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In the published paper, I carried out a detailed, ab initio
treatment of resonances in positron H2 scattering, using the
Kohn variational method. Such resonances have been observed
in, for example, positron scattering by methyl halides [1,2].
Because a positron does not form a bound state with H2, I
increased the mass of the positron until it formed a very weakly
bound state in this case. I stated that the resulting expression
for the resonant contribution to Zeff(k) from a quasibound state
was infinite when the resonance condition was satisfied.

I now realize that this was due to a mistake in my
calculation. In this erratum, I correct this error. This makes it
possible to calculate a width for the resonance in my treatment.
This is compared with the width obtained by Gribakin and Lee
[2], using the Breit-Wigner formula. The fact that all the Kohn
coefficients tend to infinity at the resonance and not just d1,
the coefficient of the resonant quasibound state, was not taken
into account in the paper. It is shown to follow from this that
all the basis functions except the entrance channel function
�0a , which has coefficient unity, contribute to Zeff(k) at the
resonance, and not just the quasibound state whose energy is
close to that of the system at the resonance.

Correction to my treatment. The Kohn equations are of
the form given in Eq. (17) in the paper. x is a column vector
containing the coefficients{xi} of the basis functions in the trial
function that are to be determined, i.e., all the basis functions
except the function �0a , which has asymptotic form as given
in Eq. (13) in the paper.

It follows from Cramer’s rule that

xi = det(AC,i)

det(A)
, (1)

where AC,i is the matrix formed by replacing the ith column of
A by −b. A is a p × p matrix, where p is the number of basis
functions in the trial function other than the entrance channel
function �0a . The order of the basis functions is adjusted so
that the quasibound state of interest has a coefficient equal to
xp. Since this quasibound state is taken to be the lowest in
energy, I denoted its coefficient by d1, where the letter d was
used to label the coefficients of the Nr quasibound states. It
follows that d1 = xp.

Applying Cramer’s rule and dividing the numerator and
denominator of the resulting expression by A′

pp, where A′
pp is

the cofactor of the element App of the matrix A, we obtain

d1 = − (〈�nr |F̂ |�0a〉 + 〈�lep,0χ01|F̂ |�0a〉)
1

μM
〈�nr |ζ1 + ω1〉 + (

E01 − E + 1
μM

〈�lep,0χ01|ω1〉
) ,

(2)
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where the quantities on the right-hand side are as defined
in the paper. Note that it is shown in the Appendix in
the paper that the coefficients {gi}p−1

i=1 in �nr are such that
〈�nr + �lep,0χ01|Ĥc.m. − E|�nr + �lep,0χ01〉 is stationary for
variations of these coefficients.

The value of Zeff(k) is given by Eq. (31) in the paper.
It follows that the contribution to Zeff(k) from the diagonal
δ-function matrix element containing the resonant quasibound
state �lep,0χ01 under consideration is of the form

|B|2d2
1 〈�lep,0χ01|

3∑
i=2

δ(r1 − ri)|�lep,0χ01〉.

As was pointed out in the paper, setting the denominator of
the expression for d1 in Eq. (2) equal to zero gives rise to
an energy condition associated with a resonance. From the
method used to obtain the expression for d1 above, it follows
that this denominator is equal to det(A)

A′
pp

. Since we are assuming

that A′
pp is nonzero, it follows that if the resonance condition

is satisfied, det(A) = 0. Thus all the coefficients {xi}pi=1, and
not just d1 = xp as stated in the paper, are infinite when
the resonance condition is satisfied. Thus all basis functions,
except �0a , will contribute to the resonance.

The case when det(A) is zero when applying the Kohn
method is well documented; see [3,4]. This singular behavior is
normally considered to be unphysical. In this case, it is physical
because it is brought about by the existence of a quasibound
state with energy close to the energy of the resonance. When
det(A) is zero, in general no solution to the Kohn equations
exists. However, a unique solution exists when det(A) is as
close to zero as we please; see [4].

The fact that all the coefficients are infinite has two
important consequences. First, Zeff(k) is finite at the resonance
and exhibits behavior similar to that predicted by the Breit-
Wigner formula in the vicinity of the resonance. Second, all
basis functions except �0a contribute to the resonance.

Finite form of Zeff(k). The form of the normalization
constant B in the expression for Zeff(k) was not considered
in the paper. It is such that the zero angular momentum partial
wave has the appropriate coefficient for an incident positron
beam with one particle per unit volume. For this to be the case,
the open-channel functions representing the positron beam
and the associated cosine wave function must be expressible
asymptotically in the form ( sin(kr1)

kr1
+ α exp(kr1)

kr1
)�target, where α

is a constant. Thus

B =
√

4π

1 − ia11
, (3)

where a11 = x1 is the coefficient of the associated
open-channel cosine wave function. It follows that the
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contribution to Zeff(k) from the diagonal δ-function matrix element containing the resonant quasibound state, �lep,0χ01, under
consideration is of the form

4π [det(A)]2

[det(AC,1)]2 + [det(A)]2
d2

1 〈�lep,0χ01|
3∑

i=2

δ(r1 − ri)|�lep,0χ01〉.

When F̂ operates on �0a it is convenient to replace it, as in the paper, by Vp, the potential between the positron and the target.
Now the denominator in the expression for d1 in Eq. (2) is equal to det(A)

A′
pp

. Thus the contribution to Zeff(k) involving only the

resonant quasibound state is of the form

4π

⎡
⎣ (〈�nr + �lep,0χ01|Vp|�0a〉)2

[
1

μM
〈�nr |ζ1 + ω1〉 + (

E01 − E + 1
μM

〈�lep,0χ01|ω1〉
)]2 + D2

⎤
⎦ 〈�lep,0χ01|

3∑
i=2

δ(r1 − ri)|�lep,0χ01〉,

where D = det(AC,1)
A′

pp
and thus

D = −〈�1r + �0b|Vp|�0a〉 A′
11

A′
pp

, (4)

where

�1r = w2�0c +
N+2∑
i=3

wiφi−2

+
p∑

i=N+3

wi�lep,0χ0j (j = i − N − 2), (5)

and

wi = A′
i1

A′
11

(A′
11 �= 0). (6)

It can be shown in a way similar to that used in the case
of {gi}p−1

i=1 that the choice of {wi}pi=2 imposes the condition
that the resulting wave function �1r + �0b is such that
〈�1r + �0b|Ĥc.m. − E|�1r + �0b〉 is stationary with respect
to variations of the {wi}pi=2.

Comparing the denominator in this expression with the
denominator in the Breit-Wigner formula, we can see that
2|D| can be interpreted as the width of the resonance brought
about by the quasibound state at the energy value that makes
the other term in the denominator zero. This contribution is
closer to the Breit-Wigner form used by Gribakin and Lee
[2] than the incorrect form for this contribution given in
the published paper. The form of the width in my treatment
differs from its form in [2]. It contains a Vp matrix element as

a factor, together with the A′
11

A′
pp

factor. Gribakin and Lee’s form

is quadratic in Vp. Also the wave function on the left side of
the matrix element in my treatment is �1r + �0b, whereas
in [2] it is the resonant quasibound state. �1r contains the
resonant quasibound state �lep,0χ01 but it also contains all
the basis functions in the trial function, except �0a and �0b.
We have calculated above the contribution to the resonant
value of Zeff(k) that comes from the quasibound state j = 1

itself. However, in my treatment all other functions in the wave
function, except �0a , will also contribute resonantly to the
value of Zeff(k). In addition to diagonal contributions involving
only one such basis function, there will be contributions from
all possible cross terms involving two basis functions other
than �0a .

The Breit-Wigner formula implies that the dominant con-
tribution to Zeff(k) in the vicinity of the resonance comes from
the resonant quasibound state with j = 1. This would be the
case in my treatment if | d1

xi
| was large in this region if i �= p. I

am unable to prove this. What I can do is prove a corresponding
stationary result for any basis function, other than �0a , to the
stationary result that I proved earlier for �0,lepχ01 in the paper.
This states that for any basis function ηi (say), other than �0a ,
〈�ir + ηi |Ĥc.m. − E|�ir + ηi〉 is stationary with respect to
variations of the coefficients in �ir . �ir is a linear combination
of all the basis functions, except �0a and ηi , with coefficient
vl equal to A′

li

A′
ii

. The proof is similar to the proof given in
the paper for the case when ηi is the wave function of the
quasibound state with j = 1. The numerator of the expression
for the coefficient xi is

−〈�ir + ηi |Vp|�0a〉 A′
ii

A′
pp

,

and the denominator is as in Eq. (2).
Conclusion. I have corrected a mistake in the published

paper. This makes it possible to show that Zeff(k) is not infinite
when the resonance condition is satisfied. In the vicinity of the
resonance, it has a form similar to the Breit-Wigner form.
However, the expression for the width of the resonance is not
the same as in the Breit-Wigner formula [2]. It is shown that all
basis functions except the entrance channel �0a and not just
the resonant quasibound state �lep,0χ01, as stated in the paper,
contribute to Zeff(k) at the resonance. Finally, I point out that
a result proved in the paper for the basis function �lep,0χ01 can
be extended to all basis functions except �0a .

I am grateful to Gleb Gribakin and Martin Plummer for
their continued interest in this work.
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