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Coincidence landscapes for three-channel linear optical networks
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We use permutation-group methods plus SU(3) group-theoretic methods to determine the action of a
three-channel passive optical interferometer on controllably delayed single-photon pulse inputs to each channel.
Permutation-group techniques allow us to relate directly expressions for rates and, in particular, investigate
symmetries in the coincidence landscape. These techniques extend the traditional Hong-Ou-Mandel effect anal-
ysis for two-channel interferometry to valleys and plateaus in three-channel interferometry. Our group-theoretic
approach is intuitively appealing because the calculus of Wigner D functions partially accounts for permutational
symmetries and directly reveals the connections among D functions, partial distinguishability, and immanants.
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I. INTRODUCTION

Passive quantum optical interferometry aims to inject
classical or nonclassical light into a multichannel interferom-
eter and count photons exiting the output ports or measure
coincidences at the exits [1,2] or even measure some outputs
to perform post selection of the remaining output state. This
postselection procedure is a key element of the nonlinear sign
gate for optical quantum computing [3] and for enhancement of
the efficiency of single photons [4,5] or of single-rail optical
qubits [6]. Another rapidly growing experimental direction
in passive quantum optical interferometry is quantum walks
[7–9], which are being extended to two-photon inputs for
two-walker quantum walks [10].

The Hong-Ou-Mandel dip involves directing two identical
photons such that one enters each of the two balanced (50:50)
beam-splitter inputs with a controllable relative delay �

between the pulses [1]. The two photons can exit from the
same port or different ports, and these two scenarios are
distinguished by two-photon coincidence measurement. If
both photons exit from the same port, then the coincidence
measurement, which corresponds to the product of the mea-
sured signal at the two output ports, yields a 0 (essentially,
two photons from one port and zero photons from the other
yields a product 2 × 0 = 0). On the other hand, one photon
exiting each output port yields a coincidence measurement
of 1 (because the yield of one photon from each of the two
output ports results in the product 1 × 1 = 1). Measuring
two-photon coincidences resulting from beam-splitter mixing
of two single photons underpins much of the field of passive
quantum optical interferometry. The term passive is used to
distinguish quantum optical interferometry from incorporation
of active elements within the interferometer such as linear or
parametric amplifiers.

The Hong-Ou-Mandel dip is a decrease in the two-photon
coincidence rate ℘ near zero delay between identical single
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photons at each port of a balanced (50:50) beam splitter. This
dip can be generalized to more than two channels and to an
extension from injecting single photons into each input port
to the case of single photons entering some ports and nothing
(vacuum) entering other input ports.

Higher-order coincidence dips could be observed by placing
detectors at several output ports. Suppose output ports i, j , k,
and l each lead to a photodetector and four photons are injected
into the interferometer. Then the detectors can “see” mi , mj ,
mk , and ml photons, respectively, such that

∑
a∈{i,j,k.l} ma � 4,

where the inequality is saturated only if the photons do not exit
other ports or are lost by the detectors.

The four-photon coincidence product is then∏
a∈{i,j,k.l}

ma,

which is 0 except for the case where exactly one photon leaves
each of the output ports. This product of counts from specified
ports, such that a nonzero value is only obtained if a single
photon exits each port, is the generalization of the Hong-Ou-
Mandel dip two-photon coincidence rate for multiple channels,
several single-photon inputs, and multiphoton coincidence
detection.

Recently generalizing the Hong-Ou-Mandel dip has been
the subject of considerable interest because of the Boson-
Sampling problem. The BosonSampling problem demands
sampling of the output photon coincidence distribution given
an interferometric input comprising single-photon and vacuum
states. The output coincidence distribution is computationally
hard to sample classically but efficiently simulatable with a
quantum optical interferometer (subject to some conjectures
and an assumption about scalability) [11]. The BosonSampling
problem has led to several reports of experimental success
based on generalizing the Hong-Ou-Mandel dip [12–17]
(including experimental verification [18,19]).

Theoretical analysis of the generalized Hong-Ou-Mandel
dip typically focuses on simultaneous arrival of the identical
photons. With arbitrary delays between photons, the Hilbert
space H for the system is large because single-mode treat-
ments of input photons give way to an infinite (temporal)
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mode continuum for each input photon. Another complication
in studies of generalized Hong-Ou-Mandel dips is that the
number m of channels can exceed the number n of photons
(m � n). In this general case the Hilbert space dimension is
dimH = mn. On the other hand, when all delays between
photons are 0 so each photon can be treated within the
single-mode framework and the set of all photons is symmetric
under exchange, the only subspace of the full Hilbert space
with nonzero support (i.e., the largest subspace such that the
overlap of states in this subspace with the multiphoton state
is not zero) is the subspace of states fully symmetric under
permutation of frequencies; the Hilbert space dimension is
then exponentially smaller:(

m + n − 1

n

)
.

This emphasis on simultaneity for higher-order Hong-Ou-
Mandel dip contrasts sharply with experimental practice for the
standard Hong-Ou-Mandel dip, which utilizes a controllable
time delay τ between the two photons. Controlling τ is
essential to verify that the dip is behaving approximately
as expected and, furthermore, to calibrate the extent of the
dip relative to the background coincidence rate. Ideas in this
direction have also been developed for two photons arriving in
each of the beam-splitter ports [20].

Some of us recently showed that nonsimultaneity breaks the
full permutation symmetry of the input state [21]. This broken
permutation symmetry causes the output coincidence rate to
depend on immanants [22–25] of the interferometer transition
matrix. The immanant is a generalization of the permanent,
which is relevant for permutation-symmetric input states, and
the determinant, which holds for the antisymmetric case.

Our previous work focused on determining and explaining
the “coincidence landscape” for three-channel passive optical
interferometry with single photons injected into each of three
input ports. Each photon can be delayed independently and
controllably. The time delay vector

τ := (τ1,τ2,τ3) (1)

represents the time delays for the first, second, and third
photon, respectively. An overall time reference frame can be
ignored so only two time delays are required, given by the
two-component relative vector

� := (�1,�2) = (τ2 − τ1,τ3 − τ2). (2)

Therefore,

τ = (τ1,τ1 + �1,τ2 + �2), (3)

The coincidence rate ℘(�) is thus a function of two in-
dependent variables and can be represented as a surface
plot. This landscape is observed experimentally, albeit in
more complicated three-photon-through-five-channel inter-
ferometry suitable for first-principle tests of experimental
BosonSampling [12–18].

Our earlier brief results in three-channel interferometry
with single photons injected into each input port indicate the
role of immanants but do not delve into rich aspects of the
coincidence landscapes. Our aim here is to present the follow-
ing new results as well as to clarify subtleties in the earlier

work. We provide a thorough, comprehensive explanation of
the three-photon coincidence rate ℘ with controlled timing
delays �. Earlier we determined coincidence landscapes based
on photon counting operators that were dual to the source-field
operators [21]; this time we forgo the mathematically elegant
dual approach in favor of the detector model matching current
experimental implementations [26]. Also we analyze and
explain the extremal cases for which two photons arrive
simultaneously and one arrives significantly later or earlier
so is distinguishable. Furthermore, we study the case where
all three photons are distinct due to long pairwise time delays.

Our analysis serves to explain in detail the three-photon
generalized Hong-Ou-Mandel dips and its extreme cases
of complete distinguishability of one or all photons. This
work not only lays a foundation for generalizing the Hong-
Ou-Mandel dip theory beyond the three-photon level but
also emphasizes the connection between these generalized
dips and immanants, thus extending the paradigm of the
BosonSampling problem from permanents to immanants. Our
group-theoretic methods elucidate the role of immanants in
the features of the photon-coincidence landscape beyond
the simultaneous-photon-arrival limit and, furthermore, ex-
ploits SU(3) group-theoretic properties in the photon-number-
conserving case to reduce the overhead for calculating and
numerically computing photon-coincidence rates compared to
not using these relations. The reduction in computational cost
(but not a reduction in algorithmic complexity scaling per
se) by using our methods, instead of brute-force techniques
based on working directly with mappings of creation operators
according to the interferometer transition matrix, is due in part
to the built-in exploitation of permutation symmetries in our
mathematical framework.

II. TWO INPUT PORTS AND SU(2)

Although the focus of this work is on three-channel passive
quantum optical interferometry with one photon injected into
each input port, a thorough understanding of the humble beam
splitter (balanced or otherwise) is needed first. The reason
for this need is that the beam splitter is the basic building
block of general passive quantum optical interferometric
transformations. Despite its simplicity, the beam splitter still
holds surprises such as the recent universality proof for beam
splitters [27].

A. Two monochromatic photons

In this section we expound on the example of two
monochromatic photons entering a four-port system, i.e., two
input ports and two output ports. For â

†
j,in(ω) the creation

operator for an input monochromatic photon in mode j , a
monochromatic single-photon state in mode j is

| 1(ω)j ) := â
†
j (ω)|0〉, j = 1,2. (4)

We use the parenthetical (rounded) bra-ket notation to denote
the purely monochromatic states. The commutator relation for
monochromatic creation and annihilation operators is

[âk(ωi),â
†
�(ωj )] = δk�δ(ωi − ωj )1, (5)

with 1 the identity operator.
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A beam splitter is equivalent to a four-port passive interfer-
ometer, with two input ports and two output ports. Mapping the
two input modes to the two output modes is achieved by the
photon-number-conserving linear transformations scattering
single-input to single-output photons as

â
†
1,out(ω) = U11â

†
1,in(ω) + U12â

†
2,in(ω),

(6)
â
†
2,out(ω) = U21â

†
1,in(ω) + U22â

†
2,in(ω),

from which

U =
(

U11 U12

U21 U22

)
(7)

is constructed, with each entry Uij in the matrix U being treated
as a frequency-independent quantity. In practical optical
systems, this assumption is desirable and approximately valid
for narrow-band optical fields.

Conservation of total photon number of photons requires
that

U †U = UU † = 1; (8)

hence U is unitary with determinant detU = eiϕ . Therefore,
U can be rewritten as

U = R(	) ·
(

eiϕ/2 0
0 eiϕ/2

)
, (9)

with the matrix

R(	) =
(

e− 1
2 i(α+γ ) cos β

2 −e− 1
2 i(α−γ ) sin β

2

e
1
2 i(α−γ ) sin β

2 e
1
2 i(α+γ ) cos β

2

)
(10)

special and unitary, i.e., unitary with determinant +1 depend-
ing on the three parameters

	 := (α,β,γ ). (11)

The matrix R in Eq. (10) is a three-parameter 2 × 2 special
unitary matrix. The unitarity of the matrix is evident by
computing RR† and R†R and obtaining the 2 × 2 identity
matrix 1 in each case. Therefore, R ∈ U(2). Furthermore,
detR = 1 so R is “special,” implying that R ∈ SU(2). The
fact that the group SU(2) represents the action of the beam
splitter is because the passive lossless beam splitter preserves
the total photon number: the number of photons entering the
beam-splitter input ports equals the number of photons exiting
the beam-splitter output ports. The 2 × 2 matrix representation
arises for just one photon entering the beam splitter. In general,
the matrices are of size (2j + 1) × (2j + 1) for a total of 2j

photons entering the beam splitter, with j either an integer or
a half-odd integer [28].

We now introduce the SU(2) D function for the irreducible
representation (irrep) j ,

D
j

mm′(	) := 〈jm|e−iαĴz e−iβĴy e−iγ Ĵz |jm′〉, (12)

with Ĵk the (2j + 1) × (2j + 1) matrix representation of the
three su(2) algebra generators. We use a standard abuse of
language and refer to the su(2) algebra generators as “angular
momentum operators,” although there is no connection with
the physical angular momentum. In other words, the analogy
with angular momentum reflects the abstract notation that the
beam-splitter action on incoming photons can be regarded

as an abstract photon-number- preserving “rotation” of the
photonic state in the two (input or output) modes.

From this formalism of “angular momentum” operators
{Ĵk}, we see that 	 (11) is just the Euler-angle triplet for the
SU(2) transformation

e−iαĴz e−iβĴy e−iγ Ĵz ,

and the entries of the matrix R(	) are Wigner D functions for
the SU(2) representation of j = 1/2:

R(	) =

⎛
⎜⎝ D

1
2
1
2 , 1

2
(	) D

1
2
1
2 ,− 1

2
(	)

D
1
2

− 1
2 , 1

2
(	) D

1
2

− 1
2 ,− 1

2
(	)

⎞
⎟⎠. (13)

General expressions for D
j

mm′(	) are known, and tables of
explicit functions for various j and m and m′ exist [29].

If two photons of frequencies ωa and ωb enter ports 1 and
2, respectively, and exit in distinct ports—say ports 2 and
1—this postselected output state is constructed by applying
the product

â
†
1,out(ωb)â†

2,out(ωa) = [U21â
†
1,in(ωa)][U12â

†
2,in(ωb)] (14)

to the vacuum. The diagonal matrix on the right-hand side of
Eq. (9) is constant so, for this specific case,

â
†
1,out(ωb)â†

2,out(ωa)

= eiϕD
1
2

− 1
2 , 1

2
(	)D

1
2
1
2 ,− 1

2
(	)â†

1,in(ωa)â†
2,in(ωb). (15)

The overall phase eiϕ is not of operational importance and,
hence, safely discarded.

We employ the obvious relationship

D
1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2
= 1

2

(
D

1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2
− D

1
2
1
2 , 1

2
D

1
2

− 1
2 ,− 1

2

)
+ 1

2

(
D

1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2
+ D

1
2
1
2 , 1

2
D

1
2

− 1
2 ,− 1

2

)
, (16)

where the explicit dependence of each term on 	 is suppressed.
Henceforth, we suppress explicit 	 dependence when the
nature of the dependence on 	 is self-evident. The first term
on the right-hand side of Eq. (16) is

D
1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2
− D

1
2
1
2 , 1

2
D

1
2

− 1
2 ,− 1

2
= −det R = −1 (17)

for R(	) given in Eq. (13).
For the second term on the right-hand side of Eq. (16),

we resort to the formula for the permanent of a matrix 2 × 2
matrix X : (xij ), which is

perX = x11x22 + x12x21. (18)

Thus,

D
1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2
+ D

1
2
1
2 , 1

2
D

1
2

− 1
2 ,− 1

2
= cos β = perR. (19)

From the expressions for the determinant and permanent of
a 2 × 2 matrix, we can rewrite the amplitude in Eq. (15) as

eiϕD
1
2

− 1
2 , 1

2
(	)D

1
2
1
2 ,− 1

2
(	) (20)

so the scattering

â
†
1,in(ωa)â†

2,in(ωb) → â
†
1,out(ωb)â†

2,out(ωa) (21)
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can be written, up to an overall and unimportant eiϕ , as

D
1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2
= 1

2 (per R − det R) . (22)

Equation (22) shows, on general grounds, that the amplitude
for coincidence counts in distinct output ports can be written
in terms of the permanent and the determinant of the matrix
R(	); these are in turn expressed as combinations of products
of elements of the matrix R(	).

Consider, instead of Eq. (14), scattering of the input state
â
†
1,in(ωa)â†

2,in(ωb)|0〉 to the other possible postselected output
state

â
†
1,out(ωa)â†

2,out(ωb)|0〉 = [U11â
†
1,in(ωa)][U22â

†
2,in(ωb)]|0〉,

(23)

with the resulting scattering amplitude

eiϕD
1
2
1
2 , 1

2
(	)D

1
2

− 1
2 ,− 1

2
(	) = eiϕ

2
(per R + det R) . (24)

This scattering amplitude is related to that resulting from
Eq. (14) as follows. The output states are related by a
permutation of the frequencies of photons in modes 1 and
2. To this end, we introduce the matrix

R21 =

⎛
⎜⎝D

1
2

− 1
2 , 1

2
D

1
2

− 1
2 ,− 1

2

D
1
2
1
2 , 1

2
D

1
2
1
2 ,− 1

2

⎞
⎟⎠, (25)

which is obtained by permuting rows of R(	) in Eq. (13) so
that row 1 of R(	) is row 2 of R21(	), and row 2 of R(	) is
row 1 of R21(	). In fact, we can rewrite Eq. (22) as

D
1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2
= 1

2 (per R21 + det R21). (26)

We see that this scattering amplitude has the same form (up
to an overall phase) as the amplitude of Eq. (24) (they are
“covariant”). The scattering amplitude of Eq. (26) is obtained
(up to an overall phase) by substituting R with R21 in Eq. (24).
Thus, permuting the output frequencies induces a permutation
of the rows that transforms R → R21 but does not change the
expression of the scattering amplitude when written in terms
of the permanent and the determinant.

Another observation is linked to the permutation of fre-
quencies. The effect of such a permutation can also be made
explicit by introducing the states

|
±〉 = 1√
2

[â†
1(ωa)â†

2(ωb) ± â
†
1(ωb)â†

2(ωa)]|0〉, (27)

which are clearly symmetric and antisymmetric with respect
to the permutation group S2 for the two frequencies ωa,b.
States (27) are, respectively, the � = 1,m = 0 (triplet) state
and the � = 0,m = 0 (singlet) state, which can be obtained
from the usual theory of two-mode systems in terms of
angular momentum. The interferometric input and output
states can be expanded in terms of |
±〉, and the effect of
permuting frequencies of the output state is determined from
the permutation of frequencies on |
±〉.

The group S2 contains two elements represented by the
identity 1 and the permutation P12, which exchanges ω1 with
ω2). Representations of S2 are conveniently labeled using the

method of Young diagrams [30–33]: for the symmetric

representation and for the antisymmetric representation.
We emphasize the role of the permutation group by writing

|
+〉 → |
 〉, |
−〉 → |
 〉; (28)

i.e., we can explicitly identify the � = 1 SU(2) state |
+〉
with one of the basis states for the representation of S2,
and the � = 0 SU(2) state |
−〉 with the basis state for the

representation. This identification of representations of the
symmetric group and representations of SU(2) is an example
of Schur-Weyl duality [34–36], which proves invaluable in our
discussion of SU(3) irreps later.

The scattering amplitudes

〈
 |R|
 〉 =D
1
2
1
2 , 1

2
D

1
2

− 1
2 ,− 1

2
+ D

1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2

= cos β = perR = D1
00 ≡ D00 (29)

and

〈
 |R|
 〉 =D
1
2
1
2 , 1

2
D

1
2

− 1
2 ,− 1

2
− D

1
2

− 1
2 , 1

2
D

1
2
1
2 ,− 1

2

= 1 = detR = D0
00 ≡ D00 (30)

are easily verified. In the case of the 50-50 beam splitter, β =
π/2 such that the scattering amplitude for indistinguishable
single photons in Eq. (29) vanishes. Thus, we have determined
the roles of the permanent and determinant of the matrix
R, the S2 permutation symmetry of the input state, and
higher D functions of the group SU(2) for the two-channel
interferometer and the beam splitter. Higher D functions arise
as linear combinations of products of basic D1/2 functions
entering in the 2 × 2 matrix R of Eq. (10), as per Eqs. (17) and
(19).

Finally, we can use Young diagrams to summarize neatly the
contents of Eqs. (24) and (26) so as to display the covariance
explicitly:

〈0|ai(ωa)aj (ωb)R a
†
1(ωa)a†

2(ωb)|0〉 = 1
2 ij + 1

2 ij , (31)

where ij := per Rij is the permanent of the matrix Rij , and
where ij := det Rij is the determinant of Rij .

B. Pulsed sources and finite-bandwidth detectors

For realistic systems the input photons are not monochro-
matic, nor should they be. If photons are to be delayed
relatively to each other, their temporal envelopes need to be of
finite duration. This temporal-mode envelope is sometimes
called the photon wave packet. Detectors are not strictly
monochromatic either, as the duration of the detection must be
finite. In practice, detectors are often preceded by spectral
filters so are close to monochromatic. Mathematically the
source field and the detector response should be modeled not
as monochromatic functions as in the previous section but,
rather, in terms of the appropriate temporal mode.

Mathematically the state of one photon in each of n

modes is a complex-value-weighted multifrequency integral
of monochromatic single-photon states in each mode (4) given
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by

|n〉 = 1√
n!

∫
dnωφ̃(ω1) · · · φ̃(ωn)|1(ω1)1 · · · 1(ωn)n), (32)

for ω := (ω1, . . . ,ωn) the n-dimensional frequency, dnω the
n-dimensional measure over this domain, and φ̃(ω) the spectral
function. For the source spectral function, we choose a
Gaussian [21],

φ̃(ω) = 1(
2πσ 2

0

)1/4 exp

[
− (ω − ω0)2

4σ 2
0

]
, (33)

with ω0 the carrier frequency and σ0 the half-width of the
Gaussian distribution.

Previously we treated the detector as dual [21] in the
sense that photon counting corresponds to the Fock number-
state projector |n〉〈n|, for |n〉 the number state (32), but
here we employ the flat-spectrum incoherent Fock-number
state measurement operator [26]∫

dnω|1(ω1)1 · · · 1(ωn)n)(1(ω1)1 · · · 1(ωn)n|, (34)

which is applicable to detectors currently used in photon-
coincidence experiments such as the BosonSampling type
[12–17]. A further adjustment accounts for the threshold nature
of single-photon counting modules: due to saturation they
either see nothing or measure inefficiently at least one photon
without number-resolving capability [37].

In the case of the two-photon Hong-Ou-Mandel dip
experiment [1], the coincidence rate is a linear combination
of the determinant, (17), and permanent, (19), of the 2 × 2
matrix. The coefficients of this combination are controlled
through an adjustable time delay τ between the pulses arriving
at respective times τ1 and τ2 such that � := τ1 − τ2. For
identical Gaussian pulses of unit width (σ0 = 1) and the
detector measurement, (34), the resultant coincidence rate is

℘11(�) = 1
2

[(
1 + e−�2)|D00 (	)|2 + (

1 − e−�2)|D00(	)|2].
(35)

For zero time delay � = 0, the pulses are indistinguishable.
For � = 0, Eq. (35) reduces to

℘11(�) = |D00 (	)|2. (36)

Thus, the antisymmetric part D00(	) of Eq. (35) has vanished,
and only the symmetric part of the amplitude D00 (	) survives:
D00 (	) = cos β. The balanced beam splitter has β = π/2 so
D00 (	) = 0, thereby leading to ℘11(� = 0) = 0.

This null amplitude thus results in the Hong-Ou-Mandel dip
corresponding to a nil coincidence rate at � = 0 in the ideal
limit; i.e., the nil coincidence rate shows that the two photons
entering the beam splitter are operationally indistinguishable.
Under these conditions the two photons are forbidden to yield
a coincidence because the probability amplitudes for the two
cases where both photons are transmitted and both photons
are reflected (the two cases that would yield a coincidence)
cancel each other, leaving only the noncoincidence events of
both photons being in a superposition of going one way or the
other.

III. THREE MONOCHROMATIC PHOTONS AND SU(3)

In this section we establish the necessary notation
and develop the mathematical framework concerning three
monochromatic photons, each entering a different input port of
a passive three-channel optical interferometer and undergoing
coincidence detection at the three output ports. As in the
previous section, arguments such as 	 for transformations
R and functions D are suppressed when obvious so as not to
overcomplicate the expressions and equations.

A. Preface

In Sec. III B we generalize Eq. (9) to the case 3 × 3 matrices.
The SU(2) R matrix of Eq. (9) become an SU(3) matrix. We
report in Appendix A essential details on the Lie algebra su(3)
and their representations [38,39]. Representations of SU(3) are
obtained by exponentiating the corresponding representations
of su(3). In Sec. III C we briefly discuss the SU(3) D functions
using standard labeling and construction for SU(3) D functions
[40].

We employ appropriate basis states, endowed with “nice”
properties under permutation of output modes, to obtain the
D functions [40]. Some of these “nice” properties are given
explicitly in Eqs. (A11) and (A13) in Appendix A. The
required states are either symmetric or antisymmetric under
permutation of modes 2 and 3. The action of elements of the
permutation group of three objects (S3) on these basis states
and thus on the D functions has been discussed earlier [40].

The connection between scattering amplitudes and D

functions is given in Eq. (58) and Table I. As in Sec. II, we
eventually label the SU(3) irreps with Young diagrams. For an
interferometer containing three photons, the Young diagrams
have three boxes. Young diagrams with three boxes also label
representations of the permutation group S3.

We briefly discussed in Sec. II A the effect on scattering
amplitudes of permuting two of the output photons. An
important part of our work is to generalize this discussion
to the three-photon case. We start this in Sec. III D, where we
introduce the permutation group S3 of three objects.

The permutation group S3 has a richer structure than does
the permutation group of two objects. In addition to defining
the permanent and the determinant of a 3 × 3 matrix, we
define another type of matrix function known as an immanant
[22–25]. The permanent and the determinant are in fact special
cases of immanants. The immanants of the 3 × 3 matrix R are
constructed as linear combinations containing, in general, six

TABLE I. Coefficients occurring in the expansion of Eq. (58).

(ijk) cijk cijk,(11) cijk,(00) cijk,(10) cijk,(01) cijk

(123) 1
6

1
3

1
3 0 0 1

6

(132) 1
6

1
3 − 1

3 0 0 − 1
6

(213) 1
6 − 1

6
1
6

1
2
√

3
1

2
√

3
− 1

6

(231) 1
6 − 1

6 − 1
6 − 1

2
√

3
1

2
√

3
1
6

(312) 1
6 − 1

6 − 1
6

1
2
√

3
− 1

2
√

3
1
6

(321) 1
6 − 1

6
1
6 − 1

2
√

3
− 1

2
√

3
− 1

6
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triple products of entries of R. Here we provide few explicit
expressions, as the expressions are excessively complicated to
include in full. Whereas the permanent and determinant can
be expressed in terms of a single SU(3) D function, thereby
generalizing Eqs. (29) and (30) in the previous section, the
last immanant of the SU(3) matrix is a linear combination of
SU(3) D functions as introduced earlier [40].

In Sec. III E we generalize our previous discussion of
the effect of permutation of frequencies on rates in the
two-mode problem to the effect of permuting the frequencies
for the three-mode case. We also discuss the connection
between D functions and immanants of matrices Rijk where
rows have been permuted. The permanent and determinant
transform back into themselves (up to maybe a sign in the
case of the determinant) under such a permutation of rows.
In general, immanants do not satisfy such a simple relation:
their transformation rules are more complicated. We provide
in Eq. (71) in Sec. III E the explicit expression of the

ijk

immanants in terms of SU(3) D functions [21].
Finally, in Sec. III F, we provide details on the relation

between rates and immanants. Just as the scattering rate for
two monochromatic photons can be expressed in terms of
the permanent and the determinant of the appropriate 2 × 2
scattering matrix, the scattering rate for three monochromatic
photons can be written in terms of the immanants of the
appropriate 3 × 3 scattering matrix.

We have shown explicitly in Sec. II A how the scattering
rates can be written in a covariant form by using the permanent
and determinant of the 2 × 2 matrix R(	). Previously we
found in [21] that the same observation holds for the case
of three photons in a three-channel interferometer. This result
is summarized in Eq. (75), which leads to the result that, for
monochromatic photons, the rates have simple expressions in
terms of immanants of the matrices Rijk .

B. The interferometric transformation

A general interferometer with three input and three output
ports transforms the creation operators for input photons to
the output creation operators, where the action on the basis
vectors of each photon is

⎛
⎜⎜⎝

â
†
1,out(ω)

â
†
2,out(ω)

â
†
3,out(ω)

⎞
⎟⎟⎠ = U

⎛
⎜⎜⎝

â
†
1,in(ω)

â
†
2,in(ω)

â
†
3,in(ω)

⎞
⎟⎟⎠, (37)

where U must be a 3 × 3 matrix and is treated here as
being frequency independent. For photon-number-conserving
scattering, U is now a 3 × 3 unitary matrix with determinant
eiξ . Thus, the unitary matrix can be expressed as

U = R(	) ·

⎛
⎜⎝

eiξ/3 0 0

0 eiξ/3 0

0 0 eiξ/3

⎞
⎟⎠, (38)

with R(	) now a special unitary 3 × 3 matrix, i.e., an SU(3)
matrix. In contrast to Sec. II, 	 now labels the parameter
element of SU(3).

In fact 	 is an 8-tuple of angles, as the matrix R(	) can be
written as the product [41]

R(	) ≡ T23(α1,β1,−α1)T12(α2,β2,−α2)

× T23(α3,β3,−α3)�(γ1,γ2), (39)

with

	 = (α1,β1,α2,β2,α3,β3,γ1,γ2) (40)

the octuple of SU(3) Euler-like angles. The set {Tij } comprises
SU(2) subgroup matrices

T23(α,β,γ ) =

⎛
⎜⎜⎜⎝

1 0 0

0 e− 1
2 i(α+γ ) cos β

2 −e− 1
2 i(α−γ ) sin β

2

0 e
1
2 i(α−γ ) sin β

2 e
1
2 i(α+γ ) cos β

2

⎞
⎟⎟⎟⎠
(41)

or

T12(α,β,γ ) =

⎛
⎜⎜⎝

e− 1
2 i(α+γ ) cos β

2 −e− 1
2 i(α−γ ) sin β

2 0

e
1
2 i(α−γ ) sin β

2 e
1
2 i(α+γ ) cos β

2 0

0 0 1

⎞
⎟⎟⎠,

(42)

depending on the values of (ij ). Also,

�(γ1,γ2) = diag(e−2iγ1 ,ei(γ1−γ2/2),ei(γ1+γ2/2)). (43)

Factorizing Eq. (39) into SU(2) submatrices corresponds phys-
ically to a sequence of SU(2) phase shifter/beam splitter/phase
shifter transformations on modes (23), (12), and (23), with
SU(2) parameters defined by the Euler angles [42].

C. Wigner D functions and representations

Representations of SU(3) are labeled by two non-negative
integers (p,q) [38,39]. This two-integer labeling is a natural
extension from the SU(2) labeling of representations by a
single non-negative integer 2j , which is the total photon
number in the two-mode case and is thus analogous to
twice the angular momentum. The (p,q) labels are defined
explicitly in Eq. (57), but the essence of this definition is
that, for three photons entering three ports, outputs depend
on interference between various outcomes (generalizing the
idea that the Hong-Ou-Mandel dip is due to destructive
interference between both photons being transmitted and both
being reflected as discussed at the end of Sec. II). These
inferences are accounted for by considering how to partition
the cases where three photons are divided according to a
partition [λ1,λ2,λ3] into three output ports such that

λ1 + λ2 + λ3 = 3. (44)

Only the difference between total photon numbers in the three
partitions are needed, so just the pair (p,q) defined in Eq. (57)
is needed, not a triple; hence (p,q) serves as a good labeling
for states corresponding to partitioning photons into channels.

The 3 × 3 matrices of the form given in Eq. (39) carry the
SU(3) irrep (1,0). The generalization to SU(3) of Eq. (13) is
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thus

R =

⎛
⎜⎜⎜⎝

D
(1,0)
(100),(100) D

(1,0)
(100),(010) D

(1,0)
(100),(001)

D
(1,0)
(010),(100) D

(1,0)
(010),(010) D

(1,0)
(010),(001)

D
(1,0)
(001),(100) D

(1,0)
(001),(010) D

(1,0)
(001),(001)

⎞
⎟⎟⎟⎠, (45)

with dependence of R and D on 	 implicit.
An expression for the matrix entries in Eq. (45) is

easily obtained by explicit multiplication of the matrices of
Eqs. (41)–(43) per the sequence of Eq. (39); e.g.,

D
(1,0)
(010),(100) = ei(α2−2γ1) cos

β1

2
sin

β2

2
. (46)

In D
(1,0)
ν,n , the triple

ν := (ν1ν2ν3) (47)

is the occupancy of the output state in channels (1,2,3), and

n := (n1n2n3) (48)

is the occupancy of the input channel.
Consequently, for specified 	, D

(1,0)
(010),(100) is the amplitude

for scattering with one photon entering port 1 and exiting port
2. The input state

|1(ω1)1(ω2)1(ω3))S := â
†
1,in(ω1)â†

2,in(ω2)â†
3,in(ω3)|0〉 (49)

can scatter to 33 = 27 possible output states:

U |1(ω1)1(ω2)1(ω3))S

= [Uâ
†
1,in(ω1)][Uâ

†
2,in(ω2)][Uâ

†
3,in(ω3)]|0〉.

If the output state is one of the six possible states containing
photons in distinct ports (here postselected for outputs in ports
i, j , and k),

â
†
i,out(ω1)â†

j,out(ω2)â†
k,out(ω3)|0〉, i 	= j 	= k 	= i, (50)

then the amplitude for scattering from the initial to this final
state is, up to a constant overall phase eiξ , given by

D
(1,0)
i,(100)D

(1,0)
j,(010)D

(1,0)
k,(001), (51)

where eiξ/3D
(1,0)
i,(100) denotes the scattering amplitude

Uâ
†
1,in(ω1)|0〉 → â

†
i,out(ω1)|0〉. (52)

To avoid repetitions of products like

D
(1,0)
i,(100)D

(1,0)
j,(010)D

(1,0)
k,(001),

we introduce the shorthand Rij as the entry (i,j ) in the unitary
matrix R of Eq. (45) and introduce a shorthand notation:

aijk := Ri1Rj2Rk3. (53)

Thus, for instance,

a231 = R21R32R13 = D
(1,0)
(010),(100)D

(1,0)
(001),(010)D

(1,0)
(100),(001). (54)

Products of the type (51) can be expanded in terms of SU(3)
D

(p,q)
ν,n functions for higher representations [compare Eq. (29)].

Which values (p,q) to use in the expansion of Eq. (51) can be
determined as follows.

Because each monochromatic photon state

â
†
i,out(ω)|0〉

is a basis state for the (three-dimensional) representation (1,0),
with the SU(3) scattering matrix given in Eq. (45), the product
of three photon states is an element in the Hilbert space that
carries the tensor product (1,0) ⊗ (1,0) ⊗ (1,0) of SU(3). This
Hilbert space decomposes into the sum of SU(3) irreps given
by [35,38,43,44]

(1,0) ⊗ (1,0) ⊗ (1,0) → (3,0) ⊕ (1,1) ⊕ (1,1) ⊕ (0,0)

⊗ ⊗ → ⊕ ⊕ ⊕
,

(55)

where, in addition to the labeling of SU(3) irreps by non-
negative integers (p,q), we also provide the labeling and
decomposition in terms of Young diagrams. The connection
between the partition [λ1,λ2,λ3] such that the sum (44) holds
and

λ1 � λ2 � λ3, (56)

the Young diagram containing λi boxes on row i and the labels
(p,q) and is simple:

p := λ1 − λ2, q: = λ2 − λ3. (57)

From this decomposition we infer that, in general, only
functions with (p,q) = (3,0),(1,1) or (0,0) can occur, so that

aijk := D
(1,0)
i,(100)D

(1,0)
j,(010)D

(1,0)
k,(001)

= cijk D(111)1;(111)1 + cijkD(111)0;(111)0

+ cijk,(11)D(111)1;(111)1 + cijk,(00)D(111)0;(111)0

+ cijk,(10)D(111)1;(111)0 + cijk,(01)D(111)0;(111)1, (58)

where, for later convenience, Young diagrams are used to label
all SU(3) irrep except the (1,0) case, which does not appear in
Eq. (58) anyway. We employ standard expressions for the

D
(p,q)
νI,nJ

functions of the irrep (p,q) and notation [40]. The extra indices
I and J , which are not strictly required for labeling states of
(1,0), are used to refer to the transformation properties of the
output and input states, respectively, under the SU(2) subgroup
of matrices of type T23(α,β,γ ) given in Eq. (41).

Table I lists the expansion coefficient of Eq. (58) needed to
decompose various relevant triple products of D(1,0) functions
is provided. The various c coefficients can be obtained by
using Clebsch-Gordan techniques or by comparing the explicit
expressions of the D functions on the left-hand side and right-
hand side of Eq. (58).

Thus, for (ijk) = (132), we have

a132 = D
(1,0)
(100),(100)D

(1,0)
(001),(010)D

(1,0)
(010),(001)

= 1
6D(111)1;(111);1 − 1

6D(111)0;(111);0

+ 1
3D(111)1;(111);1 − 1

3D(111)0;(111);0. (59)
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The SU(3) irrep occurs twice in Eq. (55). The two copies
of the representation are mathematically indistinguishable,
although the states in each representation are distinct. Note

that even if the states are in different copies of , the D

functions are identical. Further discussion and examples are
given in Appendix A. A similar situation occurs in treating
a system comprising three spin-1/2 particles: the final set of
states contains two distinct sets of s = 1/2; although the states
in the sets are distinct, both sets transform as s = 1/2 objects.

D. S3, partitions, and immanants

In addition to labeling SU(3) irreps, the Young diagrams of
Eq. (55), namely,

, , , (60)

also label the representations of S3, which is the six-element
permutation group of three objects. The permutation group
S3 has three irreducible representations: two are of dimension
1 and one is of dimension 2. Certain matrix functions called
immanants are constructed from the entries of a 3 × 3 matrix
using elements in S3 and their irrep characters. (The characters
of a representation are the traces of the matrix representing
elements in the group. Characters are fundamental to repre-
sentation theory [23,45].)

For S3 there are three immanants: the permanent, the
determinant, and another immanant (the permanent and the
determinant are special cases of immanants). Because specific
immanants are constructed using characters of a specific irrep
of S3 denoted by a Young diagram, this Young diagram can
also represent the corresponding immanant. Table II is the
character table of S3. The values in this table are required
to construct the permanent, immanant, and determinant of a
3 × 3 matrix [23], respectively.

One immanant exists for each irrep of S3. An immanant of
a 3 × 3 matrix X := (xij ), with xij the entry in the ith row and
j th column of X, is [30]

immλX :=
∑

σ

χλ(σ )Pσ (x11x22x33). (61)

Here χλ(σ ) denotes the character of the element σ ∈ Sn for
irrep λ, and

Pσ (x1j x2kx3�) = x1,σ (j )x2,σ (k)x3,σ (�) (62)

exchanges entry xaj with entry xa,σ (j ), where σ (j ) is the image
of j under the element Pσ of S3.

TABLE II. Character table for S3 [23].

Element

1 σab = {P12,P13,P23} σabc = {P123,P132}
Irrep λ χλ(1) χλ(σab) χλ(σabc) Dim.

1 1 1 1

2 0 −1 2

1 −1 0 1

As

χ (Pσ ) ≡ 1 ∀σ ∈ S3, (63)

the permanent, which corresponds to the Young diagram ,
is obtained from Eq. (61) and yields

perX := (X)

= x11x22x33 + x11x23x32 + x12x21x33

+ x12x23x31 + x13x21x32 + x13x22x31. (64)

The determinant corresponds to the Young diagram and is
simply

detX = (X)

= x11x22x33 − x11x23x32 − x12x21x33

+ x12x23x31 + x13x21x32 − x13x22x31. (65)

Finally, the mixed-symmetry immanant, associated with the
Young diagram , is given by

(X) = 2 × 1(x11x22x33)

+ 0 × (P12 + P13 + P23) (x11x22x33)

− 1 × (P123 + P132) (x11x22x33)

= 2x11x22x33 − x12x23x31 − x13x21x32. (66)

As this is the only immanant for SU(3) that is neither a
permanent nor a determinant, we refer to this intermediate
immanant as “the immanant” and denote this immanant of X

by immX.

E. D functions and immanants

In this subsection we reprise our earlier observations that
link immanants of matrices to D functions for SU(3) [21].
Then we extend this work, with Eqs. (71) and (72) being new
results.

Generalizing Eq. (25), we denote by Rijk the matrix
obtained from R in Eq. (45) by permuting rows of R. The
permutation is done such that the first row of R becomes row
i of Rijk , the second row of R becomes row j of Rijk , and the
third row of R becomes row k of Rijk . The rows of R and of
Rijk are thus related by the permutation

P ijk(123) : (123) → (ijk). (67)

Then, with reference to the coefficients in Table I, the
following key results for the permanent, the immanant, and
the determinant can be verified from the explicit expressions
of the SU(3) D functions supplied in the Appendices.

The permanent of Rijk , which we denote by ijk , is

perRijk = ijk = 6cijk D(111)1;(111)1. (68)

The immanant of Rijk , which we denote by
ijk

, is

immRijk =
ijk

= 3(cijk,(11)D(111)1;(111)1 + cijk,(00)D(111)0;(111)0

+ cijk,(10)D(111)1;(111)0 + cijk,(01)D(111)0;(111)1).
(69)
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In particular, using the expression for cijk , we obtain

immR231 = −immR123 − immR312,
(70)

immR321 = −immR213 − immR132,

thereby showing that there are only four linearly independent
immanants. Conversely, it is possible to express the various

D(111)I ;(111)J in terms of the immanants:⎛
⎜⎜⎜⎜⎜⎜⎝

D(111)1;(111)1

D(111)0;(111)0

D(111)1;(111)0

D(111)0;(111)1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1

2

⎛
⎜⎜⎜⎝

1 0 1 0
1 0 −1 0
1√
3

2√
3

1√
3

2√
3

− 1√
3

2√
3

1√
3

− 2√
3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

123

213

132

312

⎞
⎟⎟⎟⎟⎟⎠. (71)

The determinant of Rijk , which we denote by
ijk

, is

detRijk =
ijk

= 6cijkD(111)0;(111)0. (72)

F. Amplitudes and immanants

Using the relations between immanants and D functions
in the previous subsection, we see that the amplitude in
Eq. (58) can also be written as a linear combination of the
immanants, the permanent, and the determinant. Using the
shorthand notation, (53), we obtain

⎛
⎜⎜⎜⎜⎜⎝

a123

a132

a213

a231

a312

a321

⎞
⎟⎟⎟⎟⎟⎠ = M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

123

123

132

213

312

123

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(73)

for

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6

1
3 0 0 0 1

6
1
6 0 1

3 0 0 − 1
6

1
6 0 0 1

3 0 − 1
6

1
6 − 1

3 0 0 − 1
3

1
6

1
6 0 0 0 1

3
1
6

1
6 0 − 1

3 − 1
3 0 − 1

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (74)

Finally, in view of Eqs. (70) and (73), the connection
with amplitudes for monochromatic input states is neatly
summarized by

S(1(ωi)1(ωj )1(ωk)|R| 1(ω1)1(ω2)1(ω3))S

= 1
6 ijk + 1

3 ijk
+ 1

6 ijk
, (75)

where ijk is the permanent of the matrix Rijk ,
ijk

is the

determinant of the matrix Rijk , and
ijk

is the immanant of

the matrix Rijk .
Equation (75) is an elegant connection between amplitudes

and immanants for the special case of monochromatic pho-
ton inputs. It generalizes the analogous result of Eq. (31)
in the two-photon case. These relations can be verified from
the explicit expressions of the SU(3) D functions supplied in
the Appendices.

We observe that Eq. (75) is surprisingly simple. The
amplitude is a product of D(1,0) functions, and this product
decomposes into a nontrivial sum of D(p,q) functions, which
themselves are nontrivial linear combinations of immanants. In
particular, it is surprising that a single

ijk
immanant should

appear. We note that the coefficients of ijk and
ijk

are

identical, and the coefficient of
ijk

is twice that of ijk .
The proportions 1:1:2 are also the proportions of the dimension
of the respective irreps of S3.

IV. THREE-PHOTON COINCIDENCE AND IMMANANTS

In this section we develop the general formula for three-
photon coincidence rate ℘ given one photon entering each
input port of a passive three-channel optical interferometer
at arbitrary times τ (1). In Sec. IV A we introduce the
formalism for the general input and resultant output state
and the consequent formula for the coincidence rate. Then
Sec. IV B focuses on the special case where all photons are
simultaneous, i.e., where τ ≡ (τ,τ,τ ). This case of no delays is
the case normally assumed in the literature on BosonSampling.

The case where two photons arrive simultaneously and one
either precedes or follows those two by a significant time
duration is the topic of Sec. IV C. This subsection probes the
Hong-Ou-Mandel dip limit, where two photons can exhibit
a dip given the right choice of 	 and a third photon is
independent. Finally, in Sec. IV D we deal with the case where
the photon arrival times are far apart but yield coincidences
because the detector integration time is of course sufficiently
long.

A. General case

A three-photon input state with general spectral profile, but
identical for each of the three incoming modes, is written as

|ψ〉in =
∫

d3ωe−iω·τ φ̃(ω1)φ̃(ω2)φ̃(ω3)

× â
†
1(ω1)â†

2(ω2)â†
3(ω3)|0〉 (76)

for ω := (ω1,ω2,ω3) the three-dimensional frequency and
d3ω the three-dimensional measure over this domain. The
exponential involves the dot product between ω and the
three-vector time-of-entry vector τ for the photons, (1).

Passage through the interferometer produces

|ψ〉out =
∫

d3ωe−iω·τ φ̃(ω1)φ̃(ω2)φ̃(ω3)

× [Uâ
†
1(ω1)][Uâ

†
2(ω2)][Uâ

†
3(ω3)]|0〉. (77)
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The coincidence rate depends only on pairwise time delays
given by the two-component vector �, (2), but the expressions
for the coincidence rate ℘ are easier to understand in terms of
the three-component vector τ (1). Therefore, we express the
three-photon coincidence rate in the form

℘(�; 	) =
∫

d3ω̃|φ(ω̃1)|2|φ(ω̃2)|2|φ(ω̃3)|2|a123e
iω̃·τ

+ a132e
i(ω̃1τ1+ω̃3τ2+ω̃2τ3) + a213e

i(ω̃2τ1+ω̃1τ2+ω̃3τ3)

+ a231e
i(ω̃2τ1+ω̃3τ2+ω̃1τ3) + a312e

i(ω̃3τ1+ω̃1τ2+ω̃2τ3)

+ a321e
i(ω̃3τ1+ω̃2τ2+ω̃1τ3)|2, (78)

where τ1 can be set to 0 but is kept arbitrary in the explicit
expression, and τ and � are related by Eq. (3). Each aijk can
be written in terms of D(p,q) functions per Eq. (58) or in terms
of immanants per Eq. (73). For the explicit dependence of the
three-photon coincidence rate in Eq. (78) in terms of D(p,q)

functions upon integration over the frequencies, please refer
to Appendix C.

B. Simultaneity

We first consider ℘(� = 0; 	) corresponding to all photons
arriving simultaneously, in which case the phases in Eq. (78)
effectively disappear upon taking the squared modulus. The
sum of aijk coefficients is easily evaluated using Eq. (73) to
be the permanent of the matrix. Therefore, the three-photon
coincidence rate

℘(0; 	) ∝ |per(	)|2 (79)

adopts a simple form with respect to the octuple 	.
The proportionality of the coincidence rate to the squared

modulus of the permanent, (79), is the heart of the BosonSam-
pling Problem and its interferometrically friendly test [11].
This case of simultaneity is also the focus of research into
the Hong-Ou-Mandel dip extension to three-channel passive
optical interferometry [2].

C. Two simultaneous photons and one delayed photon

Suppose now that two of the delays are the same, but a third
is different in the sense that its arrival time is significantly
earlier or later than when the other two arrive. This significant
delay τ corresponds to a duration longer than the photon pulse
duration. In this case we write � = (τ,0).

Photons 2 and 3 are then simultaneous, and the input state
can be written in the reduced form,

|111〉sym =1

2

∫
d3ωφ(ω1)φ(ω2)φ(ω3)

× e−iω1τ1e−i(ω2+ω3)τ â
†
1(ω1)

× [â†
2(ω2)â†

3(ω3) + â
†
2(ω3)â†

3(ω2)]|0〉, (80)

which is symmetric under exchange of the 2 and 3 labels.
The coincidence rate is then given by the expression

℘(�; 	) =|A|2 + |B|2 + |C|2 + e−σ 2τ 2
[(A∗ + B∗)C

+ (A∗ + C∗)B + (B∗ + C∗)A], (81)

where the functions A, B, and C are related to immanants by

A = a123 + a132 = 1
3 ( + 123 + 132),

B = a213 + a231 = 1
3 ( + 213 + 231), (82)

C = a321 + a312 = 1
3 ( + 312 + 321).

Alternatively, A, B, and C are given in terms of D(p,q)

functions by

A = 1
3 (D(111)1;(111)1 + 2D(111)1;(111)1),

B = 1
3

(
D(111)1;(111)1 − D(111)1;(111)1 +

√
3D

(1,1)
(111)0;(111)1

)
,

C = 1
3 (D(111)1;(111)1 − D(111)1;(111)1 −

√
3D(111)0;(111)1).

(83)

For τ → ∞, the rate collapses to

lim
�→∞

℘((�,0); 	) → |A|2 + |B|2 + |C|2. (84)

Further insight into the connection between immanants and D

functions is gained by noting that the insertion of expressions
of Eqs. (82) into Eq. (81) yields

|A|2 + |B|2 + |C|2 = 2
3 [|D(111)0;(111)1|2 + |D(111)1;(111)1|2]

+ 1
3 |D(111)1;(111)1|2, (85)

whereas

(A∗ + B∗)C + (A∗ + C∗)B + (B∗ + C∗)A

=− 2
3 [|D(111)0;(111)1|2 + |D(111)1;(111)1|2] + 2

3 |D(111)1;(111)1|2.
(86)

From Eqs. (85) and (86), we see that coincidence measure-
ments with �2 = 0 yields information only about the sum

|D(111)0;(111)1|2 + |D(111)1;(111)1|2, (87)

and not about

D(111)0;(111)1 or D(111)1;(111)1

separately.
The reason that these specific D functions occur can be

understood by observing that the state

[â†
2(ω2)â†

3(ω3) + â
†
2(ω3)â†

3(ω2)]|0〉 (88)

is obviously symmetric under permutation of the frequencies.
Consequently, the state (88) is also a state of angular
momentum I23 = 1, with the angular momentum label I23

referring to the subgroup SU(2)23 of matrices mixing modes
2 and 3, as discussed in Appendix A. Permutation symmetry
explains why only D functions of the type

D
(p,q)
(111)I23,(111)1

can enter into the rate when �2 = 0.
Furthermore, the state of Eq. (88) belongs to the (2,0) irrep

of SU(3). The resultant three-photon Hilbert space is thus the
subspace of the full Hilbert space decomposed in Eq. (55) and
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is now spanned by states in the SU(3) irreps:

⊗ → ⊕
(1,0) ⊗ (2,0) → (3,0) ⊕ (1,1).

(89)

As a consequence, only functions in the (3,0) and (1,1) irreps
can appear in the final rate.

This symmetry property under exchange of modes 2 and 3
can be made explicit in terms of immanants. First, note that
the right-hand side of

D(111)1;(111)1 = 1
2 ( 123 + 132) (90)

is evidently symmetric under exchange of 2 and 3. The
symmetry of

D
(1,1)
(111)0;(111)1

is slightly more delicate. We start by observing that this
function can be written in two ways, namely,

D(111)0;(111)1 = 1

2
√

3
( 123 + 132)

+ 1√
3

( 213 + 231) (91)

or, alternatively, as

D(111)0;(111)1 = − 1

2
√

3
( 123 + 132)

− 1√
3

( 312 + 321). (92)

Exchanging the labels 2 and 3 in Eq. (91) transforms this
expression into the negative of Eq. (92). In other words, the
function

D(111)0;(111)1

is antisymmetric under exchange of output photons 2 and 3,
as expected from the I23 = 0 (singlet) nature of the output
state. However, the rate is expressed in terms of the modulus
square of the function so the rate is actually symmetric under
exchange of output photons 2 and 3.

Now suppose instead that � = (0,τ ). Photons 1 and 2 are
now identical and the input state can be written as

|111〉sym =1

2

∫
d3ωφ(ω1)φ(ω2)φ(ω3)â†

3(ω3)

× [â†
1(ω1)â†

2(ω2) + â
†
1(ω2)â†

2(ω1)]|0〉, (93)

which is symmetric now under exchange of the 1 and 2 labels.
The coincidence rate now takes the form of Eq. (81), but with
A, B, and C now given by

A = a123 + a213

= 1
3 ( + 123 + 213), (94)

B = a132 + a312

= 1
3 ( + 132 + 312), (95)

C = a231 + a321

= 1
3 ( + 231 + 321). (96)

Note that A, B, and C are now symmetric under interchange
of the first two indices of each term.

The state

[â†
1(ω1)â†

2(ω2) + â
†
1(ω2)â†

2(ω1)]|0〉 (97)

now has a definite angular momentum I12 = 1, where this
angular momentum label now refers to the subgroup SU(2)12

of matrices mixing modes 1 and 2. Let us denote by

D̃
(p,q)
(111)J12;(111)1

the group functions obtained when working with basis states
labeled using I12. Some details concerning these functions,
and their connection with the usual D functions, can be found
at the end of Appendix A and in Eqs. (B4) and (B5).

By simple inspection we anticipate that the coefficients
A, B, and C of Eqs. (94)–(96) have an expression in terms of
D̃(p,q) functions given by Eq. (83), provided that we replace
in Eq. (83) the usual D(p,q) functions defined in [40] by the
corresponding D̃(p,q):

D
(p,q)
(111)J23;(111)1 → D̃

(p,q)
(111)J12;(111)1. (98)

This substitution rule is in fact correct: we thus find that,
when two photons are identical, the expression for the rate
is “covariant.” The term covariant is used in the sense that
the expression is equivalent to Eq. (81) but where, in the
expressions for A, B, and C, Eq. (98) is substituted and the
delay τ is now interpreted as the delay between photon 3 and
the simultaneous arrival of photons 1 and 2. In general, the
D̃(p,q) functions in the I12 basis are linear combinations of the
D(p,q) in the I23 basis. The explicit substitution of Eq. (98)
is easily obtained following [40] and is given explicitly in
Appendix B.

The same reasoning applies to the case that photons 1 and 3
are identical: (�,−�). The expression for the coincidence rate
℘ is most simply expressed now in terms of D̄ functions where
I13 is a good quantum number; again only states with I13 = 1
can appear at the input. The D̄ functions for I13 are again linear
combinations of those where I23 is a good quantum number.

We conclude our analysis of the case where two or more
photons are indistinguishable with the following observation:
the rate depends on four distinct D functions (in any basis)
as well as one D function, so there are five functions in
total. However, we can obtain at most four rate equations.
The first three rate equations are obtained when the photon
pairs (12), (13), and (23) are made to be indistinguishable and
when the last rate equation is obtained by requiring that all
photons are indistinguishable. This last rate is proportional to
the permanent alone.

Assuming that we have inferred the permanent from the
empirical rate when all delays are 0, and then we use this
value in the remaining three equations, we are still left with
four distinct D . Thus, we have more unknown functions
than equations. From these considerations we see that it is not
possible to completely solve the resultant coupled nonlinear
quadratic equations and find all the immanants and the
permanent when two or mode photons are identical. Gröbner
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basis methods (as implemented, for instance, in Mathematica)
[46] could be used to solve for three |D |2 in terms of the
fourth |D |2 and |D |2 (although the solution is not unique,
and it is not yet clear how to choose the correct one).

D. All distinguishable photons

We limit our discussion of this case to the case where
the three photons are equally spaced in time. This can be
accomplished by setting � = (�,�) for � sufficiently large
compared to the pulse duration. The coincidence rate is then

℘((�,�); 	)

= CA + 1
6e−4σ 2�2

[|D(111)1;(111)1|2

− (D(111)0;(111)0)2 + CB] + 1
2e−3σ 2�2

[|D(111)1;(111)1|2

+ (D(111)0;(111)0)2 − 2CA] + 1
3e−σ 2�2[|D(111)1;(111)1|2

− (D(111)0;(111)0)2 − 1
2CB

]
, (99)

30 15 0 15 30

0.1

0.2

0.3

30 15 0 15 30

0.1

0.2

0.3

(b)

(a)

FIG. 1. (Color online) Three-photon coincidence rate ℘(�,	)
for a three-photon passive optical interferometer with one photon
entering each input port shown. The rate is shown as (a) a surface
plot, with the solid (red) line corresponding to (�,−�) for photons
1 and 3 arriving at the same time, and (b) the (�,−�) and (�,�)
lines as the solid (red) and dashed (blue) loci, respectively. Here
	 = (π/3,0,π/5,π/2,π/3,π/4,0,0), and the single-photon spectral
widths are identically σ0 = 0.1.

with

CA =
∑

i 	=j 	=k 	=i

|aijk|2 (100)

and

CB = |D(111)0;(111)0|2 − 2
√

3D(111)0;(111)0D(111)0;(111)1

− |D(111)0;(111)1|2 + |D(111)1;(111)0|2

− 2
√

3D(111)1;(111)0D(111)1;(111)1 − |D(111)1;(111)1|2,
(101)

where we note that the D(111)J ;(111)I are real for all values of
	. Equation (101) appears to contribute a fourth equation in
addition to the three equations in Sec. IV C that would allow us
to solve for all four D(1,1) functions. Surprisingly, Eq. (101) can
be written as a linear combination of the three rates with two
identical time delays and hence does not contribute additional
information that can be used towards a solution.

For comparison, we plot the coincidence rate for the same
interferometer but withthree different photon frequencies in
Fig. 1. We can clearly see from Fig. 1(b) that the backgrounds
given at � → ∞ of the diagonal and antidiagonal lines are
different. The diagonal is given by a Gaussian, whereas the
antidiagonal is a linear combination of Gaussians. Of course
at τ = 0 both the diagonal and the antidiagonal collapses to a
single value and that is the modulus square of the permanent.

V. CONCLUSIONS

We have developed a theory and a formalism for studying
three-photon coincidence rates at the output of a three-channel
passive optical interferometer. The input is three photons,
one of which enters each of the three input ports of the
interferometer. The photons are in pulse modes in order to
ensure that controllable delays can be applied to each photon
independently. Other than the delay times, the photons are
treated as identical in every way. The three-photon coincidence
rate is calculated by using integrals over frequency modes and
exploiting permutation groups, SU(3) Lie group theory, repre-
sentation theory, and the theory of immanants, which includes
determinants and permanents of matrices as special cases.

The analysis we present here builds on our earlier brief
study of nonsimultaneous identical photons and their coin-
cidences in passive three-channel optical interferometry, but
here we elaborate on the many technical aspects and study
asymptotic behavior, which helps us to characterize and un-
derstand the photon-coincidence-rate landscape. Furthermore,
we employ here a distinct description of the photon counters:
in contrast to our earlier work, which employed an idealistic
dualism between source photons and photon detection, here
we discuss the coincidence-rate landscape in terms of the mea-
surement operator corresponding to currently used detectors.

A key contribution of our work is as a generalization of
the Hong-Ou-Mandel dip, which is one of the most important
demonstrations and tools used in quantum optics. The Hong-
Ou-Mandel dip phenomenon hinges on the observation that
identical photons entering two ports of a balanced beam
splitter yield an output corresponding to a superposition
of both photons exiting the two ports together in tandem.
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Experimentally the dip is observed by varying the relative
delay time between the arrival of the two photons, thus
controlling their mutual degree of distinguishability from
indistinguishable where the photon arrivals are simultaneously
to completely distinguishable when the photon arrivals are
separated by more than the duration of the photon pulses.

We have generalized to controllable distinguishability of
the three photons entering a general three-channel passive
linear optical interferometer. Although this controllability
is desirable for practical reasons, the mathematics used to
describe this three-photon generalization of the Hong-Ou-
Mandel dip is nontrivial and beautiful in its application of
group theory.

Our work shows the path forward to considering more pho-
tons entering interferometers with at least as many channels
as photons, which is the case of interest for BosonSampling.
Whereas the BosonSampling problem is framed in the context
of simultaneous photon arrival times, thereby leading to matrix
permanents in the sampling computations, our work opens
BosonSampling to nonsimultaneity of photons, hence the role
of immanants in the sampling of photon coincidence rates. The
case of three photons in three modes is the simplest situation
where the theory requires immanants beyond the permanent
and the determinant.

In summary, our work generalizes the Hong-Ou-Mandel
dip to the three-photon, three-channel case and points the
way forward to analyze further multiphoton, multichannel
generalizations. Our work is important for characterizing and
understanding the consequent photon-coincidence landscapes.
In addition, our use of group theory to study controllable
delays in photon arrival times shows how the BosonSampling
device can yield rates that depend on matrix immanants,
which generalizes the matrix permanent analysis in the original
BosonSampling studies.
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APPENDIX A: ESSENTIALS CONCERNING
su(3) AND SU(3)

The Lie algebra su(3) is spanned by six ladder operators,

Ĉ12, Ĉ13, Ĉ23, Ĉ21, Ĉ31, Ĉ32, (A1)

and two commuting “weight” operators, expressed here as

ĥ1 := Ĉ11 − Ĉ22, ĥ2 := Ĉ22 − Ĉ33. (A2)

The operators Ĉij satisfy the commutation relations

[Ĉij ,Ĉk�] = Ĉi�δjk − Ĉkj δ�i . (A3)

Within the context of our work, it is convenient to realize
these operators in terms of photon creation and destruction
operators as

Ĉij = â
†
i (ω1)âj (ω1) + â

†
i (ω2)âj (ω2) + â

†
i (ω3)âj (ω3). (A4)

Note that Ĉij is invariant (unchanged) by permutation of the
frequencies. Thus, if a state is constructed to have specific
symmetries under permutation of the frequencies, the action
of Ĉij maps this state to another having the same specific
symmetries under permutation of the frequencies.

Of fundamental importance in representations of su(3) is
the so-called highest-weight state. This is a state annihilated
by all the “raising operators”: Ĉ12, Ĉ13, and Ĉ23. For instance,
the states∣∣∣∣ 1 2

3

〉
= 1√

2
(â†

1(ω1)â†
2(ω3) − â

†
2(ω1)â†

1(ω3))â†
1(ω2)|0〉

(A5)

and∣∣∣∣ 1 3
2

〉
= 1√

2
(â†

1(ω1)â†
2(ω2) − â

†
2(ω1)â†

1(ω2))â†
1(ω3)|0〉

(A6)

are both highest-weight states [under the action of the raising
operators given in Eq. (A4)].

The weight of a state is the vector (p,q) of eigenvalues of the
operators ĥ1 and ĥ2. In terms of occupation number (n1,n2,n3),
the weight of a state is therefore simply (n1 − n2,n2 − n3) and
is frequency independent.

The two states of Eqs. (A5) and (A6) both have weight
(1,1). Because all the states of a representation can be
obtained by repeatedly acting on the highest-weight state
using the lowering operators Ĉ21, Ĉ31, and Ĉ32, the weight
of the highest-weight state is used to label states in the whole
representation.

For finite-dimensional unitary representations of su(3),
one can always choose the components (p,q) of the highest
weight to be non-negative integers. The dimensionality of the
representation (p,q) is

(p + 1)(q + 1)(p + q + 2)/2, (A7)

so that dim[(1,1)] = 8.
The two states of Eqs. (A5) and (A6) are not orthogonal;

however, since a linear combination of those states is also
a highest-weight state, it is possible to orthonormalize them
using the usual Gram-Schmidt method. For instance,

|1〉 =
∣∣∣∣ 1 2

3

〉
, (A8)

|2〉 = 1√
3

∣∣∣∣ 1 2
3

〉
− 2√

3

∣∣∣∣ 1 3
2

〉
. (A9)

These can serve as distinct highest-weight states for the two
distinct copies of the irrep (1,1) or that occur in the
decomposition of our Hilbert state. Obviously the choice of
|1〉 and |2〉 as highest-weight states with weight (1,1) is not
unique, but all other highest-weight states with weight (1,1)
can be written as a linear combination of |1〉 and |2〉; if not,
there would be a third copy of (1,1) in the Hilbert space.
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The matrix representations of elements of su(3) obtained
using either highest-weight state is equivalent; i.e., they differ
by at most a common unitary change of basis. Nevertheless,
any state obtained by lowering operators acting on |1〉 are
always orthogonal to states obtained by lowering operators
acting on |2〉.

Now consider states of the form

|(1,1)111; 0〉ijk = 1√
2

(â†
2(ωi)â

†
3(ωj)−â

†
2(ωj)â†

3(ωi))â
†
1(ωk)|0〉,

(A10)

for i 	= j 	= k 	= i.
The triple 111 indicates that they are constructed as super-

positions of states with one quantum in each mode; the weight
of these states is (0,0). They are obviously antisymmetric
under permutation of modes 2 and 3 and under permutation
of frequencies ωi and ωj . They are also annihilated by the
operators Ĉ23 and Ĉ32; they are eigenstates of ĥ2 with eigen-
value 0. If we observe that the operators {Ĉ23,Ĉ32,

1
2 ĥ2} have

the same commutation relations as the angular momentum
operators, we conclude that |(1,1)111; 0〉ijk are in fact states
of angular momentum I23 = 0 (i.e., singlet) states. This is the
interpretation of the last index 0 in the states.

States with weight (0,0) and I = 0 in both representa-
tions are linear combinations of the |(1,1)111; 0〉ijk states. For
instance, the state

|(1,1)111; 0〉1 = −|(1,1)111; 0〉231√
6

−
√

2|(1,1)111; 0〉132√
3

+ |(1,1)111; 0〉213√
6

(A11)

is in the representation having |1〉 of Eq. (A8) as the highest
weight. As a linear combination of states antisymmetric
under exchange of modes 2 and 3, |(1,1)111; 0〉1 is itself
antisymmetric under such exchange.

On the other hand, states of the form

|(1,1)111; 1〉ijk = 1√
2

(â†
2(ωi)â

†
3(ωj)+â

†
2(ωj)â†

3(ωi))â
†
1(ωk)|0〉,

(A12)

where i 	= j 	= k 	= i can be shown to have angular momentum
I23 = 1. They are symmetric under permutation of modes 2
and 3 and under permutation of frequencies ωi and ωj .

States with weight (0,0) and I = 1 in both representa-
tions are linear combinations of the |(1,1)111; 1〉ijk states. For
instance, the state

|(1,1)111; 1〉1 = |(1,1)111; 1〉231√
2

− |(1,1)111; 1〉213√
2

(A13)

is in the representation having |1〉 of Eq. (A8) as the highest
weight. As it is constructed from states explicitly symmetric
under exchange of modes 2 and 3, |(1,1)111; 1〉1 is itself
symmetric under this permutation of modes.

Hence we see a feature of the irrep of su(3) that does
not occur in angular momentum theory: it is possible to have
distinct states such as |(1,1)111; 0〉1 and |(1,1)111; 1〉1, with
the same weight; i.e., the weight is not enough to uniquely
identify the state. [This multiplicity of weight never occurs in

su(2), where the integral weight 2m is enough to completely
identify the state in the irrep.] In addition to the weight, one
must in general supply an additional index, I23. In su(3)
representations of type (p,0) or (0,q) this extra label is not
necessary and often not indicated.

The states |(1,1)111; 0〉ijk and |(1,1)111; 1〉ijk of Eqs. (A10)
and (A12) are not the only possible states that can be used
to construct zero-weight states with desirable permutation
symmetries: labeling states with the weight using I23 is not
the only possible choice. We can consider, for instance,

˜|(1,1)111; 0〉ijk = [â†
1(ωi)â

†
2(ωj ) − â

†
2(ωj )â†

1(ωi)]â
†
3(ωk)|0〉

(A14)

and

˜|(1,1)111; 1〉ijk = [â†
1(ωi)â

†
2(ωj ) + â

†
2(ωj )â†

1(ωi)]â
†
3(ωk)|0〉.

(A15)

These states are now obviously states of angular momentum
I12 = 0 and I12 = 1 respectively, where the angular momen-
tum algebra su(2)12 is spanned by {Ĉ12,Ĉ12,

1
2 ĥ1}.

The states (A14) and (A15) can be used to construct an
alternative basis for the weight-0 subspace of the irrep with

highest weight state |1〉. In other words, states ˜|(1,1)111; 0〉1

and ˜|(1,1)111; 1〉1 can be defined such that they carry the
angular momentum labels I12 = 0 and 1, respectively, defined
in terms of su(2)12. These states are appropriate linear

combinations of ˜|(1,1)111; 0〉ijk or ˜|(1,1)111; 1〉ijk states and
so antisymmetric (respectively, symmetric) under exchange of
modes 1 and 2. The group functions defined in terms of basis
states like

˜|(1,1)111; 0〉1 and ˜|(1,1)111; 1〉1

with I12 labeling the angular momentum properties of the states
are denoted D̃

(p,q)
(111)J12;(111)I12

.
Using su(2)12 to label states represents a change of basis

from a previous labeling scheme [40], where su(2)23 is used.
Thus, the states in su(2)12 are linear combinations of those in
su(2)23, so that

D̃
(p,q)
(111)J12;(111)I12

are linear combinations of the

D
(p,q)
(111)J ;(111)I

states used previous [40] and in Appendix B. Some explicit
examples of transformations required for our analysis are given
in Eqs. (B4) and (B5).

Finally, we note that it is also possible, following exactly
the same procedure as above, to use the subalgebra su(2)13 to
label states. This procedure corresponds to just another change
of basis, and the resulting D functions are denoted D̄.

APPENDIX B: EXPLICIT EXPRESSION OF SOME
SU(3) D FUNCTIONS

Some functions of the D
(p,q)
(111)J ;(111)I type useful in construct-

ing permanents and immanents are listed in Table III.
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TABLE III. Functions of the D
(p,q)
(111)J ;(111)I type useful in constructing permanents and immanents.

(p,q) Diagram (J,I ) D
(p,q)
(111)J ;(111)I (	)

(3,0) (1,1) cos β1 cos β2 cos β3

− 1
4 sin β1 cos β2

2 sin β3(3ei(α1−α3) cos β2 − ei(α1−α3) + 2e−i(α1−α3))

(1,1) (1,1) 1
4 (cos β1 cos β3(cos β2 + 3) − 4 cos(α1 − α3) sin β1 cos β2

2 sin β3)

(1,0) − 1
2

√
3 cos β1 sin2 β2

2

(0,1) − 1
2

√
3 sin2 β2

2 cos β3

(0,0) 1
4 (3 cos β2 + 1)

The functions

D̃(111)J12;(111)I12
,

with I12 a good quantum number, are related by a linear
transformation to the functions

D(111)J23;(111)I23
,

with I23 a good quantum number. Explicitly, using the notation
of [40], the states in the I12 basis are defined by

|(1,1)111; I12〉 := [ψν3 (3) ⊗ [ψν1 (1) ⊗ ψν2 (2)]I12 ]1/2
1/2 (B1)

and can be expanded in terms of the I23 states so that

|(1,1)111; I12 = 0〉

= −1

2
|(1,1)111; I23 = 0〉 +

√
3

2
|(1,1)111; I23 = 1〉,

(B2)

|(1,1)111; I12 = 1〉

= −
√

3

2
|(1,1)111; I23 = 0〉 − 1

2
|(1,1)111; I23 = 1〉. (B3)

Therefore,

D̃(111)0;(111)1 =
√

3

4
D(111)0;(111)0 −

√
3

4
D(111)1;(111)1

− 3

4
D(111)1;(111)0 + 1

4
D(111)0;(111)1, (B4)

D̃(111)1;(111)1 = 3

4
D(111)0;(111)0 +

√
3

4
D(111)0;(111)1

+
√

3

4
D(111)1;(111)0 + 1

4
D(111)1;(111)1, (B5)

and
D̃(111)1;(111)1 = D(111)1;(111)1. (B6)

As discussed in the text and Appendix A, these functions are
useful when analyzing the symmetry properties of states under
permutations of modes 1 and 2.

APPENDIX C: EXPLICIT EXPRESSION OF RATES

In order to obtain a general expression for the rate, we
need first to expand the square of the modulus of Eq. (78) and
then integrate. The resultant expression thus contains sums of
products of the type

(aijk)∗(ai ′j ′k′)Mijk,i ′j ′k′,

where Mijk,i ′j ′k′ is a factor obtained by integration of the fre-
quencies in the term containing (aijk)∗(ai ′j ′k′). These Mijk,i ′j ′k′

factors can be collected in a matrix with columns labeled aijk

and rows labeled (aijk)∗.
Upon integration, Eq. (78) for the three-photon coincidence

rate is written explicitly in terms of the time-of-arrival vector
τ of the photons in modes 1, 2, and 3, respectively. For τ and
� related by expression (3), this rate is given by

℘(�; 	) =a(	)†Mrate(τ )a(	). (C1)

Here Mrate is the 6 × 6 symmetric matrix

Mrate =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 e−σ 2(τ2−τ3)2
e−σ 2(τ1−τ2)2

e−σ 2τ 2
C e−σ 2τ 2

C e−σ 2(τ1−τ3)2

e−σ 2(τ2−τ3)2
1 e−σ 2τ 2

C e−σ 2(τ1−τ3)2
e−σ 2(τ1−τ2)2

e−σ 2τ 2
C

e−σ 2(τ1−τ2)2
e−σ 2τ 2

C 1 e−σ 2(τ2−τ3)2
e−σ 2(τ1−τ3)2

e−σ 2τ 2
C

e−σ 2τ 2
C e−σ 2(τ1−τ3)2

e−σ 2(τ2−τ3)2
1 e−σ 2τ 2

C e−σ 2(τ 2
1 −τ2)2

e−σ 2τ 2
C e−σ 2(τ1−τ2)2

e−σ 2(τ1−τ3)2
e−σ 2τ 2

C 1 e−σ 2(τ2−τ3)2

e−σ 2(τ1−τ3)2
e−σ 2τ 2

C e−σ 2τ 2
C e−σ 2(τ1−τ2)2

e−σ 2(τ2−τ3)2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C2)

with

τC =
√

|τ |2 − τ2τ3 − τ1τ2 − τ1τ3 (C3)
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and

a(	) =

⎛
⎜⎜⎜⎜⎜⎝

a123(	)
a132(	)
a213(	)
a231(	)
a312(	)
a321(	)

⎞
⎟⎟⎟⎟⎟⎠, (C4)

for which {aijk} is defined in Eq. (53).
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