

I. INTRODUCTION

Phenomena associated with the slowing down

of heavy charged particles in matter are of con-
siderable interest in several fields, including
nuclear, atmospheric, and radiation physics. A
basic quantity associated with these phenomena
is the electronic stopping cross section, which is
a measure of the average rate at which the par-
ticles of a beam passing through matter lose energy
to electronic excitation or ionization as the result
of inelastic collisions with the target atoms.

Although electronic stopping cross sections have
been studied for many years, no completely satis-
factory method for calculating them over a broad
energy range exists. For large incident speeds
the standard method makes use of a mell-known
formula which Bethe' derived in 1980 using ap-
proximations similar to but more restrictive than
the Born approximation. The Bethe formula con-
tains a parameter I called the mean excitation
energy which in principle can be calculated from
a knowledge of the target-atom wave functions,
but since these calculations are very difficult
except for simple target atoms I is usually de-
termined empirically by fitting the formula to
high-energy stopping cross-section data. ' Even
considered semiempirically, the Bethe formula
is good only for incident particle speeds much
greater than any of the target-atom electron speeds.
However, the average speed of an electron in a
bound state of principal quantum number n is ap-
proximately given by Zac/s. Thus the uncorrected

Bethe formula is severely restricted in its range
of usefulness. Shell corrections which extend the
Bethe formula to lower energies have been ap-
plied, but unfortunately such treatments require
excessive labor. '4

We have developed a model of the stopping pro-
cess which permits relatively simple calculations
of stopping cross sections and which can be applied
for any target atom even at intermediate incident
speeds. To describe the collision process, we
have employed a modification of Gryzinski's binary-
encounter approximation. ' Like the Born approxi-
mation, the binary-encounter approximation is
strictly a first-order theory and assumes static
undistorted atomic wave functions that are inap-
propriate at low incident energies. However, in
contrast to the Bethe formula, the binary-encoun-
ter approximation has been developed within a
theoretical framework that does not exclude low-
incident particle velocities. Thus we might expect
it to be superior in those energy regions in which
the uncorrected Bethe formula is invalid. To
precisely test the validity of our model, we con-
sider it necessary to treat separately the inter-
actions of each individual charge-state species
which comprise the energy-dependent distribution
of the incident beam.

In principle, our model is applicable to any
incident species, but the required calculations
rapidly become complicated for heavier atoms
because of the large number of possible charge
states which must be considered. For this
reason, and because much recent stopping cross-
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section data exists for this system, we will dis-
cuss only incident helium. In Paper I of this series
we wDl present the model, develop formulas,
and make stopping cross-section calculations
specifically for hydrogen targets. %e wBl also
compare our results for total stopping cross sec-
tions and for the stopping cross sections of the
individual charge states with experimental values
and the results of other theories. In Payer II we
wQl generalize our formulas and calculations to
more complicated targets and, in particular, dis-
cuss the variation of our calculated results with
target-atom atomic number as well as the cor-
responding variations in experimental stopping
cross-section values.

II. THEORY

A. General

An atomic beam passing through matter will in
general contain ions in all possible charge states.
Regardless of the composition of the beam upon
entering the target, the mean relative populations
of these various charge-state components will
quickly reach equilibrium values which change
slowly as a function of velocity as the beam par-
ticles slow down. In solids, for instance, equilib-
rium may be reached after penetration of only a
few atomic layers. The target-dependent total
electronic stopping cross section 8, for the inci-
dent beam will be a weighted average of the stop-
ping cross section for the individual components
given by

s, = Q E,+„,
where F&„is the equilibrium fraction of the ith
charge-state component and the corresponding
partial stopping cross section 8,&

includes con-
tributions from all excitation processes including
charge transfer. For incident helium i goes from
0 to 2.

Prom Eq. (I) it can be seen that the solution
of the stopping problem conveniently separates
into two parts: the determination of the equilib-
rium charge-state fractions and the calculation of
the corresponding partial stopping cross sections.
The calculation of the partial stopping cross sec-
tions in turn requires the evaluation of the equation

for each incident charge species. Here Q„, rep-
resents the total excitation cross section of the
eth target state by an incident particle of the ith
charge species, and E„is the cogresponding ex-

citation energy. The summation includes an inte-
gration over the continuum of ionized states as
well as a summation over all accessible discrete
states.

To solve Eq. (2) we exclude processes such as
charge transfer or projectile excitation. Generally
speaking, charge-transfer contributions to the
energy loss will be small for multiply charged
incident-beam components and for the singly
charged component at large energies. At low
energies charge transfer will also be small unless
an accidental or symmetric resonant process can
occur. Such processes are relatively infrequent,
however. The amount of projectile excitation
depends on the number and binding energies of the
projectile electrons. It will generally be small
for the charged incident-beam components, and
therefore for large incident syeeds, but it may
be important for neutral projectiles. In the case
of helium, however, the large excitation energies
will inhibit projectile excitation even for the neu-
tral species.

B. Binary-encounter partial stopping cross sections

The binary-encounter approximation is used
to determine the inelastic-scattering cross sec-
tions Q„,needed for the evaluation of Eq. (2). In
this approximation inelastic processes are con-
sidered to result from binary collisions between
the incident system and the individual electrons
of the target atom. These collisions, although
elastic in a coordinate system moving with the
center of mass of the binary-collision partners,
result in energy transfers to the target electrons
in a coordinate system at rest with respect to the
target nuclei. The influence of the target nuclei
during the collision is ignored except insofar as
it determines the electron speed distribution.

Except for the work of Gryzinski, ' application
of the binary-encounter theory to the calculation
of stopping cross sections has been somewhat
neglected, although many cross-section calcula-
tions for individual processes, particularly ioniza-
tion, have been made. Most of the results, as
well as recent theoretical developments, are
summarized in review articles by Bates and
Kingstone and Vriens. ' Among other things, it
has been shown that the binary-encounter approxi-
mation correctly describes contributions to ex-
citation and ionization from close collisions insofar
as distortion effects can be disregarded, but that
it completely neglects resonant excitation and
ionization due to distant encounters. For incident
bare charges at large velocities, close and distant
collisions have been found to contribute about
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equally to the energy loss of the projectile, ' and
consequently stopping cross sections calculated
using the binary-encounter approximation should
underestimate those calculated using the Born
approximation by a factor of about 2 at large ve-
locities. Qn the other hand, for neutral incident
species or for any incident species at lom speeds,
resonant processes will be relatively unimportant
and the binary-encounter and Born approximations
should yield approximately equal results.

Most previous applications of the binary-en-
counter approximation have been limited to Cou-
lomb interactions, " however, as has been suggested
by Ger juoy' and Hates and McDonough, ' the theory
can be extended to quite general binary interac-
tions, provided the appropriate center-of-mass
(c.m. ) scattering cross sections can be deter-
mined. Flannery' has recently presented for-
rnulas for this generalization and made calcula-
tions of ionization and excitation cross sections
of hydrogen and helium atoms and singly charged
lithium ions for incident neutral hydrogen. In this
paper we will generalize the formulation of Ger-
juoy' to determine the inelastic cross section for
the incident He' and He0 components.

%hen the binary-encounter approximation is
applied to the calculation of cross sections for
the excitation of discrece electronic states, a
difficulty arises because the approximation treats
all excitations as continuous. The customary
method of dealing with this problem has been to
equate the excitation cross section Q„&to the in-
tegral of the binary-encounter "differential" cross
section Q, (r E) for energy transfers within a small
interval around dE between the limits E„,the ex-
citation energy of the nth excited state, and E„+»
the next-highest excitation energy. As has been
mentioned by Flannery, " this procedure yields
excitation cross sections which do not satisfy de-
tailed balancing; nevertheless, it has the advantage
of simplicity. Ne will define the contribution to
the stopping cross section from excitation of the
nth state by a similar integral between E„and
E„+»in mhieh the "differential" cross section
Q, (nE) is weighted by r E. Using this definition
we can write Eq. (2) as

d0«(U, x),mUV
(4)

in which m =m, m, /(m, +m, ) is the reduced mass,
fQn) is the collisional change in the azimuthal angle
of the relative velocity in a coordinate system with
its z axis along the c.m. velocity vector V, and

g =)((()),hE). The energy transfer &E can be ex-
pressed in terms of the polar angles 8, 8' of the
relative velocity vectors before and after the col-
lision by

hE = mu V(cos 8 —cos 8').

The geometrical requirement that cos8 and cos8'
be between + f and —1 imposes limits on AE which
are easily obtained from this equation. If 4E lies
outside of these limits, o'&z,~ vanishes. For a
typical target in which the atoms (molecules) are
randomly oriented, me may assume that the elec-
tron velocity distribution is isotropic. Following
Gerjuoy, ' me may replace 0,~ by an effective
cross section, o(f(ts(v„u,), which is characteristic
of the ith charge state and represents an average
over the relative orientations of v, and v, for an
isotropic distribution of v, ." The cross section
Q, (LE) can then be found direct'ly by averaging
a'&z~~ over the target-electron speed distribution
f(u, ), with the result that

refers to the incident particle and 2 refers to the
target electron. A prime will be used to distin-
guish quantities before and after a collision.

The binary-encounter "differential" cross sec-
tion Q, (aE) is derived starting from the c.m.
electron-scattering cross section o& for the poten-
tial appropriate to the ith charge state. As has
been shown by Gerjuoy, ' this electron-scattering
cross section can be related to a "differential"
cross section o&~~ for energy transfer AE in the
laboratory coordinate system at rest with respect
to the target nucleus. In particular 0&~, which
is considered to be a function of the incident- and
target-particl. e velocities v, and v„aswell as
the energy transfer 4E, can be expressed in terms
of o&, which is a function of the relative velocity
v and c.m. scattering angle y. The appropriate
formula given by Qerjuoy is

8,( = n EQ((nE) dr)E,
hS~

where b,E, is the lowest allowed excitation energy
of the target electron. For hydrogen AE, is the
excitation energy of the n=2 states and equals
three quarters of the binding energy.

In the following discussion, when referring to
quantities describing the binary-collision partners,
me mill adopt the subscript convention in which 1

Finally, by substituting Eq. (6) for Q&(nE) into
Eq. (3), the partial stopping cross section can be
written as

&,g
= aE f v, )o,'~f' U„u,) du, daz .
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In actual calculations we have interchanged the
order of integration in Eq. (7) and adopted the

notation

G,(a3„v„a,) = f axe; ~(v„u,) Ch 3 .

The resulting equation for S,&
is given by

2 f 1& 1% ~2 ~2
0

(8)

C. Incident He" component

For the Coulomb potential of He+' appropriate
formulas for a2~ have been developed by Gerjuoy. '
To simplify comparison with the other charge-
state components, me will present his results in

terms of the nondimensional variables (v( 3
= v, ,/

vz and 5= 5.E/E)„where v z and Ez = 3m v),
3 char-

acterize the particular interaction and can be
chosen arbitrarily for a Coulomb interaction with-
out changing the form of the resulting equations.

Specifically,

&,'~ = (((/(v((v3)(e'/E))(1/5') [(&—&)((v."—~,")(~,' —(v„')+((v,'+ ~,'+ (v,"+ ~,")(~„-~,) ——,'(~3 - ~3)],

where Qg = 4L)1 4)2~ = QP1 + &2' (12)

(v(' =[(v(3 —(m/m, )5]'~3,

(d,' = [(v33—(m/m3)5]'~3 .
The quantities ~, and ~„arelimiting values of the
relative velocity for a given 5 and are related to
the geometrical requirement mentioned earlier
that cos6I and cosj9' lie between +1 and -1. In the
event that m, »m„asmill be the case for heavy
particles incident on electrons, and for 5 &0, the
following three cases depending on the value of
5 are important.

Case (i): 5(5„

case (ii): 5, «5&5, ,

40 g
= ((L)2 —4P1 ~

I I
At, = QP1 + A)2~

case (iii). 5 ~ 5„o~((=0,
where

a, = [4/(m, +m, )] ((v, —(v3)(m, (u, +m3(v3),

a3 =[4/(m, +m, )]((d, +(d3)(m, (d( -m, (a,) .

(13)

(14)

Using Eq. (10}for o3'~s, G3 given by Eq. (8) can
be evaluated analytically with the aid of the fol-
lowing expressions for the indefinite integral:

g

PS1 +tS2

4we& w*,/, aP/w, , , (g,

)(aP, + CO +, —up,
' ng, ,

' + ' for 5 «5(5, .
m2 m1

Then, choosing f(v, ) to be the ground-state elec-
tron speed distribution of atomic hydrogen given
by

f(v, ) = 32m', v33/w(v3+ v',)',
where v0 is the electron speed in the ground-state
Bohr orbit, we can integrate Eq. ((L) for S„nu-

mericallyy.

D. Incident He component

To determine o~~ for He' a number of additional
assumptions are made. First, the incident atom

electrons are represented by ls hydrogenic wave
functions of the form

(r) (g3/87()(/3 e xFI2 (18)

with A. = 2Z,„/aowhere a, is the classical radius
of the ground-state Bohr orbit of a hydrogen atom,
and according to Slater's rules Z,~ =1.7 for he-
lium. " From Coulomb's law the interaction po-
tential created by such atoms is

V(r) = —2e'(r '+3k)e

%e also assume that electron scattering is ade-



BINARY-ENCOUNTER STOPPING CROSS SECTIONS. I...

TABLE I. Coefficients A& &
to be used in the evalua-

tion of the cross sections for energy transfer to an
electron by an incident atomic hydrogen or atomic hei. i-
um beam.

where x= &u' and expressions for A,~ and fe(x) are
obtained from Tables I and II, respectively. The
constants a, and u, in Table I are given by

Q~ = (m ~ &d~ + m 2 QP~) /(m ~
+

m 2) q

a, =m/(m, +m, ) .
(22}

1 19a -19a -47~2

].5a', -6a, (5a, +75~} 3(a, +6'}(5a,+95~}

3 5a~( -15a(2/2+62} y5a ((a 2+ 52}~ -5(a +62}~

y = Jo+$~$ —x (22)

and the coefficients of x in this equation can be
written in one of the alternate forms

The variable y in Table II satisfies the equation

quately described by the Born approximation,
which neglects electron exchange and distortion
of the helium-atom wave functions during the col-
lision. This approximation is consistent with the
binary-encounter approximation which neglects
target-atom distortion and precludes the possibil-
ity of electron exchange by considering the pro-
jectile to be a structureless particle. The ap-
propriate Born cross section for the interaction
of Eq. (19) is

(20)

where 0' = (2' u'/h')(1 —cosy)."
Determination of o,'~ corresponding to the c.m.

scattering cross section given by Eg. (20} follows
the procedure used by Gerjuoy for the Coulomb
interaction. In this case„however, considerable
simplification results if we let v&=RA/m. Details
of the straightforward but somewhat tedious anal-
ysis are given in the unpublished dissertation of
one of. the authors. " Only the results will be pre-
sented here. The cross section 0'o~~ can be repre-
sented by the formula

&o
= ~i~x +a% (+i 4C)

p~
= 2((aug + (cP2) + k~ CL2

(24)

y ~l2n+ ~IRg- (~t 2 ~f 2)2

p~
= 2((d~ + R~ }+a~ 62

(2&)

&g' =5+m(/(m, +m, ) . (28)

The auxiliary functions t and q in Table II are
given by

2x y~ q g gg + 4/0 ~

Xz = ((d& + td2)

1 1 +2+2

ff = 44P~4)2

For e = ~, , on the other hand, we have

case (i): 8& g, ,

(28)

%'hen evaluated at ~„and ~„expressions for
x, y, and t can be written in comparatively simple
form, depending on the value of 5, according to
Eqs. (12)-(14). In all cases for Id = Id„,

ff 7/ 1 e g

oo~s= 18
-2 -E3 ~e~o(")
big (d2

&=0 X$

(21)
x, =((u, —w, )',

fg = —4(dg(d2 —Ag Q

TABLE Q. Functions f (g} needed in the evaluation of the cross sections for energy
transfer to an electron by the neutral. or singly charged species in an incident helium beam.

sin

—~+4f (0

——)+8f20
2

&,&~~~0
2

&,X~~ go3y" 2

+&& ~30
5ys 2

X

, S
+

2 f 32-&0~S&
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case (ii): 5, & 5& 5, ,

x, = (00,' —&u,')',

t, = —4'(a)2 —6, +;
case (iii), given by Eq. (14), also applies for in-
cident neutral systems.

The final evaluation of G0(n,E, v„e,) from Eq. (8)
and S„from Eq. (9) using f(u, ) given by Eq. (17)
is done numerically.

E. Incident He' component

For He', as for He', we assume that the incident
systems are in the ground state. However, in this
case, their electrons are described exactly by 1s
hydrogenic wave functions with Z,f, =2. Application
of Coulomb's law to the corresponding charge
distribution of the incident ion gives

V(r) = —e'[r '+(r '+0z)e +] (31)

for the interaction potential. The first term of this
expression represents the Coulomb potential of
the residual ionic charge, and the second term
represents the potential of that part of the nuclear
charge which is screened by the electron. Except
for the value of A., the second term has the same
form as the potential of a hydrogen atom. Evalua-
tion of the Born approximation to the electron-
scattering cross section can be carried out by
substituting Eq. (31) into the well-known formula

0

and performing the integration to obtain

2 me' ' 1 2(2A.' +k') (2A' + k')'
1( )

ff 2 y4 )P()2 +y2)2 ()2 ~}t2)4

(»)
Most of the work in finding 0,'~ from this equation
has already been done, since the first and third
terms result in contributions that have the same
form as 0,'~ and 0'0~f respectively, except that
vz is now determinedwxth Z,«= 2. Consequently,
the expression for 0'",~ can be written:

eff & eff I eff & eff~1~ ~4a~+ 1~+~40~ y

in which only the middle term remains to be eval-
uated. The procedure used for this evaluation,
although similar to that for a0~, is much simplier
and results in the following formula for 0",~«:

0.Ieff e
4(aP~ Es

X.

(35)

where the f&~
are again obtained from Table II.

The second term of Eq. (35) must be integrated
numerically over dEdnE in Eq. (8) for G„how-
ever, analytic expressions exist for the indefinite
integral of the first term. They are

~ 2w e'
(dl (d2 E ),

4 b

QPj (d2

= (8we4/&cP~E &)5 for 5 & 5, ,

= (4w/(o', (u, )(e'/E q)[((u, + (v, )5 —(2/3m)(m, (u00 + m, (u(') ]

for 5, &5&5, .

(38)

These expressions can be used in the evaluation
of G, (n E) from Eg. (8). Again, the final deter-
mination of S„from Eq. (9) is done numerically.

F. Equi1ibrium charge-state fractions

The remainder of the stopping cross-section
calculation requires knowledge of the equilibrium
charge-state fractions for helium in hydrogen.
For the energy range from 0.01 to approximately
1.5 MeV we have used experimental results of
Barnett and Stier, "Torres et aE.,

"and %ittkower
et aE.18 Above this energy, however, no data exist
and we have developed an extrapolation procedure

1 dI'0
1 10 +0 01

1 dF,
+2 2l +0 01 +1( 12 10)

(3'I)

(38)

based on an analysis by Armstrong et al.19 of the
charge equilibrium process.

Variations in the incident-beam charge-state
populations with distance s along the beam path
are a direct result of electron capture and loss.
It is usually a good assumption that multiple elec-
tron-transfer processes can be neglected, "in
which case the equations governing these varia-
tions may be written as
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(39)

where N designates the target-atom number den-

sity, E& designates the ith charge-state fraction,
and o&& is the cross section for a transition from
the ith to the jth charge state and is a property
of the target material as well as the incident
species. Equilibrium is reached when the rates
of electron capture and loss are balanced. Then
the left-hand sides of Eqs. (37)-(39) vanish and
we find tha, t

FO~/Fl~ 01/ 10 &

Fl ~/F2 ~ 21 /~12

(40)

(41)

where I',
„

is the equilibrium fraction of the ith
charge state.

If the electron-capture and -loss cross sections
obey relatively simple power laws for sufficiently
large particle velocities, as is suggested by Bohr,"
for instance, then the equilibirium charge-state
fraction ratios will also obey simple power laws.
This has been verified by Armstrong et a/."for
carbon, and provides us with an easy method for
extrapolating experimental data to high energies.
We assume that the ratios have the form

(42)

(43)

where f= F—o„/F,„,g= F—,„/F,„,and ED = 1 MeV.
Then, noting that I'0„—F,„+I',„=1, we develop
the following formulas for the equilibrium charge-
state fractions:

F, =[1+g(1+f)j ' (44)

=fF

TAB LE III. Equilibrium charge-state fractions: He-
lium on hydrogen.

The constants f„g„u,and P can be found graph-
ically from logarithmic plots of f and g calculated
from experimental data versus energy. Then ex-
trapolated values for f and g can be found from
Egs. (42) and (43) and these results may be sub-
stituted in Eqs. (44)-(46) to determine values for
the equilibr ium charge-state fractions. Plots of
f and g as functions of energy for helium in hy-
drogen are shown in Fig. 1. The values of the
various constants determined from these graphs
are f0

= 0.035, go = 0.27, a = 1.9, and P = 3.1. The
experimental and extrapolated equilibrium charge-
state fractions for helium in hydrogen are given
in Table III.

IO
I I i I i i ii 0 ~ 010

0,013
0.018
0.024
0.032

0.000
0.000
0.000
0,000
0.000

0.156
0.164
0.166
0.167
0.170

0.844
0.836
0.834
0.833
0.830

O.I—

0.0 I
'

O.OI

I 1 I 1 i I I I

O. I

4

I I i »»il
IO

0.042
0 ~ 056
0.075
0.100
0.130

0.180
0.240
0.320
0.420
0.560

0.750
1.000
1.300
1.800
2.400

0.000
0.000
0.000
0.001
0.007

0.012
0.037
0.076
0.173
0.349

0.583
0.781
0.892
0.959
0.983

0,177
0.191
0.224
0.289
0,372

0.503
0.620
0.707
0.703
0.590

0.393
0.212
0.106
0.041
0,017

0.823
0.809
0,776
0.710
0.621

0.485
0.343
0.217
0.124
0.061

0.024
0.007
0.002
0,000
0.000

INCIDENT ENERGY (MeV)

FIG. 1. Equilibrium charge-state fraction ratios for
helium in molecular hydrogen gas. Solid lines: smooth
curves representing eixperimental results from Hefs. 16
and 17; solid circles: experimental results fror~ Ref.
18; dashed lines: straight-line extrapolations of experi-
mental results to large energies.

3.200
4.200
5.600
7.500

10.00

0.993
0.997
0.999
1.000
1.000
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0.003
O.Q01
0.000
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'Values extrapolated from experimental data.
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0.000
0.000
0.000
0.000
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HI. RESULTS

A. Total stoppina cross sections

Using the procedure described in the previous
section, me have calculated both the partial and
total stopping cross sections of hydrogen as a
function of the incident helium beam energy for
the energy range between 0.01 and 10 MeV. Our
results for the total stopping cross section are
represented in Pig. 2 by the line marked BE.
Other theoretical results are also plotted on that
figure. Curve L is the prediction of Lindhard's
lom-energy formula" given by

8, = (,8we'as(Z, Z, /Z)(u, /u, ), (47)

8, = (4sZ32Z2eS/333u, ') ln(2333ul2/f ), (48)

with the mean excitation energy I set equal to the

Ioo
HELtUM ON HYDROGEN

i f I t I l II

EIO
0
O

G3

O

u) I

Z (Z2/3 + Z2/3)3/2
g

Zl/3 .
1 1 8 1

it mas developed using qualitative arguments based
on the Thomas-Fermi picture of the atom and is
expected to give only approximately correct re-
sults.

Curve 81 is the mell-known Bethe-formula re-
sult for incident Coulomb charges' given by

theoretical value given by Ref. 4, namely I =15.0
eV. Curve B2 is the result of a calculation in
mhich partial stopping cross sections for He ',
He', and He', determined by Cuevas et a/."from
a modification of the Bethe theory to apply to
incident systems other than point charges, are
combined using the equilibrium charge-state frac-
tions given in Table III. The various experimental
results mere obtained from the references cited
in the figure. The modified Bethe-formula results
are particularly interesting to us because the
descriptions of the various helium charge states
used to obtain these results are the same as the
descriptions used in deriving our binary-encounter
results.

Prom a comparison of curves 81 and 82, it is
clear that the effects of the charge-state distribu-
tion must be taken into account belom about 1.5-
MeV incident energy. If this is done, both the
binary-encounter approximation (curve BE) and the
modified Bethe theory (curve 82) give reasonable
results over the entire energy range. As expected,
the Bethe theory gives better agreement mith ex-
periment at high energies than the binary-encoun-
ter theory, owing to the influence of resonance
excitations. ' In addition, the modified Bethe
theory appears to give slightly better agreement
than the binary-encounter approximation at lower
energies, at least for target hydrogen. Homever,
when considering the relative merits of these two

approximations, it should be kept in mind that the
agreement between either theory and experiment
may actually be the result of fortuitous cancella-
tion of errors in the calculated partial stopping
cross sections. This possibility mill be discussed
further in Sec. IV. Both the binary-encounter ap-
proximation and the modified Bethe theory appear
to give better agreement with experiment than the
Lindhard-formula calculations for hydrogen even
at lom energies, although the significance of this
agreement is uncertain since the validity of the
binary-encounter approximation and particularly
the Bethe theory is questionable at lorn energies.
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FIG. 2. Total electronic stopping cross section of
hydrogen for helium. Curve BE: present binary-en-
counter calculations; curve 81: Bethe-formula calcula-
tion for incident He++ from Ref. 22; curve 82: modified
Bethe-formula calculation for equilibrium incident beam
from Ref. 22; curve L: Lindhard formula calculation.
Experimental results: curve BO, Bourland et uj. , Ref.
23; curve %, Acyl, Ref. 24; circles, Hvelplund, Ref.
25; squares, Palmer, Ref. 26; triangles, Park, Ref. 27.

8. Partial stopping cross sections

Very fern measurements of partial stopping cross
sections have been made oming to the added dif-
ficulty of separating the various charge-state com-
ponents of the incident beam. The measurements
of Cuevas et al."of the partial stopping cross
sections of hydrogen for the charge-state com-
ponents of helium are notable exceptions. In these
experiments a beam of projectiles with an equilib-
rium distribution of charge states mas directed
through a stopping gas in the presence of a trans-
verse magnetic field so that particles in different
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charge states followed different trajectories. A
detector was placed in the path of a particulai'
charge-state component to measure its energy
decrement, and the value of this quantity was
used to deduce the corresponding partial stopping
cross section. Since the detector collected only
those particles that had not changed their charge
state while traversing the stopping gas, the partial
stopping cross sections determined from the ex-
periment did not include energy-loss contributions
from electron capture and loss by the incident
particles. Because our calculations also neglect
such capture-and-loss processes, a comparison
between them and the experimental results is
particularly significant.

Plotted in Fig. 3 are the partial stopping cross
sections of hydrogen for the charge-state com-
ponents of helium obtained from (i) our calcula-
tions using the binary-encounter approximation,
(ii) the experiment of Cuevas et aL , (iii). the calcu-
lations of Cuevas et al. mentioned above, and (iv)
the Born-approximation calculations of Dalgarno
and Griffing" for protons on hydrogen which have
been scaled to apply He+' on hydrogen. As can
be seen, the agreement between our calculations
and experiment is not particularly good at the
few energies for which data is available. On the
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FIG. 3. Partial electronic stopping cross sections of
hydrogen for the charge states of helium. (a) Solid lines,
binary-encounter calculations; (b) solid lines with error
bars, experiments of Cuevas et al. , Ref. 22; (c) dashed
lines, calculations of Cuevas et a/. , Ref. 22 using modi-
fied Bethe theory; (d) long-dash-short-dashed line, Born
approximation calculations of Dalgarno and Griffing,
B,ef. 28.

other hand, the binary-encounter approximation
does predict the correct order of magnitude of the
partial stopping cross sections and in fact does
as well or better than the other calculations. That
the binary-encounter approximation over estimates
the partial stopping cross sections for He" and
He+ is consistent with its tendency to overestimate
excitation and ionization cross sections especially
in the energy range where these cross sections
peak. ' A similar tendency exists for Born-ap-
proximation calculations and is illustrated in
Fig. 3 by the results of Dalgarno and Griffing. In
this regard, it should be mentioned that both the
binary-encounter and Born approximations fail
to take into account distortion of the target or
incident charge clouds due to their mutual inter-
actions during a collision. This distortion usually
tends to reduce the probability of scattering and
lowers the individual scattering cross sections.
It is most prominent when the incident particle
is moving more slowly than the target electrons,
but, as has been shown by Bates, ' it remains
important even for higher incident speeds. Also,
the binary-encounter and Born approximations in
their simplest forms incorrectly include as ioniza-
tion some of the scattered electrons which actually
are captured by the incident particles in charge-
transfer processes. ' However, this effect is only
important for the ionic components of the incident
beam, and even then only for low-incident speeds.

In light of the behavior of calculated partial
stopping cross sections for the charged compo-
nents of an incident helium beam, it is at first
surprising that the calculated results for the
neutral component rather badly underestimate the
experimental values. However, part of this dif-
ference in behavior can be accounted for by the
fact that distortion effects are not as important
for the neutral component as for the charged com-
ponents because of the short-range forces in-
volved in collisions between neutral atoms. In
addition, the partial stopping cross sections for
He' and He' determined from experiment include
contributions from collisions which excite the
incident system without further ionizing them.
Our calculations, as well as those of Cuevas et al. ,
have neglected such processes, and while they
mill probably be insignificant for He' because of
the large excitation energies of the ion, they may
be important for Heo. In order to explain the
discrepancy between theory and experiment, it
would be necessary for the energy losses due to
nonionizing excitations of the incident He' to be
about as large as energy losses due to both ex-
citation and ionization of the target hydrogen.
This seems unlikely, especially since the inelas-
tic-scattering cross sections for helium tend to
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be smaller than those for hydrogen, owing to the
larger energy defects of the excited state of he-
lium. In discussing the results of their calcula-
tions, Cuevas et a/. have come to the same con-
clusion based on the results of Dalgarno and Grif-
fing, ' which show that nonionizing excitations of
the incident atom account for only about 10% of
the partial stopping cross section of hydrogen
for neutral hydrogen.

However, excitation of the incident systems will
result in an indirect increase in the partial stop-
ping cross sections which could be much larger
than the direct increase just discussed. In the
binary-encounter calculations we have assumed
that the incident neutral atoms are initially in the
ground state when they collide with the target-gas
atoms. If, in fact, a significant number are ini-
tially excited, their nuclear charge will be less
effectively screened and the partial stopping cross
sections will be correspondingly larger. Based
on a target-gas pressure of 35 p, , a total collision
cross section of 10 "cm', and incident particle
speeds between 10' and 10' cm/sec, we have esti-
mated the mean time between collisions in the
Cuevas experiments to be approximately 10 ' or
10 ' sec, which corresponds roughly to radiation
times for optically allowed transitions. This sug-
gests that a significant number of incident par-
ticles may indeed be in excited states. In this
regard, it should be noted that target-gas pres-
sures used in stopping cross-section experiments
may be greater than in the experiment of Cuevas
et al. by a factor of 10 or more, especially for
larger incident particle energies. In such ex-
periment it seems quite likely that many of the
incident atoms are in excited states.

Qn the other hand, Dalgarno and Griffing have
argued that if a significant number of excited
projectiles were present in the incident beam,
their relative proportion would vary with target-
gas pressure and cause a corresponding variation
in the measured stopping cross sections. It is
not clear that this variation would be easily de-
tectable, however, at least for large target-gas
densities, since collision broadening of the radia-
tion lines would tend to cause variations in the
mean radiative lifetimes with pressure similar to
the variations in the mean times between colli-
sions. ' Consequently, the relative proportion
of atoms in excited states would tend to remain
constant.

It should be pointed out that although rather large
discrepancies exist between calculated and ex-
perimentally determined partial stopping cross
sections of hydrogen for helium, cancellation

causes the discrepancy between the resulting
total cross sections to be reduced when the partial
stopping cross sections are combined according
to the procedure described in this paper. Con-
sequently, the reasonable agreement between ex-
perimentally determined total cross sections and
both the binary-encounter and modified Bethe re-
sults may be fortuitous. Nevertheless, since the
partial stopping cross-section experiments are
difficult to perform, and since little data is avail-
able, the possibility of experimental error cannot
be ruled out either.

IV. CONCLUSIONS

In this paper we have attempted to develop a
realistic model to describe the stopping process
over an energy range wider than can be handled
by previously existing theories, and although some
problems remain, we have been at least partially
successful in this regard. Indeed, results of our
calculations of the total stopping cross section of
helium in hydrogen are in reasonable agreement
with experiment for the entire energy range below
10 MeV for which experimental information exists.

On the other hand, certain unresolved discrep-
ancies exist between our calculated values for
partial stopping cross sections of helium for hy-
drogen and measured values. It is significant that
the other theories discussed in this paper are also
in disagreement with these measurements. Fur-
thermore, the various theories are in fair agree-
ment with one another and the differences between
them which do exist are qualitatively understood.
Further experimental information, especially
for large-incident energies, might be very useful
in clearing up the reason for these discrepancies.

Since the binary-encounter approximation does
not take into account contributions from resonance
excitations, our model is somewhat less accurate
than the Bethe theory at Large-incident energies.
Qn the other hand, for small energies it has two
basic advantages over the Bethe theory. First,
in this region the binary-encounter approximation
more closely represents the Born approximation
than does the Bethe theory, and second, the model
takes into account the different charge states
present in the incident beam.

Although we have considered only hydrogen tar-
gets, the model is also easily generalized to more
complicated atoms. In the following paper we will
make this generalization and will present results
of stopping cross-section calculations for a wide
range of target atomic number.
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