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Semiclassical shape of satelhte bands: Application to CsAr
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A term representing interference bebveen classical paths is isolated from the previously
derived equation for the semiclassical shape of satellite bands. A band shape quantitatively
accurate in the adiabatic one-perturber approximation is given by addition of the classical-
path contributions to the interference term. Comparison is made to a quantum-mechanical
calculation of a, satellite band in the red mng of the self-broadened Lyman-n line of hydro-
gen and to an experimentally observed band in the blue vving of the cesium 8521-A resonance
line perturbed by argon. The problem of inversion to determine a difference potential from
the observed band shape is discussed.

I. INTRODUCTION

Intensities in the w'ings of pressure-broadened
spectral lines are usually' calculated with clas-
sical-mechanical methods. The importance of
quantum-meehanieal effects has not been firmly
established. In the adiabatic approximation the
quantum-mechanical formalism" is well under-
stood, but calculations are very time consuming
even with modern computers. It is shown here,
by comparison to a two-state quantum-mechanical
computation, that the major contributions to the
line shape from quantum effects are interference
between allowed elassieal paths and intensity from
classically forbidden paths. These contributions
can be accounted for semiclassically. The shape
of the satellite band in the blue wing of the cesium
8521-A resonance line is investigated with the
semiclassical formalism.

In a previous paper' the shape of satellite bands
was derived in the one-perturber adiabatic approx-
imation. Semiclassical methods were used to in-
clude interferenee between the allowed classical
paths and contributions from classically forbidden
paths. The difference between the interaction po-
tentials of the active atom with the perturbing
atom in the two states involved in the transition
was represented by a parabola. The shape of a
satellite band in the red wing of the resonance-
broadened I yman-e line was calculated with the
semiclassical formula and compared with those
calculated with an exact quantum-mechanical
equation and with the classical formula in which
contributions from the allowed classical paths
are simply added. An encouraging agreement in
shape between the semiclassical and quantum-
meehanieal results was found. " The interferenee
between classical paths removed the singularity
in the classical one-perturber spectrum and
caused secondary oscillations to appear between

the central line and the satellite band. It was
observed, however, that the agreement with the
quantum-mechanical result in absolute intensity
was excellent for the classical spectrum, but
only fair for the semiclassical one. This was
attributed to the use of the parabolic approxima-
tion to the difference potential in deriving the
semic lassical formula.

In a classical treatment, the energy of light
absorbed or emitted by an active atom a distance
r from a perturber is given by the vaIue of the
difference potential at that distance. %hen the
difference potential has an extremum there is a
frequency range where more than one classical
path is allowed and a range where there is no
allowed classical path. A semiclassical treatment
reveals a characteristic "rainbow effect" with
interference structure in the allowed region
accompanied by exponentially decaying intensity
in the forbidden region. For brevity, we will use
the term "interference" to refer to nonclassical
contributions in both regions. In a quantum-me-
chanical treatment the over-all structure arises
from the energy dependence of the Franek-Condon
overlap factors.

In this paper the semiclassical formula is re-
examined and the pure interference contribution
is isolated. The interference is important for a
limited region of internuclear distance where the
parabolic approximation is valid. The classical
result that was shown to give good absolute in-
tensities is then added to the interference spectrum
to give quantitative agreement with the quantum-
mechanical result. Comparison is again made
for the satellite of the I yman-u line. The
observed shape of the blue wing of the 8521-A
resonance line of cesium perturbed by argon'
is analyzed. The spectrum is inverted to find the
difference potential between the ground 'Z and
the first excited 'Z states of the CsAr diatomic
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molecule. The uniqueness of the inversion is
discussed. The CsAr spectrum eras chosen for
analysis because of the availability of high quality
absolute intensities measured in absorption at
low densities by Chen and Phelps. '

EE. FORMALISM

In the independent perturber approximation the
total line shape can be calculated for any temper-
ature and pressure if the one-perturber spectrum
is known. "The one-perturber spectrum is well
represented by the quasistatic approximation to
the classical spectrum as long as satellite bands
are absent. When the difference potential has an
extremum a satellite appears near the frequency
corresponding to the extremum. Transitions at

frequencies farther from the central line than the
satellite are classically forbidden, and those
nearer the central line may occur at more than
one interatomic distance. At the extremum the
classical intensity becomes infinite. Quantum-
mechanical interference between the classical
paths removes the singularity, contributes an
exponentially decreasing intensity beyond the ex-
tremum, and causes secondary oscillations be-
tween the extremum and the central line. The
absorption coefficient in the presence of one per-
turber a„ is expressed as the sum of a classical
term and an interference term

(1)

The quasistatic approximation may be used for
the classical term. The dynamic form"'"

l
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is used here because it is directly related to the
semiclassical formula 'In E. q. (2} ~~ and &u are
statistical weights, D(r) is the transition dipole,
kv is the transition energy or difference potential,
and V, (r) is the interaction potential in the initial
electronic state. The value of co is —,

' if the per-
turbing and absorbing atoms are identical; other-
wise it is 1. The term 5 is the maximum value
of the impact parameter for which penetration to

the distance r with energy equal to ekT is classi-
cally allowed.

The interference term must approach zero when
the frequency is far from that of the satellite band
and it must exactly cancel the classical singular-
ity. This term is easily extracted from the semi-
classical spectrum.

The semiclassical line-shape function fEq. (51)
of Ref. 5] is a continuous function:
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where u=(V, /h'%TRAV")' 'k(v, —v), the reduced
temperature T*=kT/-V, (r ), bV is the difference
potential, and 4 is a correction for the effects
of the centrifugal potential. Ai is the Airy func-

tion. The plus branch is used for frequencies
farther from the central line than the satellite,
and the minus branch is used inside the satellite.
The interference contribution to the line shape
cannot be continuous because it must cancel the
classical singularity at @=0. %hen u& 0 all of
the intensity comes from interference; therefore
T'(u, T*) is the interference term for frequencies
outside the satellite. The classical component is
given by Eq. (13) with Ai'(-y) replaced by I/2vy'~'.
Red and blue satellite bands are distinguished by
the sign of 4V", which is positive for a minimum
in 4V and negative for a maximum.

The interference contribution to the line shape
is then

T,&(u, T~) = T'(u, T*),
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2wp

I IG. 1. Comparison of the semiclassical band shape
[Eq. (1)] with the quantum-mechanical band shape [Ref.
(5)l.

lu'I, (T'lu'l/y') ' „(4„)
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The total one-perturber line shape is given by
Eqs. (1), (2), and (5).

Much can be learned about the difference poten-
tial from an observed spectrum. The interference
term is determined by the long-range form of the
initial state potential through the function &(g)
[Eq. (3)], the frequency of the classical satellite
v, , and the second derivative of the difference
potential 4Y". Values for 4V" and v, can be de-
duced from the rate of exponential decrease of the
absorption outside the satellite. The interference
contribution to the intensity inside the satellite
band can then be calculated and subtracted from
the observed spectrum to give the classical com-
ponent. Inversion of the classical component to
give a complete AV(r) is compbcated by the two
classical paths that contribute to the intensity.
A unique, direct inversion is impossible. Param-
eters in a model potential can be determined and
a partial direct inversion made.

III. COMI'ARISON VfITH EXACT QUANTUM-

MECHANICAL CALCULATION

The semiclassical absorption coefficient given
by Eq. (1) was evaluated for the satellite band in
the red wing of the resonance broadened Lyman-
o. line of hydrogen. This system was chosen be-
cause an exact quantum-mechanical calculation'
is available for comparison. The result of that
comparison is shown in Fig. I. The agreement
in absolute intensities is quantitative. There is
a small amount of "noise" in the quantum-mechan-
ical result that is not matched in the semiclassi-
cal spectrum. ' The noise will diminish for heavier
atoms or higher temperatures. There is some
remaining discrepancy for wave lengths greater
than 1700 A. This is considered unimportant be-
cause the intensity has diminished to a negligible
value at those wavelengths.

Two points about the comparison should be em-
phasized. First, the parameters needed for the
semiclassical calculations were taken from the
known potential curves. There were no " adjust-
able" parameters. Second, the accuracy is ex-
pected to be better for atoms heavier than hydro-
gen. The conclusion is that the semiclassical
formula [Eq. (1)] is quantitatively accurate for

absolute intensities in the wings of atomic lines
in the one-perturber adiabatic approximation.

IV. INVERSION

A mell-defined inversion procedure has been
developed. Knowledge of the initial-state potential
is assumed and the difference potential is calcu-
lated.

Relative absorption coefficients are divided by
the frequency v to give a. line shape J„proportional
to T(u, T~),

4„=n„/v =ET(u, T*),

where tc is proportional to v, —v,

s =ah(v, —v) .

An initial-state potential function V, (r) and an
internuclear distance for the classical satellite
ro a.re chosen. Then

T*= —kT/V~(ro) .

If T~ & 5, the relative line shape is insensitive to
T* and therefore to r, . A nonlinear least-squares
fit of Eq. (7) to values of 8„ in the vicinity of the
satellite is made to give values for K, a, and v, .
The second derivative of the difference potential
is determined from

r V "(r,) = p, /h'kTa',

and the quadratic approximation to the difference
potential is

AV(r) = hv, +k.V "(ro)(r —ro)'/2 .
The interference contribution to the intensity in-
side the satellite, KT ash(v, —v), T~}, is then
calculated [Eq. (4b)] and subtracted from the ex-
perimental J„values to give the classical com-
ponent J'„"".

We write the classical intensity [Eq. (2}] as

(12}

The constants are adjusted to correspond to the
value of E determined from the fit, and J'„'"', which
is independent of the difference potential, is cal-
culated.

This is the point at which the inherent ambiguity
in the assignment of intensity to the two classical
paths must be faced. In most cases, the large r
branch will dominate for frequencies well inside
the satellite because the value of the derivative
d(h v)/dr usually increases rapidly for smaller
r. In view of this, a model potential is used from
small r out to a distance r, slightly larger than

The inversion is begun at r, and continued to
larger r. A three-parameter model potential



(such as the quadratic) can be determined direct-
ly from the values of r„v„and 4F". A four-
parameter model potential can be determined by
the additional imposition of continuity in the de-
rivative of the difference potential at r, .

The inversion procedure is simple. The contri-
bution to J'„""from the inner path is subtracted to
give O'""'"' Then

d g y g CL4tSS

g Cl8SS, OQf ' {13)

The differential equation is solved by standard
numerical techniques such as Runge-Kutta integra-
tion.

In the foregoing discussion absolute intensities
were not used, but a knowledge of the internuclear
distance of the classical satellite r, was assumed.
The absolute intensity is proportional to [r,&(r,)]'.
If the absolute intensity and the transition dipole
D(r, ) are both accurately known, r, can be deter-
mined.

V. APPLKATION TO OBSERVED SPECTRUM

A comparison with a spectrum observed at low

pressures is made to test the utility of the for-
mula in interpreting an experimental spectrum.
Chen and Phelps have recorded a single tracing
of the blue satellite of the Cs 8521-A resonance
line perturbed by argon [Fig. 6 of Ref. 7]. This
spectrum was chosen for comparison because
absolute intensities are recorded, the spectrum
is free of noise, the satellite is well separated
from the central line. and there is some evidence
of interference structure in the spectrum.

An interaction potential for the initial state was

taken from Baylis. " The internuclear distance
of the maximum in 4V was estimated from abso-
lute intensities to be r, = 10.6a, . The parameters
resulting from the least-squares fit are E= 3.46
+0.06x10'a', /e', a=3.2+ 0.2&10'a,/e', and hv,
=5.4557+0.0003x10 'e'/a, ." The error limits
are statistical and do not include possible syste-
matic errors such as those resulting from inac-
curacy in the initial-state potential. From these
values 4V"(r, ) = -1.399K 10 e'/a', and the wave
length of the classical satellite X, = 8351.5 A.

A point of interest is that A =8351.5 A, but the
maxi~urn intensity in the satellite is at A. =8367 A.
It is not a good approximation in this case to
assign the extremum in the difference potential to
be the frequency of the maximum in the satellite
band.

The difference potential resulting from the in-
version is shown as the solid line in Fig. 2. The
dashed line is the extension of the quadratic poten-
tial. The inversion was carried out for wave
lengths from 8511 to 8321 A. The calculated spec-
trum is shown in Fig. 3. It is indistinguishable
on this scale from the observed spectrum.

In the CsAr application the quadratic model po-
tential gave a nearly continuous first derivative
at the matching point r, . This made the use of
a four-parameter model potential unnecessary.

The difference potential presented here is in
substantial agreement with those of Hedges,
Drummond, and Gallagher" and Atakan and Jacob-
sen. ' The value and curvature at the maximum
are similar in each case. The internuclear dis-
tance of the maximum is found with our method,
but it is subject to uncertainties in the value of
the transition dipole and the absolute intensities.
%e do not regard the difference between the value
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FIG. 2. Difference potential between the ground and
first excited Z states of CsAr obtained by inversion.
The dashed line is an extension of the quadratic that is
used for smaller distances.

FIG. 3. Blue wing of the CsAr 852,1-A line calculated
with Eq. (1). On the scale of the plot the spectrum is
indistinguishable fro~ the experixnentally observed one
jRef. (7)].
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(r, = 9.0a, ) of Hedges, et al. and our value (r,
=10.6a,) to be significant.

VI. CONCLUSIONS

A quantitatively accurate semiclassical. formula
for the absolute intensity in the wings of spectral
lines has been derived. Satellite bands are treated
by adding an interference term to the classical
contributions. The formula has been shown to
reproduce the results of an exact quantum-me-
chanical calculation of hydrogen self-broadening.
W'ith a reasonable difference potential it also
matches the observed intensity in the blue ming

of the 8521-A line of Cs perturbed by argon. Sub-
stantial evidence has been obtained that at least
some of the satellite bands that have been experi-
mentally observed arise from extrema in differ-
ence potentials,

An inversion pl ocedure mas developed for de-
termining a difference potential from the shape
of a satellite band observed at lom densities. The
magnitude of the extremum in the difference po-

tential and the second derivative at the extremum
are uniquely determined by a least-squares fit to
the semiclassical band shape. The internuclear
distance of the extremum may also be determined
uniquely if the absolute intensity and the value of
the transition moment are both accurately known.

There is not enough information in the shape of
a satellite band at a single temperature and pres-
sure for a unique inversion to give a complete
difference potential.
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