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Entanglement swapping for X states demands threshold values
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The basic entanglement-swapping scheme can be seen as a process which allows one to redistribute the Bell
states properties between different pairs of a four-qubit system. We analyze a similar scheme by performing a
Bell–von Neumann measurement over two local qubits, each one initially correlated through an X state with a
spatially distant qubit. This process swaps the X feature without conditions, whereas the input entanglement is par-
tially distributed in the four possible outcome states under certain conditions. Specifically, we obtain two threshold
values for the entanglement of formation of the input X states in order for the outcome states to be nonseparable.
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The quantum correlations are the key ingredients for
implementing processes both assisted [1] and between distant
particles [2]. In this context, quantum correlations have been
well characterized until now by the so-called entanglement
of formation (EOF) [3] and quantum discord (QD) [4]. The
entanglement-swapping [5] procedure redistributes quantum
correlation between different parts of two composed systems.
The advantage of this process lies in the fact that two factorized
parts can acquire entanglement even though they are away
from each other. Here we analyze a generalization of the basic
entanglement-swapping scheme by considering two pairs of
qubits being initially correlated via X states instead of pure
states. Specifically, we focus with special interest on knowing
how the entanglement of formation is redistributed onto the
outcome states. Motivations for studying X states stem from
the fact that they are usually encountered in different areas [6].
Interesting approaches to this problem have been addressed in
Refs. [7,8], where initial Bell states undergo non-Markovian
decoherence mechanisms.

Let us begin by considering the simplest case of two pairs
of qubits A,C1 and B,C2 prepared in the Bell states |φ+

A,C1〉
and |φ+

B,C2〉. The entanglement-swapping protocol can readily
be read out of the identity

|φ+
A,C1〉|φ+

B,C2〉 = 1
2 (|φ+

A,B〉|φ+
C1,C2〉 + |φ−

A,B〉|φ−
C1,C2〉

+ |ψ+
A,B〉|ψ+

C1,C2〉 + |ψ−
A,B〉|ψ−

C1,C2〉), (1)

where |φ±
U,V 〉 = (|0U 〉|0V 〉 ± |1U 〉|1V 〉)/√2 and |ψ±

U,V 〉 =
(|0U 〉|1V 〉 ± |1U 〉|0V 〉)/√2 are the Bell states of the generic
systems U and V , and {|0〉,|1〉} are the eigenstates of σz. By
implementing a measurement which projects the qubits C1 and
C2 onto one of their Bell states, the pair A,B is also projected
onto one of its Bell states. Each one of the four results has the
same probability. Therefore the entanglement contained in the
pairs A,C1 and B,C2 is redistributed to the pair A,B, even
though there is no interaction between them.

If the pairs A,C1 and B,C2 are in partially entangled pure
states, then (1) becomes

|φ̃+
A,C1〉|φ̃+

B,C2〉 = √
pφ(|φ̈+

A,B〉|φ+
C1,C2〉 + |φ̈−

A,B〉|φ−
C1,C2〉)

+ ab(|ψ+
A,B〉|ψ+

C1,C2〉 + |ψ−
A,B〉|ψ−

C1,C2〉),
(2)

where

|φ̃+
U,V 〉 = a|0U 〉|0V 〉 + b|1U 〉|1V 〉,

|φ̈±
A,B〉 = a2|0A〉|0B〉 ± b2|1A〉|1B〉√

|a|4 + |b|4
,

with pφ = (|a|4 + |b|4)/2 and |a|2 + |b|2 = 1. Note that by
projecting the qubits C1 and C2 onto one of the Bell states
|ψ±

C1,C2〉 the pair A,B is projected as well onto one of the Bell
states |ψ±

A,B〉 with probability pψ = |a|2|b|2. Otherwise when
the pair C1,C2 is projected onto one of the Bell states |φ±

C1,C2〉
the composed system A,B is projected onto one of the partially
entangled states |φ̈±

A,B〉 with probability pφ � pψ . Thus, even
though the initial entanglement E(|φ̃+

U,V 〉) is not maximal,
there are two possible outcome states maximally entangled.
However, the other two resulting states have an amount of
entanglement E(|φ̈±

A,B〉) smaller than the initial, and in general,
the average outcome entanglement value Ē is also smaller than
the initial value E(|φ̃+

U,V 〉). We illustrate that behavior of the
redistributed entanglement in Fig. 1 as a function of |a|. We
note that the four outcome states are maximally entangled only
for |a| = 1/

√
2, which is the case of identity (1). It is worth

emphasizing three things: (i) the outcome entanglement is
maximal with probability 2|a|2|b|2, which vanishes only at the
end values |a| = 0, 1, where there is no input entanglement;
(ii) the probability of increasing the entanglement is always
smaller than that of decreasing it, since 2|a|2|b|2 � |a|4 + |b|4,
and (iii) for having entangled outcome states it is required only
to have the initial entanglement different from zero. Finally, we
want to emphasize that there is an asymmetry in the distribution
of the entanglement over the four outcome states, which in
identity (2) is in favor of the |ψ±

A,B〉 outcome Bell states.
Now we succinctly review the properties of a general

X state ρ̂a,b of two qubits a and b. In the logic basis
{|0a〉|0b〉,|0a〉|1b〉,|1a〉|0b〉,|1a〉|1b〉} the state is represented by
the matrix

ρ̂a,b ≡

⎛
⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎠ . (3)
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FIG. 1. EOF as functions of |a| of the initial states (solid line) and
of the outcome states |φ̈±

A,B〉 (dashed line) and |ψ±
A,B〉 (dotted line).

The dot-dashed line corresponds to the average EOF Ē of the four
possible outcome states.

The ρ̂a,b state must satisfy normalization and the positivity
conditions,

|ρ14| � √
ρ11ρ44 and |ρ23| � √

ρ22ρ33. (4)

In what follows we consider fixed diagonal elements and we
do the analysis in terms of the off-diagonal elements. The
off-diagonal elements account for the coherence degree inside
two orthogonal subspaces, say, H00,11 spanned by the basis
{|0a〉|0b〉,|1a〉|1b〉} and H01,10 spanned by {|0a〉|1b〉,|1a〉|0b〉}.
For instance, when ρ14 = 0 there is absolute decoherence into
H00,11, while for |ρ14| = √

ρ11ρ44 there is a pure state into
H00,11. The ρ23 element has a similar meaning in the subspace
H01,10. Accordingly, depending on the moduli |ρ14| and |ρ23|,
the X state (3) goes from an incoherent superposition of the
four factorized logic states to an incoherent superposition of
two partially entangled pure states. There are two special
features of an X state: (i) the X form itself which arises because
it populates the two subspaces H00,11 and H01,10 without
having off-diagonal terms between the elements of those
subspaces, and (ii) the entanglement between the two involved
systems. The EOF can be evaluated by the concurrence, which

for state (3) is given by [9]

Cin = 2 max{0,|ρ14| − √
ρ22ρ33,|ρ23| − √

ρ11ρ44}. (5)

Thus there is entanglement when one of the two inequalities
is satisfied:

|ρ14| >
√

ρ22ρ33, |ρ23| >
√

ρ11ρ44 ; (6)

otherwise entanglement is absent. Complementing inequalities
(6) with those for positivity (4) leads to the following two
equations for having entanglement:

|ρ23| � √
ρ22ρ33 < |ρ14| � √

ρ11ρ44, (7a)

|ρ14| � √
ρ11ρ44 < |ρ23| � √

ρ22ρ33, (7b)

where clearly only one or none of them can be fulfilled. We
extract in the following three sentences what the inequalities
(7) are saying to us: (i) For Cin �= 0 it is necessary that
ρ11ρ44 �= ρ22ρ33. (ii) For Cin �= 0 it is necessary and sufficient
to have a certain nonzero coherence degree inside only
one subspace H00,11 or H01,10. (iii) The coherence degree of
one of the subspaces does not contribute to Cin.

We stress that for fixed diagonal elements, the maximum
amount of entanglement is reached with total coherence into
only one subspace, H00,11 or H01,10.

Now, for the entanglement-swapping process, we assume
that both pairs of qubits A,C1 and B,C2 are in the X states
ρ̂A,C1 and ρ̂B,C2, which we call input states. In the respective
logic bases they are represented by

ρ̂A,C1 ≡

⎛
⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎠ ,

(8)

ρ̂B,C2 ≡

⎛
⎜⎝

ρ ′
11 0 0 ρ ′

14
0 ρ ′

22 ρ ′
23 0

0 ρ ′
32 ρ ′

33 0
ρ ′

41 0 0 ρ ′
44

⎞
⎟⎠ .

Let us consider that the factorized state ρ̂A,C1 ⊗ ρ̂B,C2 un-
dergoes a von Neumann measurement for projecting the pair
C1,C2 onto one of the four Bell states |φ±

C1,C2〉, |ψ±
C1,C2〉.

Consequently, the pair A,B also is projected onto one of the
states ρ̂

φ±
AB or ρ̂

ψ±
AB , which we call outcome states. In the logic

basis the outcome states are

ρ̂
φ±
AB ≡ 1

Nφ

⎛
⎜⎜⎜⎝

ρ11ρ
′
11 + ρ22ρ

′
22 0 0 ±(ρ14ρ

′
14 + ρ23ρ

′
23)

0 ρ11ρ
′
33 + ρ22ρ

′
44 ±(ρ14ρ

′
32 + ρ23ρ

′
41) 0

0 ±(ρ41ρ
′
23 + ρ32ρ

′
14) ρ33ρ

′
11 + ρ44ρ

′
22 0

±(ρ41ρ
′
41 + ρ32ρ

′
32) 0 0 ρ33ρ

′
33 + ρ44ρ

′
44

⎞
⎟⎟⎟⎠ , (9a)

ρ̂
ψ±
AB ≡ 1

Nψ

⎛
⎜⎜⎜⎝

ρ11ρ
′
22 + ρ22ρ

′
11 0 0 ±(ρ14ρ

′
23 + ρ23ρ

′
14)

0 ρ11ρ
′
44 + ρ22ρ

′
33 ±(ρ14ρ

′
41 + ρ23ρ

′
32) 0

0 ±(ρ41ρ
′
14 + ρ32ρ

′
23) ρ33ρ

′
22 + ρ44ρ

′
11 0

±(ρ41ρ
′
32 + ρ32ρ

′
41) 0 0 ρ33ρ

′
44 + ρ44ρ

′
33

⎞
⎟⎟⎟⎠ , (9b)
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where the normalization constants Nφ = (ρ11 + ρ33)(ρ ′
11 +

ρ ′
33) + (ρ22 + ρ44)(ρ ′

22 + ρ ′
44), Nψ = (ρ11 + ρ33)(ρ ′

22 + ρ ′
44) +

(ρ22 + ρ44)(ρ ′
11 + ρ ′

33). The probabilities of obtaining each
one of the four possible outcomes (9) are Pφ± = Nφ/2 and
Pψ± = Nψ/2, which are generally different. We note that the
four outcomes are X states as well. This means that the X

feature of the input states is swapped to the state of the pair
A,B. The diagonal (off-diagonal) elements of the outcomes
(9) depend only on the diagonal (off-diagonal) elements of the
input states. Thus both terms ρ14 and ρ23 affect and contribute
to the coherence into both subspaces H00,11 and H01,10 of the
pair A,B.

The states ρ̂
φ+
AB and ρ̂

φ−
AB are equivalent by means of

local unitary operators, e.g., IA ⊗ (|0B〉〈0B | − |1B〉〈1B |); this
means that they have equal amounts of quantum correlation.
Similarly, the states ρ̂

ψ+
AB and ρ̂

ψ−
AB are equivalent with the

same local unitary operators. However, the two states ρ̂
φ±
AB ,

in general, are not local-unitarily equivalent to the two states
ρ̂

ψ±
AB . Therefore, in this process, the entanglement is distributed

probabilistically with concurrence Cφ

AB in the two outcomes

ρ̂
φ±
AB and with Cψ

AB in both states ρ̂
ψ±
AB , which, in general, are

different. This asymmetric distribution is reminiscent of what
happens with pure input states. From Eqs. (9) we realize that
the matrix elements of ρ̂A,C1 are transferred to the outcome
states of pair A,B when the state ρ̂B,C2 = |φ+

B,C2〉〈φ+
B,C2|.

In this particular case, the states ρ̂
φ±
AB are local-unitarily

equivalent with the ρ̂
ψ±
AB states by means of the local unitary

transformation, e.g., IA ⊗ σB
x or σA

x ⊗ IB . This means that
all the features of the X state ρ̂A,C1 are transferred to the
state of the two remote qubits A and B when ρ̂B,C2 is a Bell
state, thus obtaining the result of Ref. [7] as a special case of
ours. In Ref. [7], ρ̂A,C1 is only inside H01,10 and undergoes an
Ornstein-Uhlenbeck [9] decoherence process, and ρ̂B,C2 is a
steady Bell state.

In order to simplify the analysis and to shed some light on
the principal aspects and the scope of this scheme, we restring
it to the case with elements of the matrices (8) equal, i.e.,
ρ ′

nm = ρnm. In this case, the concurrences of the respective
outcome states (9a) and (9b) become

Cφ

AB(�) = 2 max {0,g(�) − (ρ11ρ33 + ρ22ρ44)}
(ρ11 + ρ33)2 + (ρ22 + ρ44)2

, (10a)

Cψ

AB(0) = max{0,g(0) − 2
√

ρ11ρ22ρ33ρ44}
(ρ11 + ρ33)(ρ22 + ρ44)

, (10b)

where g(ϕ) =
√

(|ρ14|2 + |ρ23|2)2 − 4|ρ14|2|ρ23|2 sin2(ϕ),
� = θ14 − θ23, and θnm is the phase of ρnm = |ρnm|eiθnm .
The concurrence Cψ

AB(0) does not depend on the phases θnm

and it is higher than Cφ

AB(�) for all values of �. Besides
having asymmetrically distributed the entanglement over
the outcomes, the probability 2Pψ of achieving Cψ

AB(0) is
smaller than 2Pφ of obtaining Cφ

AB(�). The concurrence
Cφ

AB(�) reaches its maximal value at � = 0 and the
minimum for � = π/2. Applying the local unitary operation
|0〉〈0| + ei(θ14−θ23)/2|1〉〈1| to C1 and the C2, before performing
the measurement procedure, the phases of the off-diagonal

elements vanish, which leads to � = 0. In this case the
concurrences (10) become

Cφ

AB = 2 max{0,|ρ14|2 + |ρ23|2 − (ρ11ρ33 + ρ22ρ44)}
(ρ11 + ρ33)2 + (ρ22 + ρ44)2

, (11a)

Cψ

AB = max{0,|ρ14|2 + |ρ23|2 − 2
√

ρ11ρ22ρ33ρ44}
(ρ11 + ρ33)(ρ22 + ρ44)

. (11b)

From these expressions we find that the four outcome states (9)
are entangled if the matrix elements of the input states satisfy
the inequality

|ρ14|2 + |ρ23|2 > ρ11ρ33 + ρ22ρ44, (12)

whereas the entanglement is present only in two outcome states
(9b) if the following inequalities hold:

ρ11ρ33 + ρ22ρ44 � |ρ14|2 + |ρ23|2 > 2
√

ρ11ρ22ρ33ρ44. (13)

Otherwise the four outcomes states are separable.
By making a detailed analysis of the inequalities (4), (6),

(7), (13), and (12) we can asseverate what follows:
(a) If the input states are not entangled, then |ρ14| �√

ρ22ρ33 and |ρ23| � √
ρ11ρ44. Multiplying the respec-

tive terms of these inequalities with those for positivity
[Eqs. (4)] leads to |ρ14|2 � √

ρ11ρ22ρ33ρ44 and |ρ23|2 �√
ρ11ρ22ρ33ρ44. Adding them we obtain that |ρ14|2 + |ρ23|2 �

2
√

ρ11ρ22ρ33ρ44, which means that the right-hand side in-
equality of expression (13) is not fulfilled. In other words,
if the input states lack entanglement, then the four outcome
states are separable.
Additionally, the fact that the concurrence Cin of the input states
is different from zero does not guarantee that the outcomes
states are entangled. Specifically, by considering that Cin > 0,
we find the following:

(b) Only the two outcome states ρ̂
ψ±
AB have entanglement

different from zero if

Cth
min < Cin � C th

max.

(c) The entanglement is present in the four outcome states
ρ̂

ψ±
AB and ρ̂

φ±
AB if

Cin > Cth
max.

The two threshold concurrence values are given by

C th
min = 2(

√
2
√

ρ11ρ22ρ33ρ44 − min{|ρ14|2,|ρ23|2}
− min{√ρ11ρ44,

√
ρ22ρ33}), (14)

C th
max = 2(

√
ρ11ρ33 + ρ22ρ44 − min{|ρ14|2,|ρ23|2}

− min{√ρ11ρ44,
√

ρ22ρ33}). (15)

These threshold values are decreasing functions of the off-
diagonal element min{|ρ14|2,|ρ23|2}, which does not affect
the amount of Cin. Therefore we can realize that when
the input states have entanglement, the off-diagonal term
min{|ρ14|2,|ρ23|2} now plays an important roll for achieving
the task of having entanglement in the outcomes. In fact, it
allows one to decrease the threshold values and to increase
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the outcome’s entanglement. Consequently, the outcome
concurrence (11) reaches the maximum value when there is
maximal coherence inside both subspaces H00,11 and H01,10,
namely, |ρ14| = √

ρ11ρ44 and |ρ23| = √
ρ22ρ33. Therefore, in

this case and for fixed diagonal elements, the highest outcome
concurrence is

Cψ

AB, max = (
√

ρ11ρ44 − √
ρ22ρ33)2

(ρ11 + ρ33)(ρ22 + ρ44)
, (16)

and the smallest outcome concurrence becomes

Cφ

AB, max = max

{
0,

2(ρ11 − ρ22)(ρ44 − ρ33)

(ρ11 + ρ33)2 + (ρ22 + ρ44)2

}
. (17)

Here, we easily note that Cψ

AB, max is higher and Cφ

AB, max is
smaller than the input value Cin. Note that (17) is different
from zero when ρ11 > ρ22 and ρ44 > ρ33 or ρ11 < ρ22

and ρ44 < ρ33, which are conditions for having initial
entanglement, in agreement with inequality (12) evaluated for
maximal coherence.

Our result can be illustrated in the following simple
example. When the inputs are Werner states, ρ̂(γ ) = (1 −
γ )I/4 + γ |ψ+〉〈ψ+|, which is nonseparable for γ > 1/3, the
two threshold concurrence values are equal to

√
(1 − γ 2)/2 −

(1 − γ )/2. In this case the outcome states are entangled for

γ > 1/
√

3. This agrees with the result obtained in Ref. [8],
where the inputs are Werner states.

In summary, we find that this process swaps the X form
of the input states without conditions. When one of the inputs
is a Bell state, then the other input X state is swapped fully
to the remote qubits. The input entanglements are, in general,
partially distributed in the four possible outcome states under
certain conditions. When the input states are equal, we obtain
two threshold concurrence values which have to be overcome
by the input state entanglement in order for the outcome states
to be nonseparable. In addition, in this case we find that there
are two possible amounts of outcome entanglement: one is
greater and the other is less than the input entanglement. The
probability of obtaining the greatest outcome entanglement is
smaller than the probability of attaining the least. Finally, we
would like to emphasize that the asymmetric redistribution of
the entanglement holds also in the case with pure states, but
the threshold-concurrence-values effect occurs only for mixed
X states and is thus a consequence of the nonzero decoherence
of the input states.
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