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Composition dependence of ion- transport coefficients in gas mixturese
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Simple momentum-transfer theory for the composition dependence of ion mobilities and di6usion

coefficients in gas mixtures at arbitrary field strengths is corrected and extended, and compared with a
similar theory based on momentum and energy transfer, and with results based on direct solution of
the Boltzmann equation by Kihara's method. Final equations are recommended for predicting

composition dependences, given only results on ion mobilities and diffusion cocf6cients in the pure

component gases.

Simple momentum-transfer theory has recently
been used to predict the composition dependence
of ion mobilities' and diffusion coefficients' in gas
mixtures at arbitrary fieM strengths. The purpose
of this paper is threefold: to extend the range of
validity of the results of Ref. 2 to higher fields by
allowing the ion temperature to be anisotropic and
to differ from the gas temperature; to correct an
error in the expression used for the ion energy
that affects the final results of Refs. 1 and 2; and
to point out the relation of these results to a simi-
lar theory developed by Milloy and Hobson, ' and
to recent work based on direct solution of the
Boltzmann equation. 4

By equating the momentum transferred to ions
of charge e by an electric field f to the momentum
transferred by the ions to the neutrals through col-
lisions, ' and by taking into account the pressure
forces that arise if the ions are not distributed
uniformly in space, ' one obtains the following mo-
mentum-balance equation for the mean ion velocity

$n ( v ) g jjjNj ( v„jQ(v, j)) = nef —V ~ p, ,

where $ is a proportionality constant of order
unity, n is the number density of ions, p.~ is the
reduced mass of an ion-neutral pair, N& is the
number density of neutral species j, v„, is the
relative speed of a colliding ion-neutral pair,
Q(v„, ) is their momentum-transfer or diffusion
cross section, and p, is the partial-pressure ten-
sor for the ions. Angular brackets indicate an
average over relative speeds. In a coordinate
system in which f is directed along the z axis,
p, is a diagonal tensor with components p~ =p»
=p~ and p„=p~~. Assuming that the ions obey the
ideal-gas equation of state, we introduce

p~, =nkvd~~, p~ =nkT~,

where the temperatures parallel and perpendicular
to the field are defined by

)jTq =m((vg ) -(v, ) ), A, T~=m(v„'), (3)

where rn is the ion mass, Then V ~ p, = kT, ~ Vn.
We focus attention first on the mobility by con-

sidering spatially uniform conditions, for which

(v) =v, = KE, wher-e v, is the drift velocity and K
is the mobility. From Eq. (1) we '~~. rite K in
terms of the mobilities K& in the -omponents

1 g ~x (v„,Q(v„)) (4)K Kj (v„jQ(v„j))j '

where the xj are mole fractions, and ( )j means
an average in pure gas j, as distinguished from an
average in the mixture ( ). The evaluation of the
ratios (v„jQj)/(v„jQj) j proceeds as in Ref. 3, and
involves three approximations. First, the aver-
age of the product (v„jQ(v„, )) is decomposed into
the product of the averages (v„j)Q((v„j)). Second,
the average (v„j) is replaced by the rms average
(v„j')' j', which is then evaluated from the parti-
tioning of the ion energy among thermal energy,
drift energy, and random field energy. The third
approximation enters through the expression for
the energy partitioning

(v„j') =(v') + (Vj') =31jT/jjj+ (v,)'[1+(M),„/mJ,

where V~ is the neutral species velocity, M~ is
its mass, T is the gas temperature, and (M),„ is
a mean mass of the gas mixture, defined as

4lj --xj Mj (v„jQ( v„j)) /( jjj + Mj )
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The energy partitioning can be calculated by %'an-
nier's method, as was done in Ref. 1, or equiva-
lently by an energy-balance equation, as was done
in Ref. 3. Unfortunately, there is an error in the
expression for the energy partitioning in Ref. 1—
in E(ls. (27) and (29) the Q, should be replaced by

(v„fQj) to give the correct weight factors (fjj as
in E(1. (7). The numerical example in Ref. 1 is
therefore incorrect in detail because of the incor-
rect +~ used. However, at high fields the rela-
tive speed is the same as the ion speed, and there
is then no mistake in the v&.

The theory of Milloy and Robson' for the mobil-
ity is essentially the same as the foregoing treat-
ment up to this point, but makes further approxi-
mations in order to express the deviations from
Blanc's law entirely in terms of the behavior of

the ions in the pure neutral components, without
explicit reference to the mixture itself. Thus,
the mixture averages are expanded in series

(V fQ(v f)) (V fQ(V f))f+[(Vf ) (V j )fJ

d(Vrf Q(Vrf))f (8)

(9}

Since this expression appears as a correction
term in E(1. (8), it need be evaluated only in low-
est order, corresponding to (v„jQ, ) =(v„,Q, )„
which yields

From E(1. (5) we find

(v j') —(v„j')j = V~2[1+( M),„/mJ —vfj (1 + Mj/m)

m((rm') —(r„')~I = (g '
) (P '

) —( +m~)rm'.

The derivative in E(1. (8) is obtained by differentiation of E(1. (1) written for a single pure component having
the same total number density as the mixture (N, =N), and is 1'ound to be

d ln(v„Q(v„, )), 1 m d 1nvff ' d lnvf j 1 m d luff
d(v„')f 2vf' jjf+Mf din(E/N) din(E/N) 2vj' m+Mf din(E/N)

'

Substituting these results back into E(1. (4), we ob-
tain

which is the result of Milloy and Robson. This ex-
pression is remarkably similar to one obtained
from a direct solution of the Boltzmann equation
by Kihara's method. ' The main difference is that
the aj in E(1. (12) is multiplied by a complicated
factor G& that-happens to be numerically close to
unity. Thus, E(1. (12) can be recommended as an
excellent estimate for deviations of the mobility
from Blanc s law'.

The preceding calculations can obviously also be
applied to the longitudinal (DII) and transverse
(D, ) diffusion coefficients, but an additional fea-
ture must enter. ft is clear from E(1. (1) that spa-
tial inhomogeneity affects (v). Since E(1. (5) shows
that (v,j) is related to the mean ion speed, spatial
inhomogeneity must also affect (v„f). Thus we
must allow both (v) and (v„,) to have small con-
tributions from spatial inhomogeneity, but we may
consider these as perturbations and linearize with

respect to them. Denoting the spatially homoge-
neous case with a superscript, we expand the
average (v„fQ(v„}) in a series similar to E(1. (8},

(v„fQ(v„f)) =(v„jQ(v„f))'

[( 2) ( 2)o] d&v.f Q(v.f )&
rf rf d(v 2)()

(14)

From E(l. (5) we find, on setting (v, )' = v, ,

(v„') —(v, )'=((v, )' —v )(1+(M),„/m},

(M) zr V& kTII 8Ã
(15)

m neE 8z '

the last step following by substitution for (v, ) - v

fro m E(l. (1). Since this last result is independent
ofjwe c,an multiply E(1. (14) by p, fNj and sum
over j; the derivative term is then obtained by
differentiation of E(1. (1), yielding a result similar
to E(1. (11),

d ln g pfNj (v„,Q(v„,))'/d(v„j')'
f

m din%
( )2v, ' m+(M),„din(E/N) '

Substituting these results back into E(1. (1) and
linearizing with respect to derivatives of n, we
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identify the transport coefficients and observe the
following relations among them:

eDH d lnE
K " d)n(K/K)} '

=kTz

30—
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Equations (1'I}and (18) have been derived pre-
viously by phenomenological arguments, "and
have been shown to give good qualitative agree-
ment with numerical solutions of the Boltzmann
equation. ' A more elaborate treatment according
to kinetic theory gives'

(19)

where y„= ]. and y~ ~ 0, which is valid to order
(E/N)d

The ion temperatures are obtained from Eq. (3)
by an energy-partitioning calculation, either by
%annier's method applied to mixtures, ' or from a
first-order solution to the Boltzmann equation. '
In either case, the result for the mixture is

sm&Iif &,„—(2m -( IIf),„)&M4*),
5m + 3(MA*& .„

(20)

(21)

where &M),„ is given by Eq. (8) and

0.0I 0,03 O. I 0.3

M, /M,
IO 30 IOO

k'IG. 1. Ratio of DII (Blanc) to DII (mix} at high fields
for an equimolar Maxwnell. -model binary-gas mixture, as
contours in a El/K2 vs %/'~2 plane. Ne have taken
m = M2. Note that the deviations from Blanc's lawn are
always negative. The corresponding ratio for mixture
mobility is always unity for the Marvell model.

+20,

random field components depends on the nature of
the ion-neutral collisions. One immediate con-
sequence of this is the recognition that the diffu-
sion coefficients will deviate from Blanc's law at
high fields even for the Maxwell model of constant
collision frequency, for which the ratios (U„&QJ)' /
&v„&Q,&,

' are all unity and all derivatives of mobil-
ity with respect to Z/N are zero. Numerical cal-
culations of deviations from Blanc's law for the
Maxwell model have been performed and the re-
sults are shown in Fig. 1.

The ratios &u,~Q, &'/&v„I)), &; in Eq. (23}can
obviously be evaluated by the same methods used
for the mobility. Substituting these results into

&MAd'&, „=—Q (d)(M)Aq (22)

in which 4* is a ratio of cross sections of order
unity.

To find the composition dependence of the diffu-
sion coefficients we substitute Eq. (19), which

applies to both mixtures and pure gases, back into

Eq. (4),

0/

Dev.

-20

—40

Q ~ (T().J.}d (~rgb(~rg))
( (In J.)J & rjVQ(AU})g

d lnE~ d 1~
' d)n(did) " d)n(K/IV)}

—IOO I I I I I

IQQ
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(23)

The important new feature is the appearance of
the ion temperatures in Eq. (23). The tempera-
tures in the mixture and in the pure components
are not the same at the same value of E/N because
the partitioning of the ion energy among drift and

FIG. 2. Percentage deviations from Blanc's law for mo-
bility, 100[X -E' Blanc]/+ Blanc, and for Dll a
tion of field strength, as calculated for K+ ions in an
equimolar He+ Ar mixture at 300'K. The solid curves
are the results from the Boltzmann equation according
to Ref. 4, and the dashed curves are the present mo-
mentum-transfer results of Eqs. (12) and (26). The
abscissa unit Td is the townsend (1 Td =10 ~ V cm ).
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Eq. (23) and lineariming with respect to the deriv-
atives of mobility, in order to be consistent with
the truncations in Egs. (6) and (14), we obtain an
expression that still contains a mixture quantity
on the right-hand side, namely, the derivative
d inK/din(E/N) from the last factor of Eq. (23).
In order to evaluate this quantity in terms of pure
component properties, we differentiate Eg. (12),
which leaves us with second derivatives of E& with
respect to E/N. These second derivatives can be
approximated by appeal to the following symmetry
argument. ' Since the gas is isotropic g must be
an even function of E/N; expansion in series must

therefore involve only even powers of E/N,

K = K(O) [1+u, (Z/X)'+ o,(Z/jV)',

Differentiating twice and comparing results, we
find

, = 2- + [terms of order (E/N)'] .
d' lnK d lnK

(25)

This expression holds for both mixtures and pure
gases. Substitution of this expression then yields
the final result for the composition dependence of
the diffusion coefficients,

x, ~ s, (T,~,), -T,~, e ~ ~x dlnK,
(26)

The ion temperatures in this expression are to be
evaluated from Egs. (20)-(21), but with the aver-
age masses calculated with weight factors ~& ap-
proximated by making expansions as in Eci. (6),

xj g ~ ~x d inK(

(27)

These results are nearly the same as those ob-
tained by solution of the Boltzmann equation. The
differences are relatively minor: the 6& is miss-
ing the G, factors as in the mobility expression
of Eg. (12), the value of y~ may be slightly dif-
ferent, and the Boltzmann expression does not
include the small derivative term in the expres-
sion for the ~&.

As an excellent estimate for deviations of the
diffusion coefficients from Blanc's law we recom-
mend the following procedure: use Eg. (26) with

~, given by Eq. (13), with y~~ and y, given their
kinetic-theory values, and with the &, given by
just the leading term of Eg. (2V).

As a numerical example we consider K' ions in
an equimolar mixture of He + Ar at 300'R, using
as input data the measurements on K in He' and
K in Ar. ' Deviations from Blanc's law for K and
for D~) are shown as a function of field strength in
Fig. 2, as calculated from the Boltzmann equation
and from Eqs. (12) and (26). The shapes and mag-
nitudes of these curves have been discussed else-
where'; the important point here is the. closeness
of the agreement for the two calculation methods.

In summary, the various theories for the compo-
sition dependence of ion mobilities and diffusion
coefficients in gas mixtures have been shown to be
consistent. Equations (12) and (26) (modified as
suggested above) are recommended for predicting
deviations from Blanc' s law as a function of field
strength.
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