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Variational principles for the estimation of the matrix element W,, = (¢,, W¢,) for an arbitrary
operator W are of great interest. The variational estimates are constructed from a trial wave function
¢,,, an approximation to the nth normalized bound-state eigenfunction ¢,, and of a trial auxiliary
function L,, an approximation to L which satisfies (H — E,)L = (W,, — W)$, =q($,).
Variational-principle applications have been limited by the difficulty of obtaining a reasonable L ,;
among other things, one demands that L, approach L as ¢,, approaches ¢,. The equation
(H —E,)L, =q(9,,), where E,, =(¢,,, H,,), is known not to provide such an L,. A practical
procedure for handling complicated systems given a reasonably accurate Rayleigh-Ritz trial function ¢,,
is called for. This paper provides such a procedure, using techniques developed in the establishment of
variational bounds on scattering lengths. Given H and ¢,,, we define L, by AL, = q(¢,,), where 4
differs from H — E, in that the influence of states 1 through n has effectively been “subtracted out”;
the operator A is non-negative. A functional M (L ,,) is constructed which is an extremum for
L,, = L,. Variational parameters contained in L,, can be determined by extremizing M (L ,,), thereby
providing an approximation to L,. The method is analogous to the determination of parameters in ¢,,
by the minimization of (¢,,, H$,,)/($,,, ¢,,). The method is immediately applicable to the variational
determination of off-diagonal matrix elements W, and of diagonal matrix elements of normal and of

modified Green’s functions.

I. INTRODUCTION

We will be concerned primarily with the ap-
proximate evaluation of diagonal matrix elements

Won = @n Wb = (Gn, W,) (1.1)

of an arbitrary known linear Hermitian operator
W with respect to eigenfunctions defined by

(H= E)$, =0, ¢r¢,=1. (1.2)

We note that the linearity in W of the matrix ele-
ments under consideration implies no loss of
generality in taking W to be Hermitian; any opera-
tor can be written as a sum, with possibly com-
plex coefficients, of two Hermitian operators.

For particular choices of W, one may be able to
estimate W,, by the use of a variational bound. If,
for example, we have W= H and we are interested
in the lowest energy E, of a state of given sym-
metry the well-known Rayleigh-Ritz theorem
states that

E, < ¢ Hppy=Epy (1.3)

for any normalized trial function ¢, of the given
symmetry. Not only is the error of second order
in (@ns = ¢p), it is of well-defined sign, so that an
optimum choice for the parameter contained in
¢n; can be obtained by minimizing the variational
bound on E,.

The trial function ¢,; obtained from a Rayleigh-
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Ritz calculation may be used in the estimation of
W, for any operator W. The estimate, ¢>:, W,
is, of course, generally neither a variational
estimate of W,, nor a bound. In fact, a trial func-
tion ¢,; which is good for estimating the energy
E, is not necessarily good for estimating ¢, Wo,.
In many cases, therefore, it will be useful to have
an alternative procedure. A variational bound on
W, . itself has been obtained for W of definite
sign,' but the usefulness of the formal results has
not yet been properly tested. We confine our
attention here to variational principles (the error
is of second order but its sign is unknown) for
matrix elements. The variational principle for
W' 27° for example, involves not only the trial
function ¢,; but an auxiliary function L, which de-
pends on ¢,;. The parameters in ¢,; having been
obtained from the Rayleigh-Ritz theorem (or a
generalization in the case of excited states®'’), the
problem of determining the parameters in L; re-
mains. It is this problem which forms the subject
of the present paper.

In Sec. II we analyze the formal difficulty which
lies at the root of the problem. The point is,
roughly speaking, that a singularity in the equation
which determines the auxiliary function must be
eliminated; the elimination can take place by
projecting out the state ¢, or by extracting the
effects of ¢, in some other fashion, but the elimi-
nation must be performed in the absence of an
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exact knowledge of ¢,.

In the remainder of Sec. II we give a brief re-
view of the methods used in the past for over-
coming this difficulty. We emphasize the re-
stricted applicability or the restricted utility of
such methods. The restricted applicability is
associated with the allowable trial functions ¢,;,
while the restricted utility is associated with the
difficulty in obtaining adequate approximations to
the solutions of the associated equations, the
auxiliary functions. In Sec. III we present a meth-
od which is not only of unrestricted applicability,
allowing the use of an arbitrary ¢,;, but has the
very desirable feature that the parameters con-
tained in the trial auxiliary functions can be deter-
mined by minimizing a given functional. While the
existence of such a minimum principle is not
surprising (it is closely related to the Rayleigh-
Ritz property and is known to exist in those spe-
cial cases alluded to above) it is nonetheless
gratifying. It adds greatly to the power of the
variational approach.

The mathematical apparatus for the formulation
of an extremum principle for the estimation of L;
was suggested by a technique used in the develop-
ment of a variational bound on the scattering
length.? This technique is based on the Hylleraas-
Undheim method® which provides variational
bounds on the energies of excited states even when
the lower states are not known exactly. In the
latest of a series of developments of this idea in
scattering theory a variational bound was obtained®
on the effective potential for the scattering of a
particle by a target whose wave function is not
known. Although the final estimate of any scatter-
ing parameter will not be a bound, the approach,
rather similar to the one adopted in the present
paper, can be a useful one. In general, extremum
principles should be very useful and widely appli-
cable when employed not only in the calculation of
parameters of primary interest but in intermediate
stages of the calculation as well.'®

II. THE VARIATIONAL APPROACH

Although there have been a number of quite
interesting applications,?”%'!*'2 the full power of
the variational approach to estimates of matrix
elements is probably very much greater than the
applications made thus far might indicate. There
are a number of reasons for this. First, some of
the derivations contained irrelevant elements."?
Second, they were unnecessarily restrictive; for
example, they sometimes required ¢, to be real.
We will discuss this point at the end of the present
section. Further, in actual applications, they
were incorrectly used on a number of occasions;

we will return to this point shortly. Finally, a
prescription of sufficient power and generality for
the practical problem of the estimation of the
auxiliary function has been missing. We believe
that the prescription given in Sec. III of the pres-
ent paper remedies that lack. It may be useful,
though, to begin with some comments of a general
nature.

The variational principle of interest is, for the
diagonal case,?”®

(Wnn ar = ¢:3W¢nt

+ L{{(H = Ep) bne |+ [(H = Ene)be|'Le
(2.1)
where
Ep = ‘D:t”‘pnt ’ ¢th¢": =1.

The auxiliary function L; is an approximation to
L (the n dependence of L; and L has been sup-
pressed), defined by the requirements that it be
quadratically integrable and satisfy

(H= E,) L(F) = (-1 = W), (T), (2.2a)

with T denoting the totality of space and spin co-
ordinates; U is to be determined by the require-
ment that the right-hand side must vanish when
premultiplied by ¢,T , since this is true for the
left-hand side. This leads to the result

U= Wo,. (2.2b)
We therefore have the equation
(H= E,)L(F) = [0 W = W], (). (2.3)

Equation (2.3) defines L only to within a multiple
of ¢,. We can therefore impose the condition

orL=0. (2.4)

(We will see later that this is not necessarily the
most convenient choice but it suffices for the
purpose of the present discussion.)

Having obtained a normalized approximation ¢,;
to ¢, in some fashion (by the Rayleigh-Ritz meth-
od, for example), the problem is to obtain L; in
some practical way. Before going any further, it
will be necessary to define “order.” We will use
the term order in the conventional sense. Thus,
with 6¢,= ¢nr — ¢,, we assume that ¢, =¢€4n,,
where €4 is a small real parameter and 7, is a
function, normalized to unity and independent of
€4, which satisfies the admissibility conditions for
trial bound-state functions. A quantity is of order
m in 0¢, if it can be expressed as €7 multiplied by
a factor which remains finite and nonvanishing for
€4—0. Correspondingly, with 6L=L, - L, we
assume that we can write 6L=¢€,§, with €;,« 1 and
tY£=1. A term of first order is one which is
linear in the €’s. A term of second order is one
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which is quadratic or bilinear in the €’s.

We return now to the problem of obtaining an
approximation L; to L sufficiently good for our
purposes. Suppose, as might seem natural, we
adopt the equation

(H“Er’ll)Lt=("“'t"W)¢nt' (2.5)

E,; is an approximation to E, which can differ
from E, in at most first order. In particular, E.,
need not be chosen to be the variational estimate
E,:. An example of a choice of E}; which differs
from E, by a quantity of first order in 6¢, is given
by

oL Gu[WHHW] ¢y
m 2 ¢n:w¢nt

where ‘W is some appropriate weighting factor,
perhaps W. The first thing to note in connection
with Eq. (2.5) is that y; cannot be determined by
the argument given above to determine 1 since the
homogeneous version of Eq. (2.5) has no solution
satisfying the boundary conditions when E}; is not
an eigenvalue of H. Equation (2.5) has a unique
solution for any value of u;. To preserve the
variational principle we require u, to differ from
- ¢, W, in at most first order in 8¢,. (For
practical purposes we may assume that the error
will appear in first order.) To be specific in the
following discussion we make the choice p;=-

- ¢n¢ Wo,e, which satisfies the criterion just
stated, so that Eq. (2.5) becomes

(H= Ep )Lt = (s Webpg = W) s - (2.8)

A procedure which has (incorrectly) been used on
occasion in the past is to choose E;;=E,, in Eq.
(2.6), giving

(H= Ene) L= (s Wy = W)y - 2.1

To see that (2.7) leads to a breakdown in the varia-
tional principle we may project both sides of (2.7)
on to ¢;. The right-hand side of the projected
equation is of first order in 6¢,. The left-hand
side is (E, — E,;) ¢, L;. Since E, - E; is of second
order in 8¢,, it follows that ¢, L, is of order
(6¢,)"Y, or, using (2.4), that ¢;6L is of order
(5¢,) "', It follows in turn that 6L has a ¢, compo-
nent which is also of order (6¢,)', and finally
that J=[(H ~En) ¢n¢]'0L is of first order in 5¢,,
contrary to the assumption used in arriving at the
equation defining L, or, equivalently, in arriving
ultimately at a variational principle; to have a
variational principle, J must be of second order.
[1f we write 6L=3,d,¢,, the requirement that
(2.1) be variational demands that d,, be of first
order for m#n. Since [(H, - E,,‘)(p,,,]*cp,, is of sec-
ond order, d, can be of zeroth order; it cannot
however be of order (6¢,)™".]

The difficulty with Eq. (2.7) is made more appar-
ent by projecting both sides on to ¢,;; we find

¢ ni(H=En) Ly =0. (2.8)

When this result is combined with (2.1) we see
that the variational principle has been lost since
(Wnhar Teduces to ¢,;Wo,,. The fact that (2.7) is
not an allowable approximation has been noted
previously.'

The above discussion brings out the sensitive
dependence on the choice of E;; in Eq. (2.6); it
must be accurate but not too accurate. This un-
desirable feature of an approach based on (2.6) can
be traced to the fact that the resolvent operator
(H-E,;)™" is almost singular. The inversion of the
operator (H - E,) that appears in Eq. (2.3) defining
L causes no trouble, for the effect of the singular-
ity of (H-E,)™" is eliminated by imposing the
orthogonality condition (2.4). On the other hand,
the near singularity of (H - E/,) ™! that arises in
solving for L; defined by (2.6) cannot be avoided;
there is no solution of the homogeneous equation
associated with (2.6) and we cannot impose an
orthogonality condition that is the analogue of (2.4).
In addition, the problem of finding reliable approx-
imations to the solution of (2.6) for a given choice
of E;; still remains. In Sec. III we introduce a
different definition of L; which is very much more
convenient than Eq. (2.6) as an aid in generating
auxiliary trial functions to be used in (2.1).

The procedure used most frequently in the past,
which avoids the above-mentioned difficulty, is
based on the introduction of an approximate R
Hamiltonian # and approximate eigenvalue E,,
such that

Hép=E, $n. (2.9)
Equation (2.3) is then replaced by

(H=E)L=(~ - W), . (2.10a)

Since 43,, is an eigenfunction of Hwe have, in
analogy with Eqgs. (2.2b) and (2.4),

L= ¢FWo,, (2.10b)

énL =0. (2.10¢)
The condition (2.10c) eliminates any difficulties in
the inversion of # —12‘,, required for the determina-
tion of L. We assume that 4 is sufficiently close
to H so that the difference 6L between L defined
by (2.10) and L defined by (2.3) and (2.4) satisfies
the requirement imposed above, namely, that 6L
can be expressed as 6L =€, & with €, <« 1 and £'e
=1. -That is, L is assumed to be an acceptable
trial function.

To consider the usefulness of the approximation
just described, it will be helpful to simplify the
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discussion by restricting ourselves to the case n
=1. We then have

(H-E)L=[($]Wd) - W] $,, (2.11a)
¢7L=0. (2.11b)

Although for H sufficiently close to H the L de-
fined by Eqgs. (2.11) differs from L only in first
order, as required, it will be difficult to obtain a
useful approximation to L unless A - E, is positive
definite. (It is well known that this condition is
required if one is to construct an extremum prin-
ciple for the approximate evaluation of L. We will
use this condition later in a different context.) We
can normally determine all of the ¢, defined by
Eq. (2.9), since H is normally chosen such that
that is the case; if #=1 represents the ground
state, then we know of course that H-E, is positive
definite. In some cases, however, as in the
example of (2.12) immediately below, we can
readily find only one eigenfunction associated with
H.

In fact, when &) , is the ground-state eigenfunction
of H the existence of an extremum principle for
the estimation of L, defined by Egs. (2.11), is
to be expected since L can be interpreted as the
first order correction to the bound state function
431 due to the perturbation W. The Hylleraas mini-
mum principle for the second-order energy eigen-
value 4 can then be used to provide estimates of
L. The condition that H¢, = E, ¢, with ¢, the
ground-state eigenfunction of His an extremely
restrictive one and is met in practice only by the
choice d3, as an appropriate Hartree product,
generally a rather poor choice.

Note that for any (5,, we find, on introducing the
projection operator

P=0,0]
and choosing'®'°

H=(1- P))H(1-P) +P HP ,
that

H9,=($H$)9,=E $,;
we can therefore avoid near-gsingularity difficulties
for any ¢,. However, with H defined by (2.12), we
are unable to find conditions on ¢31 which guarantee
that H- E, is non-negative, that is, that ¢, is the
ground-state wave function of H, and we cannot
therefore readily obtain an approximation to L.

For completeness we mention that under speci-

fied conditions the difficulty in formulating the
variational principle which we described in the
discussion following Eq. (2.5), can be removed.
One writes?'!¢

L(T) =1 () ¢, (T), (2.13a)
with f(F) a function of coordinates. With a square

(2.12)

bracket here denoting a commutator, Eq. (2.3) can
then be rewritten as

'.H)f] On= [(¢:W¢n) - W]¢n .

If we restrict ourselves to situations for which ¢,
and L can be taken to be real we can simply re-
place ¢, by ¢, and f by a function f, in Eq.
(2.13b) and find as our defining equation for f; (to
within a constant because of its appearance in a
commutator)

(H, fi 10nt = [(OnsWDne) = W Pns - (2.14)

Premultiplication by ¢,; and the use of H=H"
verifies that the equation is consistent, the left-
and right-hand sides each vanishing. There still
remains the problem of finding approximate solu-
tions to Eq. (2.14). Toward this end Schwartz®
constructed the functional

M(fe2) =%¢;t[fﬂ y [H, fee ]| @ne
+ ¢:tfn(W- ¢:tw¢nt )Pt
+ ¢::(W - ¢::W¢nt)fu¢’nx ’

which is stationary with respect to arbitrary
variations of the function f;; about f,. In fact, if
the potential energy operator is local and we
choose a coordinate system for which the kinetic
energy can be expressed as

T=-3R*Y Vi/m=3 Ty,
J i

with the m; appropriately defined reduced masses,
then the error can be put in the form

(2.13Db)

(2.15)

(2.16)

My(fee) = M(f) =302 bm( Vi 8f)2bpe/my,  (2.17)

where 0f; = f;; -~ f;; in arriving at (2.17), we used
the relationships

(m(/ﬁz)[éft ’ [Ti ) Gft]]
== [éf, s[viza 6ft]] == [éft: (Vtzéft) +2(6i5fz)“$i)J
== 2[8f;, (V;6£,)-¥,] = 2(V,6f,)2.

The variational principle is thus seen to be an
extremum principle under the above-mentioned
circumstances.

While the variational method based on the com-
mutator approach has been successfully applied to
a number of problems, the validity of the varia-
tional principle based on that approach is rather
restricted. The reason lies in the appearance of
the nodes in the functions ¢,. They appear not
only in excited state functions but, in most cases,
in ground-state functions as well, the exceptions
being limited essentially to the one-body problem
and the ground state of He and the associated iso-
electronic series in atomic physics. In general,
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f=L/¢, will be singular at the nodes of ¢,. The
function f;, defined by Eq. (2.14), can be expected
to be singular at the nodes of ¢,;. Though the
nodes of ¢,; are known, the strength of the singu-
larity in f; is (except for certain one-dimensional
problems®) not known. Therefore, we can expect
that 0f, will be singular, thus violating the re-
quirement that it be of first order. More explicit-
ly, with regard to the form shown in Eq. (2.17),
we would argue that V,6f, near the node will be
proportional to {‘"‘(1/ ¢n¢), that is, proportional to
(1/¢,:)%. The error term, that is, the right-hand
side of (2.17), is then infinite.

III. EXTREMUM PRINCIPLE OF GENERAL APPLICABILITY

We now introduce an extremum principle for the
evaluation of the auxiliary function L, valid for
arbitrary ¢,;; in particular ¢,, need be neither
nodeless nor real, nor need it be possible to ob-
tain a simple associated Hamiltonian. We will
begin with diagonal matrix elements considering
first the ground-state case and the excited states.
In the remaining subsections we consider, briefly,
off-diagonal matrix elements and effects of degen-
eracy and, finally, we remark on the connection
with the construction of “Green’s functions in the
generalized sense.”"’

A. Diagonal matrix elements: ground state

Our objective is to replace Eq. (2.3), withn=1,
by a self-consistent equation involving L,, ¢,;,
and E;, rather than L and the unknown entities
¢, and E,, such that L; approaches L as ¢,; ap-
proaches ¢,; further, we want it to be possible to
redefine, and thereby more readily estimate, L,
by means of an extremum principle. The problem
is very similar to one encountered earlier in the
study of variational bounds on scattering lengths.?
In the latter case all discrete bound states of H
had to be “extracted” (their energies lie below the
scattering energy) while here it is only the ground

state which must be “extracted.” This necessitates

only minor changes in the derivation of the extre-
mum principle.

As noted earlier, the difficulties that arise in an
attempt to approximate Eq. (2.3) defining L by an
equation defining L; have their origins in the fact
that the operator H —E, in (2.3) has the eigenvalue
zero, associated with ¢,; in the present subsec-
tion, we have n=1. This difficulty can be avoided
if we can shift the zero eigenvalue. The shift is
possible since the ¢, component of L is not de-
fined by (2.3).

We begin by introducing the projection operator
P, onto the ground state,

Pi=¢,0,. (3.1)

For later convenience, we introduce the normal-
ized trial function ¢;, the trial projection oper-
ator P,

Pyi= ¢, b1t (3.2a)
and

Ey=¢1Hby, . (3.2b)
We are free to choose L such that

¢{L=c,, (3.3)

with ¢, arbitrary, that is, such that
P/ L=c,9,. (3.4)

We multiply (3.4) by o, with o arbitrary, subtract
from (2.3), and find

(H-0P,-E,)L=[(¢p;Wp,) - ac,]o,- Wo,. (3.5)

As opposed to H-E,, which has eigenvalues 0,
E,-E,, ..., the operator H- 0P, - E, has eigen-
values -oE,,E,-E,,...; for 0#0, the zero
eigenvalue (and only the zero eigenvalue) has been
shifted. Note too that for 0#0, L is uniquely de-
fined by (3.5), the solution being

L=cl¢l-2‘ ¢ (E‘p_wgl); (3.6)

Eq. (3.4) is an automatic consequence of (3.5).

Assuming, as we shall from now on, that 0#0,
it is simple to find an approximation to (3.5) for
which L; approaches L as ¢,; approaches ¢,. The
near-singularity difficulty having been overcome,
we need merely write

(H—U,P“ —Eu)Lt = [(‘P;t W¢u)“<’¢cu]¢1t - W(blt .
(3.7

Barring extraordinary circumstances, such as
¢,e= ¢, and 0, +E;=E,, L; is uniquely defined by
(3.7). Furthermore, for 6¢,=¢,; - ¢,, and for
¢,;—c, of first order in 6¢,, L, will differ from
L by terms of first order'® in 6¢,. In particular,
the eigenvalue —-0E, of H-oP, - E, will be re-
placed by an eigenvalue that differs from —oE, by
a term that vanishes as 8¢, vanishes, and no near
singularities arise when H - 0,P,; —E,, is inverted.
(Compare this with the situation that occurs for
0=0.) Equation (3.7) therefore provides a pre-
scription, containing in fact two arbitrary param-
eters, c¢,; and o0,, that defines an appropriate
approximation L; of L.

While we now have a sensible defining equation,
(3.7), for L, it would be difficult to obtain an
adequate approximation to L,. (Fortunately, we
need not solve for L; exactly to preserve our
variational principle.) We can, however, obtain
a different defining relationship for L, such that
L, again differs from L in first order in 6¢, and
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such that L; can itself be rather readily approxi-
mated. If in (3.5) we set 0=E, and note that P,
=HP,H/E%, we are led to replace (3.5) by

(H(nlu))d,t -E L= [(¢Itw¢xt) = E )y - W‘?u ’ )
3.8

where we have introduced the modified Hamiltonian

H(,,l,gd.,EH-—H—Png- (3.9)
1t
The merit of (3.8) as opposed to (3.7) lies in the
fact that it will normally be possible to prove, as
we will show shortly, that

VTH R 9= E; >0 (3.10)

for i any normalized function. We have already
seen that L; is uniquely defined by (3.8) and differs
from L by first order in 6¢; if we can prove
(3.10), it will also be true that L; can be charac-
terized as the function which extremizes a partic-
ular functional and can therefore be rather readily
approximated. We will return to this point after
discussing the proof of (3.10).

Taking first the case where more than one bound
state exists, and letting ¢ represent an arbitrary
normalized trial function and E, and E, the two
lowest energy eigenvalues, we have the inequality®

YH R 4> 22 B, (3.11)

! E\;

We prove a more general inequality, which in-
cludes Eq. (3.11), in the Appendix. With the aid
of even fairly crude lower bounds on E, and E,,
Eq. (3.11) provides a lower bound on H @), ; which,
for a sufficiently accurate trial function ¢,;, will
lie well above the ground-state energy level E,,
and, for a reasonable ¢,; and therefore E,;, above
E..

Assuming that Eq. (3.11) is satisfied, the condi-
tion for the validity of the extremum principle can
be stated as follows: If ¢,; is accurate enough so
that

E <(E\/E\)E,, (3.12a)
that is

Ey <~ (EE,)'", (3.12b)
then Eq. (3.10) is satisfied, i.e.,

H¥4 s = E >0, (3.13)

in the space of quadratically integrable functions.
The result (3.13) holds when there is only one

bound state of the system provided
Ey<=(EEg)"". (3.14)

E, is the energy which marks the beginning of the
continuum of the spectrum associated with H; the

zero reference energy level will be assumed to
have been so chosen that Ey, <0. [The similarity
between (3.14) and (3.12b) is not surprising, since
the second eigenvalue is E, = Ew, if there is only
one bound state; on the other hand, E, is asso-
ciated with a normalized bound state while Ey, is
not. ]

Once the validity of (3.10) has been demon-
strated, we are in a position to write down the
functional M,,(L,; ) which achieves its extremum
for L;;=L;. (The subscripts on M denote the fact
that we are here concerned with the diagonal
ground state matrix element.) Thus, given AX,
=g; where A is a known non-negative operator and
q: a known function, we construct the functional

M(X,,)=X;',AX,,—XI,q,-qIX“. (3.15a)
Writing X;,=X,+0X;, we have
M(X,+6X,) =M(X,) +0X]AbX, . (3.15b)

M(X,,) thus has its minimum value for X, =X,.
Correspondingly, if we set

4:=qs(Coe, 010 = [(91:W10) = EviC 4]0y = Wy,
(3.16)
(3.8) becomes
(Hnoa ¢ = Exd)Le =4,
and the functional

M, (L) = L:—t(H(l%lLd Jg@ E\¢) Ly - L:t qt — ‘I;an
(3.18)

(3.17

achieves its minimum value for L;;=L,. More
precisely we have

M, (Ly+8Lg) =M, (L) +OL{(HYy ¢ = E)0L,,

and M,,(L,,) achieves its minimum for L,;=L,,
provided 6L; is quadratically integrable. But the
quadratic integrability of L; follows'® from the
nonsingular nature of the Green’s function asso-
ciated with the operator H'} , - E,; along with
the (assumed) quadratic integrability of ¢, . It is
natural then to choose L;; to be quadratically
integrable, in which case 6L, will have the same
property.

There are two rather natural choices of ¢,,. The
choice

Cl‘=
leads to
q:= (¢;:W¢u)¢u -Wo,,,

the form which appears on replacing ¢, by ¢,; in
Eq. (2.3) which defines L. The choice

6'1:=(¢;:W¢1:)/Eu (3.19)

reduces g; to its simplest form, namely, q;=
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~W¢,:. Equation (3.18) then reduces to its sim-
plest form,

M, (Let) = LI:(H(llln)xd,t = Ey) Loy + LW, o + ¢y WLy .
(3.20)

B. Diagonal matrix elements: excited states

We now attempt to approximate Eq. (2.3) for »
>1, that is, for the case where the state under
consideration is not the ground state. Before
making any approximations it will be useful, as
for the ground-state case, to rewrite Eq. (2.3).
Our objective is to replace H—E, by an operator
which does not have zero as an eigenvalue.
Furthermore, for the purpose of obtaining an
extremum principle, this operator should be of
well-defined sign. Both conditions are satisfied
by the operator H{); - E, where, in terms of the
projection operators

P;=¢, ¢],
we define the modified Hamiltonian

n
HY,=H- E;P;.

i=1

(3.21a)

For later purposes, we note that H{)4 can be
written as

n
B =H=3 -’-’%‘-’1 : (3.21b)
i

i=1
Corresponding to the eigenvalue equation

H¢y=E;¢;, i=1,2,...
we have
(H(;A)ad - En)‘pl = —Enq)h i$n’

(Hy —E)¢;=(E; =E)$,, i>n.

We see that there is no zero eigenvalue present.

It is also evident that H{:), ~E, is positive. Of
course, the exact eigenfunctions ¢; are not known
in practice. The significant feature of H(3), is

that given a set of sufficiently accurate trial bound-
state functions ¢ ,7=1 ton, it is possible to ap-
proximate Hil —E, by an operator Hig ; =En
which preserves the positivity property. We de-
fine

,:2,4_,=H-§—1%‘7“E’ (3.22a)
with
Pi=¢iudis . (3.22b)
The trial functions are assumed to satisfy
¢’tt¢‘u=5u’ (3.23a)
SieH® = Eysdyj, (3.23b)

E,;<Ewmn (3.23¢)

for 1s<¢i,jsn; with the E;; ordered, E,; is as-
sumed to lie below the threshold of the continuum.
Since we are assuming the existence of at least n
bound states it is always possible in principle to
find such a set of functions. In practice we would
construct the #Xn matrix of H with n orthonormal
functions. Diagonalization of this matrix leads to
the functions ¢;; and the eigenvalues E;; of Egs.
(3.23). According to the Hylleraas-Undheim
theorem,® these eigenvalues satisfy E,; > E;, i

=1 to n. Thus, the parameters contained in the
original trial functions can be systematically im-
proved by minimizing the eigenvalues E;;. A
proof that Hinda ; —E,; is positive with respect to
quadratically integrable functions for sufficiently
accurate trial bound state functions ¢;; is given
in the Appendix.

The above discussion serves as motivation for
the following transformation of Eq. (2.3). Sub-
tracting 37 -, E; P, L from both sides, Eq. (2.3)
becomes

(H$)4 —E,) L= = Wo, + P, Wo, -Z EP,L. (3.24)
i=1
We are at liberty to make a choice for P,L since
it is undetermined by Eq. (2.3). To simplify the
right-hand side let us take
P,L= L P,wo,. (3.25)
E,
The components P;L, i <n, are fixed; from (2.3),
we have

P,L=

PWo,, i<n. (3.26)

1
E,-E;
For computational purposes [see (3.32) below] it
is useful to deal with the simplest possible form
for the inhomogeneous term. We therefore in-
troduce a new function, L’, satisfying

(HG3 —E,) L' = - Wo,. (3.27)
Since P;H) =0 for i <n we see that
P,L'=;—p,w¢,,, i<n. (3.28)

Furthermore, since P;H'%a=P;H=E,;P; for i>n,
we have

P,L'=P,L, i>n. (3.29)
We conclude from Egs. (3.26)-(3.28) that
, n = l 1
L=t ‘: (505, ;) P (3.30)

We now define a function L; as the solution of
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(H 3 ¢ = Ent) Lt = = Wb .

Once this function is determined suitable multiples
of the functions ¢;;,7=1 to(n-1) could be added to
it to form a function L; which has the property
that L; - L as the ¢;;~ ¢;. This step is unneces-
sary, however, since, as a consequence of Eqgs.
(3.23), the components P;;L;,i<n make no con-
tribution to the variational expression, Eq. (2.1).
It suffices, therefore, to find an approximation,
L;,, to the solution of Eq. (3.31). This can be
accomplished, in a way which allows for systema-
tic improvement of the approximation, by mini-
mization of the functional

(3.31)

Mo(Lig) = LiJH S ¢ =Eng) Lis + L Wopns + oy WL5 .

(3.32)

C. Off-diagonal matrix elements

The variational principle for (¢,, W¢,) requires
the estimation of two auxiliary functions?°?! which
we will denote by L,, and L,,. The equation de-
fining L,,, in the present off-diagonal case, is of
the form

(H=Ep) Lym=Gpm » (3.33)

where ¢,, depends on both ¢, and ¢,, and is
orthogonal to ¢,, as required for consistency. It
is clear that the method described above for find-
ing approximate solutions to Eq. (2.3) with the aid
of an extremum principle can be applied directly
to Eq. (3.33) since, aside from the orthogonality
condition, the precise form of the inhomogeneous
term plays no role in the discussion. Thus, we
have a well-defined procedure for estimating each
of the auxiliary functions.

D. Degeneracy

We have been assuming that the state or states
under consideration are nondegenerate, but the
formalism can easily be extended to allow for
degeneracy. Assume that there are w, states
associated with the energy E, and let ¢,,, with
1 <7 <w, and with the ¢,, orthonormal, be a re-
presentation of these states. To be specific, we
consider the off-diagonal matrix element ¢,,Wo,,,,
with n #m. (The argument is essentially identical
for n=m.) The variational expression for this
matrix element will again involve two auxiliary
functions, which we will denote by L,,.s and L
The equation satisfied by L,,.s is of the form

(H— E,, )Lnrma=anmu
where
¢:9 Qnrms =0’ 1$p S Wy

An extremum principle for generating accurate

msnr*

approximations for the auxiliary functions can now
be developed along the lines already described for
the nondegenerate case. If we generalize Eq.
(3.22b) to

ws

Py = z: Dyrt ¢fn ’

r=1

the formalism can be taken over intact. The fact
that degeneracy can be treated in a fashion essen-
tially as simple as that for the nondegenerate case
is understandable; potential difficulties arising
from vanishing energy denominators have already
been disposed of.

E. Green’s functions in the generalized sense

We have pointed out that our procedure for
estimating solutions to equations of the type shown
in (2.3) is applicable for any form of inhomoge-
neous term, subject to the usual consistency re-
quirement that the inhomogeneous term be ortho-
gonal to each solution of the homogeneous equation.
Of course, equations of this type are frequently
encountered, outside the context of the variational
application emphasized here. The class of equa-
tions of the form (2.3) can be discussed in terms of
the Green’s function G associated with the operator
H-E,. Owing to the existence of a solution of the
homogeneous equation this is a Green’s function in
the generalized sense. The equation satisfied by
G

’

(H—En)G=Pn"1’ (3-34)

is obtained from Eq. (2.3) by replacing W¢, by 1.
Making a particular choice for the undefined com-
ponent of G proportional to P, we replace Wo¢, by
1 in (3.30) and write

6=6'+3° (E 1 __Lyp
B i=1 n —Ei E, b
where, replacing Wo,; in (3.31) by 1, G’ is to be
approximated by a solution to

(H%% ¢ =Ent)Gi=-1.

(3.35)

[The sum in (3.35) is to be approximated by using
trial functions ¢;, satisfying (3.23).] The asso-
ciated extremum principle for G; is based on an
equation of the type shown in (3.32). Since the
trial function G, is a function of two variables
rather than one, the functional is to be thought of
as an operator in configuration space. The extre-
mum principle then applies to diagonal matrix
elements of this operator taken with respect to
square integrable functions.

APPENDIX: POSITIVITY OF H{) ,-E,,

Consider a set of 7 +1 orthonormal functions
¢lt » ¢2t 30y (pnt ) ¢~ suppose that the ¢lt have
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been chosen to satisfy Eqs. (3.23). The (n+1)-
dimensional Hamiltonian matrix constructed from
this set of functions has ordered eigenvalues
which we denote by E{"*V,7i=1,2,...,n+1. Now
the determinant of a matrix is equal to the product
of its eigenvalues. Furthermore, the n dimen-
sional matrix that arises when we eliminate the
last row and last column of the (2 +1) dimensional
matrix is diagonal, with elements (¢;;, Ho;;)
=E; the E;, arise in a study of » functions, and
it will be convenient in this Appendix to write £,
as E{™. Thus, expanding the determinant of the
(n +1)-dimensional Hamiltonian matrix, we have

(—H Et‘")>¢*H¢ -3 g hEn I - H E{MY.
i=) i =i

i=1 1=1

Al
We can rewrite this as (a1)
Y HD  v=T (B0 /E)EGD (A2)
1=1

The system has at least » bound states with ener-
gies E; < Ew, for i=1 to n. By assumption the func-
tions ¢, are sufficiently accurate so that ES"’
<Em. From the Hylleraas-Undheim theorem® we
know that the E{"*"), for i=1ton, satisfy

E;< E{""V<EM. (A3a)

Furthermore, if an (7 + 1)th bound state exists we
have E{"V 2E,,, ; otherwise E{?"V>Ewm. Since
Ewu <0, it follows from (A3a) that

0= EM™V/EM < E,/E™ . (A3Db)
Suppose now that more than » bound states exist.

Then

zp*H‘,:Ad,thInI (E{™ D/ E{) Ep.
1 =1
> fI(EME&"’)EM : (A4)
1=1
The inequality
P [H G —E] 9= 0 (A5)
then follows, provided that

e <Il(E/ED) B, (46)

1 =1

This is always possible for sufficiently accurate

|©

trial bound state functions. If there are only
bound states the inequality (A5) follows, provided
that

=1

This completes the proof that H'da ; —E,;, with
E.=E'", is non-negative in the space of normal-
izable functions orthogonal to the trial bound-
state functions ¢;;,7=1 ton, provided these trial
functions are sufficiently accurate to satisfy (A6)
or (A7), whichever is appropriate.

Actually, the orthogonality requirement can be
dropped. To see this we first introduce the pro-
jection operator @{ which projects onto the
space orthogonal to the space spanned by the ¢;;,

QM=1-3 P,=1-P(". (A8)

i=1
The inequality then takes the form
QI (Hy ¢ ~End) Q" 2 0 (A9)

in the space of quadratically integrable functions;
due to the presence of @{™ the orthogonality re-
quirement need not be explicitly imposed. We then
have

an)(H(r:()xj,t - nt)an) = H(r’r'u))dt -E,; gn»
= n'l'(Zd'! ~En; +EntP£"),
(A10)

since Py Houwh s = Honoy ¢Pi4 =0 for i=1 to n. Since
E.P{™ is negative, it follows from (A9) and (A10)
that an"o)d,g -E,; is positive definite, for the ¢;,
sufficiently accurate, for any quadratically in-
tegrable function.

This more general version of the theorem is
actually not essential in the applications considered
here, although it allows us to eliminate the ortho-
gonality condition on the auxiliary trial function
and thereby to simplify the calculational proce-
dure. The theorem used in the development of
variational bounds on scattering lengths® asserts
that if there are 7 bound states and Ewm, =0 then
H‘J’.&;_,Z 0. (The more general case, Eu <0 is
treated by letting H~ H-Ew,.) This result is con-
tained in the present derivation.
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