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The third-order Stark effect is re-examined using an operator method presented by
Schvringer. By observing an identity for the perturbed part of the HamGtonian and by using
commutation relations, me are able to obtain the energy spectra of hydrogenic atoms in a
constant electric field vrithout solving the Schrodinger equation. Our result confirms that
of Doi and El-Sherbini.

I. INTRODUCTION

The influence of an external electric field on
atomic spectra was discovered by Stark in 1913
and is known as the Stark effect. The theoretical
calculations of this effect were carried out almost
half a century ago, by solving the Schr5dinger
equation for the hydrogenic atom using the method
of separation of variables in parabolic coordi-
nates. ' However, this method becomes quite in-
volved when one tries to calculate higher-order
perturbations to the energy spectra. "

A much simpler method, developed particularly
for this problem) was presented some years ago
by Schwinger' and was used to recalculate the
first- and second-ordex Stark effects. By making
use of the commutation relations among the gen-
erators of the symmetry group of the hydrogenic
atom and by observing an identity for the per-
turbed part of the Hamiltonian [E(l.(37)], he was
able to obtain the energy spectra of the system
without solving the Schr5dinger equation. The
purpose of this paper is to first review Schwin-
ger's method, which is nowhere available, and
then apply it (with slight modification) to calculate
the third-order Stark effect. Hopefully, this tech-
nique can be used to solve some other problems
in atomic and molecular physics.

II. UNPERTURBED HYDROGENIC ATOMS

The Hamiltonian for the hydrogenic atom is

H, = p'/2p —Ze'/r,

where p, is the reduced mass, ~ is the relative
distance, and p is the relative momentum. It is
well known that there are two constant operators
in this system: The orbital angular momentum

SL =r&&p „ (2

and the axial vector

A = r/r —(g /p, Ze')-,'(p x L —L xp} .

They obey the commutation relations

[I, I.,]=ie„,I,„
[I, , A~] = i e,~,A~,

[A),A~]=it))~( 2)f'H-o/pZ e )Lq.

Some of their properties are

A'L =0, r'L =0

A' = 1+(2a'H, /pZ'e')(L'+ 1) .

The angular momenta'

f(n= ~[L+( pZ~e4/2a2H }~~~A]

7(' =-'[L —(- p, Ze' 2/5'H, )'/'A],

obey the commutation relations

(4)

(5)

(6)

(7)

(8)

(10)

(11)

(12)

(13)

The states of the system can be completely
specified by the quantuxn numbers j,m„and m„
which are eigenvalues of the operators (J +)',
J(e, and J(2i, respectively. That is, if ljm, m, &

is the eigenstate, then we have

J~fl)m, m, & =m. l)m,m, &, a=1 or 2,

0) a) j a, ) ~.--j) j+&, ) j-&)j

Another set of quantum numbers which are con-
ventionally used to solve the hydrogenic™atom

which are the algebraic statement that hydrogenic
atoms possess the symmetry group O(4) = SO(3}
x SO(3). One also notes that the two angular mo-
menta have equal magnitudes since

(J")'=(J'i)'=-,'(-( Z'e'/2a'H, —1) .
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problem are

n=2j+1 )t, =-s'(n —l)-m, , a=1 or 2,
where {t" is the generator of the parameter X de-
fined as

n=l, 2, 3, . . . and k, =0, 1, 2, . . . , n —l. (13)

Now E(ls. (13) and (14}imply

4j (j+1)= —pZ'e'. !M'-'E„—1

5&~,'I =&~„'I (s/a)G5~.

Since E(l. (30) is true for arbitrary states &(qI
and I $q), we obtain the identity'

or

g„= -pg g, 2nS (19)

This is the mell-known Bohr formula for the ener-
gy levels of the hydrogenic atom. The eigenvalues
of L, and A, are

f, =(Z("+Z(n) =m, + (, =-m, (20)

nAs= (J," —J'(s'~)'=m, —m, = -(k, —ks) = —k.
(21)

~e note that the bases Ijmpn&) or InlsPs) are not
eigenstates of the operators L' and s(Ax L,). How-

ever, their expectation values can be easily eval-
uated as

The perturbation theory we will use here is as
follows. By expanding E~ in the power series of

H +~(0+g H()+gsgs)+. . .

we then identify

(„) I 'd"E
g

n f BA,
"

as the nth perturbation of the energy eigenvalue.
Also from E(l. (32), we have

BA. BA,

& L') = —,'(n'+m' —k' —1),

i &(A x L},) = 0/n.

{22)

III. SCHKINGER'S APPROACH

In this section, we will review Schwinger's meth-
od of calculating the first- and second-order
Stark effects. ' In a constant electric field 8, the
Hamiltonian of the system becomes

H=H +H, ,

where

8 =-eg-r.

{24)

H) =H +AH, . (26)

The corresponding Heisenberg equations of mo-
tion are

In the usual perturbation approach, one introduces
a parameter A, and considers the new Hamiltonian

The basic ingredient in Schwinger's approach is
to observe the following identity:

8H), 3 Zg'= -~8g =- e8g, + —6+0(X),
8A. 4 Ho dt

where'

G=(- e8)[ sxP, x, --,'.(r p)z--,'z(p r)+ssh(z-(z))]/H,

=(-e8)(1/H, )[sxIp,x, —,"(r p)z

,'z(p r—)-', )(stz-&z))],

and, without loss of generality, we have chosen
8 to be in the z direction. The proof of this iden-
tity will be given in Appendix A. For the first-
order perturbation, we have [from E(ls. (34), (35),
and (37)]

1
(
—= —. [r, ~H~]=p,N

[p, H), J= —,r+Xeh.do 1 ~ Z8
dg ~S ' " r'

Now if &g J is an eigenstate of Hs with energy
eigenvalue F.z, then we have

(2&) dd
BX

', (Ze'/E„)e8A, ', -
= ~ (~go,/g)pg$,

where we have used Eqs. (19)-(21)and defined the
Bohr radius to be

5t~ g„~H~=&kilH) I ti ),
which, by differentiating with respect to A., implies

a, =k'!'p.e'.
For the second-order perturbation, we have
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= ——&[G, -e8z]&
I i
2 5 '

),-o

%'e see that an explicit expression of 6 is required.
This can be achieved by comparing Eqs. (32) and

(3V) at X =0; and one obtains

G= G+5G, (42}

in which 5G is an arbitrary function of constant
operators. One notes that

3 ge2 dG
([5G, -eSz]& = 5G, — «A, +—

X,=o )=0

(43)

(f/)f)&[G, -«s]&„=[(«)'/E„]f-,'&g'&,

+&a~l,.,-(&x&, )'],

(44)
which then imply

E'"=[(«)'/2E„][-:&"&,. —.'&"&, .—«.&, ,) ] .
(45)

The remaining task is to compute (r') q, and

(~'&„-0. The details of their evaluations will be
presented in Appendix B. Here we only quote the
results:

(r') g. , = (na, /Z)' (-',s' —-', (L'& ~, +-',),
(x'&„,= ( ~,/Z) ' (-', ~'+-,'&f.'), ,——,'m'+1),

where (L'& q, is given by Eq. (22). Substituting
Eqs. (46) and (4V) into Eq. (45), we obtain

d!= -(s @p/16Z )(1VS —Qm —3}!r+ 19), (48)

which is the same result as that obtained in Ref. 1.

IV. THIRDARDER STARK EFFECT

The extension of the method discussed in Sec.
III to the third-order Stark effect is not trivial.
%'e find it is more convenient to use a slightly
modified form of Eq. (SV):

sHq SZe' - x(eh)' » d -,
BA. 4H), SH y dt

= -el' = e8A, + (Vx'+3m') +—6',

(49)

sE g 3Ze' - „(«)'«A."+x — (Vr'+Sr'& ~,N. 4E), ' 8E),
(51)

&g', (A, =(t,' (A.'. (52)

Equation (51) together with Eq. (34) is the basic
equation to apply our perturbation theory.

To illustrate the advantage of this modification,
consider the second-order effect. Differentiating
Eq. (51) once with respect to X and then setting
X=O, we obtain

szs*( d") z„, sze' z(9&,')

+ (Vr'+Sr'&~ „(eSP

E"= [(eg}'/2E.]8&&'& i= 0+ 2&r') i=.—{&s&~=.)]'

(53)

which is just Eq. (45). However, we are able to
obtain this result here without using the explicit
form of G.

The third-order perturbation can be obtained
by differentiating Eq. (51) twice with respect to
X and then setting X=0:

3!d & = [3(ec)'/E'„]&.&,=,[-:&"&,.—&& &,=.)]'

+ [(eg'/8E„] (f /ff )([G, 11r'+9&'])z=o.

Here as in Sec. III, we need an expli. cit form of
G at X =0, which has the foxm of Eq. (42). In
order to determine 56, we observe that the eigen-
value equation for A, [Eq. (52)] is quite similar
to that for Hz [Eq. (29}]. By following closely to
the arguments given there, we can easily show
that" [cf. Eq. (32)]

sA,
'

8x 8A, iS

or at A, =O,

Xe$, , dA
A., A, —2,(r'-s'), ~'=0,Se

and G' is just Eq. (38) with Ho- Hq. Again the
proof of Eq. (49}will be given in Appendix A. Now

if we choose the state &$ q( to be an eigenstate of
both Hq and A, , then from Eqs. (35) and (49) we
obtain'
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QQ
{r*»)»=,= l ( g' A,' (7 * —)(L*)»—,+&), (65)

= -(e8/2Ze')[(r' —z') —&(r'-z')) ), ,] .
&»*)»=.=l( z') &.'()&*~ &&i')»=, -s»»'+a).

Hy ~sing Eq. (36), we can easily show that

—[A, G] = — (2-z')-a -1.'-f.2+1 —.eg, a 3-, , eg
g' 2ges 2S 2 '

Ho

Therefore, from Eqs. (56) and (57), we infer the
following condition for 5(" (Ref. 5}:

—[A, , {)(:]=—,( ') (L*—{L),—,), (58)

Therefore, we obtain the final result for the
third-order Stark effect:

E i
~~, (n s'80/Z e')f([23n +'11m' —0'+39], (67)

which agrees with the result of Ref. 2. However,
it appears that we obtain this result in a much
simpler way than that of Ref. 2.
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f~. , f (A «).]= —(2/n')(L'- «'&.=.) . (60} APPENDIX A

Note that Eq. (56) cannot determine terms that
commute with A, , and 6G' is an arbitrary func-
tion of A, and I... which is diagonal and does
not contribute to our calculation here.

Now it is straightforward to show that

([G, 11r'+9z'])„.,=aa (e8/8„)

3 1 sg
~([5G,r'])&, =e82 Z, Z' n&z)„o&L')&„(&,2Ze Z

(62)

1 1
@&[5G,z'])),=, = -«2 Z,, ™Z' n&z)g=.&f ')),=.

(63)

Substituting Eqs. (61}-(63)into Eq. (54), we ob-
tain

In this appendix, we wish to prove the identities,
Eqs. (37) and (49). Consider

—„p[(r p)r + r (p r) —x,px, ]

=p~r+rp' — r+i(, l).e[2(8.r}r-8r']
y'

= 2}(,(H&r + rH)„}+3pZe' —+i(We[6(8 r)r 8r'], -
r

(A1)

by using Heisenberg's equations of motion, Eqs.
(27) and (26). Now from the definition of A, Eq.
(3), we have

r - h 1—= A + 2
—(p x 1, —f xp)

p, Ze'2

p, d=A+, —(rxQ —1 xr)
p Ze 2dt

rx———xr
2 dt dt

+
4E4E„Ze~ Z

Here we only have to calculate (r'z) &, , and (z') &, ,
Their evaluation will be presented in Appendix B.
The results are

, ——(2x px —(r p)r —r(p r)) .
pge 2 dt

(A2}

Substituting Eq. (A2) into Eq. (A1), and noting
that

dr
Hgr +rH), =2H),r +ih-

dt
EPp

=2rH), —ik-
dt '



THIRD-ORDER STARK EFFECT: AN OPERATOR APPROACH

vge obtain

r = — " A — [3($ r)r+Qr']
4Hy 4H),

+—[8j (—x px — (r'p)r - I r(p' r) —ail' r)] .

(A4)

In terms of

(iii) From Eq. (81), we have

+2 2

(A')4g

( 2 r 'p' —~ (r ~ p)' —4&K r ~ p) .
A, =A, —(xe8/2Ze')(r' —z'), (A5) (BV}

we obtain Eq. (49). The extra term, —,'ik&z&, in
Eq. (38) is added in order to guarantee that G is
a unitary operator. It can also be inferred from
the condition' [letting X = 0 in Eq. (32)]

By using Eqs. (8 4) and (8 5) and the identities

(r ~ p)' =r 'p'+ ik r p —h 'L ',
(r'p') =2gE„&r') +2gZe'&r),

(88)

(89)

&r') = '- (2s'-z&L'&+i) .8 (810)

~ere

3p, Zp A+ ——X,4H dt H (Bl)

X-=-',g, px, --,'(r p)r Pr(p r) —-,'ikr, —

= ~r p —g(r 'p)r —g Mr .

Therefore, me obtain immediately

(z) = (3p Ze'/4E„)-A,'= -2(na, /Z) k,

by using Eqs. (19)-(21).
(ii) From the definition of A, we have

APPENDIX 8: EVALUATION OF EXPECTATjON

VALUES

In this Appendix, vie vrill demonstrate hov}I to
evaluate expectation values of operators without
using the wave functions. Vfe vill denote by
(6) the expectation va. lue of an operator 8 between
the unperturbed states In~@,& .

(i) From Eq. (A4), we have (letting X=0}

(iv) To evaluate &z'), we pick up the z component
of Eq. (8 1) and multiply it by z and obtain

3Z8 ].
&z'& = —4@-&A. z& @(&.P.-)

3Z8
[8 &r 'p'& 8&z'p'&—

+ s&'(& L') —rn'+4)]

(zk'+ z ( L ') —zm'+ 1)Z

by using the following identities

2zp, (r .p) = z'p'+r 'p, '+ ik (r ~ p —zp, ) —}f'(L' —f.,'),
(812)

(r'p, ') =2pE(z'&+2pZe'&z)A', 5+'((L') -m' 1),
(813)

(z'p') = —'l E.&z') —-'&r'p-. '&+-'lf'(«'& —~'- z) .

(v} From the identities

1(A &L).=(z/r)(r p} rp. +(fi'L'/u-Ze'}p, ,

&r) =&r A)+(a, /Z)&1 ' —(i/t)r p&,

(3Ze'/4E„)&-A'& + (a,/Z)(& 1, '&+ —,'),
= (a,/2Z)(3s' —&L'&),

where @re have used Eq. 4,8)

&A') = 1 —1/n' —(1/n')&L'),

&rp, &
= —(Z/s'a, }&zr p & + & N A', ,

&i(AXL),) = —Ag,

(zr. p& =2N(z)

(815}

(816)

(817)

(818)

p, dr 3.(r.p) = — +-I = N. -'
dt

(vi) From the consideration of

(z /r& =&z'[A. (1/WZe')( p'-p. r p)]) (819)

and the observation that



we obtain

&~'/r& =(Z/I'o. }&s'& --.&s'»'. —ao./'Z&s& .

(vii) To evaluate (z~&, one considers

(z'& = -(3Ze'/48„)& A~'& —(1/'{(,E„)(2X,aP, - i/KX, &

= —a (na /Z)ak(Vk + 3( L ') —3ma + 6)

by using Eqs. (818}and (821).
(viii} Finally, to evaluate (r'z& and (rz&, we con-

sider

On the other band, by considering

&
r') /i.'=&rf~-(1/I «'} (sP'-P. » p)1 &

one obtains

4 ~, 4 Z 2 2a~
&ra) =--&r'»'+- ~

Combining Eqs. (823) and (825), we have

(raa) = ——(na /Z}akin' —3(L'&+5],

&rz& = (Nn, /Z}'~'. [{-,'n' - -,'
& L'&+ -,'1 .

(824)

(825)

(826)

(82V)
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48ince both A and L commute with Ho, the formal defini-
tion of J~' here is unambiguous. In computing the
commutation relations between J 's, Ho behaves as a
constant operator; when 00 operates on a state, it
gives the energy eigenvalue E„of the state. The
minus sign is introduced in the square root because

we are interested in the bound state spectrum g„&0}
of hydrogenic atoms.

5%'e use the notation that, when eigenvalue notations
[~'&,/ in Eq. {32) and 8A '/~~ in Eq. (55)l or expecta-
tion value forms [&',~) in Eq. (38), (t' -& ~)& 0 in Eq.
(56), and {,'L2)& 0 in Eqs. (58) and (60)] appear in oper-
ator equations, they should be understood as the diag-
onal part of the corresponding operator in that partic-
ular base, For example, the notation (L~)& 0 in Eq.
{58) represents the diagonal part of Lt in the

~
nk Pt&

representation, i.e. ,

&,'L~)&„=(} &[ {-pZ2e4/2h 2HO)(1-A2 } "L2 —1

61 thank Professor J. Schwinger for pointing out this
identity to me and for his helpful comments concern-
ing the determination of 66.


