Autodetaching state of F⁻ and autoionizing states of F^{\dagger}

A. K. Edwards and D. L. Cunningham

Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (Received 1 October 1973)

The collisional excitation method is used to excite an autodetaching state of F^- and several autoionizing states of neutral F. The F^- state lies at 14.85 ± 0.04 eV above the neutral-fluorine ground state and has as its dominant configuration $2p^4({}^{1}D)3s^{2}{}^{1}D$. The observed autoionizing states of fluorine have configurations $({}^{1}D)ml'$ and $({}^{1}S)ml''$.

In two recent papers^{1, 2} we reported measurements on autodetaching states of O^- and Cl^- and autoionizing states of O. The same apparatus and procedure has been used to observe the autoionizing states of neutral fluorine and an autodetaching state of F^- .

An F^- ion beam is extracted from a duoplasmatron, accelerated, momentum analyzed by a magnet, and focussed into a differentially pumped chamber containing helium. The electrons ejected from the region of the F^- on He collisions are energy analyzed to obtain an electron spectrum. The electron spectrum consists of a smoothly varying background due to electrons stripped from the ion beam plus peaks due to electrons ejected from autodetaching states excited in the collisions. Such a peak appears in the spectrum shown in Fig. 1 corresponding to an F^- autodetaching transition at 14.85 \pm 0.04 eV. Calculations by Matese *et al.*³

FIG. 1. Electron spectrum produced by collisions of 4-keV F⁻ on He. The doublet structure is due to the splitting of the neutral fluorine ${}^{2}P_{3/2,1/2}$ ground-state term. Each channel corresponds to approximately 4 meV.

FIG. 2. Electron spectrum produced by collisions of 5-keV neutral F on He. E_{obs} is the transition energy measured in the laboratory frame and E_e is the transition energy in the frame of the neutral-fluorine atom.

1012

Fluorine level	Huffman <i>et al.</i> ^a (eV)	Present work (eV) ±0.05 eV
5 <i>s'</i>	19.035	19.02
6 <i>s'</i>	19.404	19.42
(¹ D) 4 <i>p</i> ′		18.66
5 <i>p'</i>		Unresolved
6 <i>p'</i>		19.50
$(^{1}D) \ 3 \ d'$	18.466	18.48
	18.489	
4 <i>d</i> ′	19.145	Unresolved
	19,155	
$({}^{1}S) 4 s'' {}^{2}S$		20.88
5 <i>s"</i>		Unresolved
6 <i>s"</i>		22.37
(¹ S) 3 <i>p</i> " ² P		20.11
4p"		21,67
$({}^{1}S) 3 d'' {}^{2}D$		21.50

TABLE I. Autoionizing levels of fluorine. The energies are measured with respect to the ${}^{2}P_{3/2}$ ground state

^a Reference 4.

- [†]Work supported in part by the Air Force Office of Scientific Research and the Research Corporation.
- ¹A. K. Edwards and D. L. Cunningham, Phys. Rev. A <u>8</u>, 168 (1973).
- ²D. L. Cunningham and A. K. Edwards, Phys. Rev. A <u>8</u>, 2960 (1973).

predict the $2p^4({}^1D)3s^2 {}^1D F^-$ state to be at 14.85 eV. The structure in the peak is due to the fluorine 2P ground-state splitting of 0.05 eV. More structure in the electron spectrum occurs about $\frac{1}{2}$ eV lower in energy; however, its position is too uncertain to attempt identification with another F^- state.

In order to observe the autoionizing states of neutral fluorine, a stripping cell is placed directly in front of the collision chamber to form a beam of F atoms. The electron spectrum from collisions of neutral F with helium is measured. Figure 2 shows a typical spectrum. The energy scale is calibrated using the $(^{1}D)3d'$ state as measured by Huffman and co-workers⁴ in a photoabsorption experiment. They were able to resolve two terms for this configuration. Our resolution was not good enough to separate the terms, so a mean value for the two was used. For the states with the configuration $({}^{1}D)nl'$ the transition was into the $F^{+}({}^{3}P)$ continuum, and for the $({}^{1}S)nl''$ configurations it was into the $F^+({}^1D)$ continuum. The energies of the autoionizing levels are listed in Table I.

- ³John J. Matese, Steven P. Rountree, and Ronald J. W. Henry (unpublished). We thank Dr. Henry for the results of these calculations prior to publication.
- ⁴R. E. Huffman (private communcation). We are indebted to Dr. Huffman for communicating these results to us prior to publication.