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Transformation devices: Event carpets in space and space-time
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Here we extend the theory of space-time or event cloaking into that based on the carpet or ground-plane reflective
surface. Further, by recasting and generalizing a scalar acoustic wave model into a mathematically covariant form,
we also show how transformation theories for optics and acoustics can be combined into a single prescription.
The single prescription, however, still respects the fundamental differences between electromagnetic and acoustic
waves, which then provide us with an existence test for any desired transformation device: Are the required
material properties (the required constitutive parameters) physically permitted by the wave theory for which
it is being designed? While electromagnetism is a flexible theory permitting almost any transformation-device
(T -device) design, we show that the acoustic model used here is more restricted.
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I. INTRODUCTION

The concept of electromagnetic cloaking has now been
with us for more than 7 years [1,2], but has been recently
revitalized by the introduction of the concept of space-time
cloaking [3,4]. Here, in light of the many variants of spatial
cloaking that now exist—ordinary cloaks, carpet cloaks [5],
exterior cloaks [6]—we extend the possible implementation
to include space-time carpet cloaks. Of course, cloaking
is not the only application of transformation theories, as
evidenced not only by spatial illusion devices [7–9], but
also ideas for space-time illusion devices [4] that appear to
trick—but only trick—causality [10]. Other applications such
as beam control [11,12], geodesic lenses [13,14], hyperbolic
materials [15,16], and cosmological models [4,17–19] are also
possible.

Like a spatial carpet cloak, the space-time “event” carpet
cloak is one sided and reflective and is less singular than
a traditional spatial cloaking implementation. Rather than
hide a region of space in perpetuity, however, the event
carpet cloak allows the region to always appear visible, even
though a finite segment of its time line is forced to take
place in darkness. This dark period means that events therein
are edited out of visible history. However, those missing
events are covered up by clever manipulation of the light
signals that communicate to observers their information about
events. Alternatively, the transformation can be adapted to
temporarily include extra events, rather than exclude them;
thus creating a space-time “periscope.” We might even relax
our preference for invisibility devices, and construct one that
appears bigger on the inside than the outside: a “tardis”-like
device.

In this paper we deliberately use first-order equations to
model our wave mechanics [20] so that a pair of them are
needed (in concert with constitutive or state equations of some
kind) to generate wave behavior. If desired, the first-order
equations can be substituted inside one another to give a
familiar second-order form, but, in fact, the first-order for-
mulation is both less restrictive and more general. Indeed, we
see that it is suggestive of a generalization to a transformation
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mechanics valid for any wave equations expressible in such a
form, being also related to a “transformation media” concept
addressing the material properties required by transformation
devices (T devices). Notably, here we apply the event carpet
cloak and periscope transformations to both electromagnetism
(EM) and a simple pressure-acoustics (p-acoustics) model,
demonstrating how specific wave models allow or restrict the
set of possible T devices.

We introduce the “wave mechanics” models for EM and our
p acoustics in Sec. II and show how the two can be unified. This
then allows us to unify transformation optics, transformation
p acoustics, and indeed any other compatible wave transfor-
mation theory into a general transformation mechanics. After
this, we specialize to ground-plane T devices. In Sec. III we
investigate those based on the (spatial) carpet cloak, and in
Sec. IV we generalize them into space-time carpet T devices.
In Sec. V we explain the operation of space-time carpet cloaks,
and propose a scheme for implementing one for EM waves,
before concluding in Sec. VI.

II. WAVES AND TRANSFORMATIONS

In this paper we do not restrict ourselves to a single type
of wave mechanics in which to construct ground-plane T

devices. Instead, we show that a unified procedure is possible,
encompassing both EM and a simple p acoustics model and
indeed any linear wave mechanics that can be described within
a theory containing two second-rank field tensors and one
fourth-rank constitutive tensor. We start with the ordinary
vector calculus descriptions and then show how they can
be reexpressed in the tensor form and also describe how the
tensor descriptions can be abbreviated into a more accessible
matrix form. This process is, of course, well known for EM,
but here we use an unconventional tensorization so that it
more easily matches up with the p-acoustic description and
other possible generalizations, as well as with straightforward
matrix algebra versions. A simpler one-dimensional (1D)
introduction to this description can be seen in [4]. After
the wave theory descriptions, we show how transformations
intended to implement specific T devices affect the differential
equations and constitutive relations.
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A. Electromagnetism

Maxwell’s equations [21] are often written as a set of vector
differential equations with two pairs of field types, and two
constitutive relations. These are

∂tD(�r,t) = �∇ × �H (�r,t) − �Jf (�r,t), �∇ · �D = ρf , (2.1)

∂tB(�r,t) = −�∇ × �E(�r,t), �∇ · �B = 0, (2.2)

with constitutive relations

�B = μμμ �H − μμμβββ �E → �H = ηηη �B + βββ �E, (2.3)

�D = εεε′ �E + μμμααα �H → �D = εεε �E + ααα �B, (2.4)

where the permittivity matrix is εεε′ = εεε − αααμμμβββ and ηηη is the
inverse of the more common permeability matrix μμμ. Although
in many circumstances the left hand (LH) form is preferred,
for the tensor form discussed next the right hand (RH) form is
used instead. The matrices ααα and βββ contain information about
magnetoelectric coupling and follow βββ = ααα† [22].

Since we are interested primarily in freely propagating EM
fields, we assume that that there are no free electric charges
(i.e., ρf = 0) and, as is usual, we have already assumed in
Eq. (2.2) that there are no magnetic charges or currents.

In tensor form the differential equations have a remarkably
simple form. In order to emphasize their similarities, we chose
to use the usual G tensor density (i.e., Gαβ) but the dual of
the F tensor (i.e., ∗F, with components ∗Fαβ = 1

2Fμνε
μναβ),

where εμναβ is the antisymmetrization symbol. The equations
can then be written as

∂α∗Fαβ = 0, ∂βGαβ = J α. (2.5)

Using G and ∗F means that we must then use a mixed form for
the constitutive tensor χ in the constitutive relations, with

Gαβ = 1
2χ

αβ

γ δ∗Fγδ. (2.6)

This use of ∗Fαβ , Gαβ , and χ
αβ

γ δ , both generalizes better and
maps onto the vector calculus representation more simply.

Note that since J α (and its vector counterpart �J ) is a current
density, this means that G is also a density. Likewise, although
the usual EM tensor F is not a density, its dual ∗F is. Thus,
Eqs. (2.5) must be transformed as densities. Consequently, the
mixed-form constitutive tensor χ

αβ

γ δ is not a density.
In terms of generating wave solutions, the constitutive

relations connect the two tensor differential equations together
into a single system and so allow (wave) solutions to be
found (i.e., exist). This is most easily seen using the vector
form, where we can use the constitutive relations to allow
us to substitute one of the Maxwell curl equations into the
other, giving us one of the four [23] possible electromagnetic
second-order wave equations.

Matrix representations of the antisymmetric ∗F and G can
be written out in [t,x,y,z] coordinates, as

[∗Fαβ] =

⎡
⎢⎢⎢⎣

0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex

−Bz −Ey Ex 0

⎤
⎥⎥⎥⎦, (2.7)

[Gαβ] =

⎡
⎢⎣

0 Dx Dy Dz

−Dx 0 Hz −Hy

−Dy −Hz 0 Hx

−Dz Hy −Hx 0

⎤
⎥⎦. (2.8)

Here the ∂α has become the row vector [∂t ,∂x,∂y,∂z], and the
current density J α also becomes a row vector.

The constitutive tensor χ
αβ

γ δ is rank 4 so that a direct
matrix representation is too big to display. Nevertheless, its
permittivity entries convert Ei from ∗Fγδ into Di from Gαβ ,
thus they will have the same units as permitivitty (i.e., as ε).
Likewise, the permeability entries convert Bi from ∗Fγδ into
Hi from Gαβ ; thus, they will have the same units as inverse
permeability (i.e., as μ−1 = η).

We can follow the usual method of achieving a convenient
matrixlike compacted representation for ∗Fαβ and Gαβ , using
the fact that each tensor has only six unique entries. For all
combinations of indices, we select out the relevant row and
column coordinate pairs tx,ty,tz,yz,zx,xy in sequence, so
we can write ∗Fαβ and Gαβ as column vectors [∗FA] and [GB]
in turn, being

[∗FA] = [Bx,By,Bz, − Ex, − Ey, − Ez]
T , (2.9)

[GB] = [Dx,Dy,Dz,Hx,Hy,Hz]
T . (2.10)

As a result the rank-4 constitutive tensor can also be compacted
and so be represented by a 6 × 6 matrix. Again the first (upper)
index A spans the matrix rows, so that

[
χA

B

] =
[
ααα −εεε

ηηη −βββ

]
, (2.11)

so that the constitutive relation now has a matrix form,[
GA

] = [
χA

B

]
[∗FB], (2.12)

which is particularly convenient for manual calculation.
Normally when using this kind of representation, the all-upper
index tensor χαβγ δ is used, but here we are using the mixed
tensor form χ

αβ

γ δ . This means that our matrix expression
looks different; notably a simple isotropic nonmagnetoelectric
medium with a diagonal χαβγ δ (matrix) is now block off-
diagonal.

Note that the matrix [χ ] only includes half of all the
allowed elements of χ

αβ

γ δ , but the missing elements are all
duplicates of included ones.1 However, each element of [χ ]
nevertheless independently links any component of [F ] to any
other of [G]; there is no duplication or a priori requirement
that certain constitutive parameters must be equal or otherwise
closely related. As a result, each constitutive property of
an electromagnetic material can (at least mathematically)
be adjusted independently, meaning that any well specified
T device might be constructed.

1This is why no 1/2 appears in the matrix constitutive relations.
However, we must still account for this doubling up when evaluating
transformations later.
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B. Pressure acoustics

Here we introduce a simplified pressure-acoustic (p-
acoustic) theory, equivalent to one describing linear (per-
turbative) acoustic waves on a stationary background fluid,
although it also encompasses many other types of wave which
contain a scalar component. For linearized acoustic waves
[24] in pressure p and fluid velocity �u, we have constitutive
parameters κ̄ (compressibility) and ρ̄ (mass density). As well
as the traditional quantities, we also specify both a scalar P̄ ,
and a momentum density �V , giving a total of four quantities
that in combination emphasize both the similarities and the
differences compared with the description of EM; this can
be compared to, e.g., the treatment by Sklan [25]. It also
means that p acoustics is also a more general model than
the comparable traditional ones, which typically reduce the
equations back down to p and �u, or even just a second-order
wave equation in p.

Here, however, in order to maximize the similarity with
the EM notation, we substitute the scalar P̄ with a number
density P and the fluid velocity �u with a velocity density �v,
and the constitutive parameters become an inverse energy κ

and a particle mass ρ. Since the background fluid is stationary,
for small-amplitude waves the (�v · �∇)�v term that would usually
appear in acoustic wave equations is second order and hence
can be neglected.

For scalar quantities P and p and vectors �V and �v, the wave
equation pair, here used to model p acoustics, is

∂tP (�r,t) = −�∇ · �v(�r,t) + QP (�r,t), (2.13)

∂t
�V (�r,t) = −�∇p(�r,t) + �QV (�r,t), (2.14)

�∇ × �V = ��, �∇ × �v = �σ , (2.15)

where in simple cases P = κp is a number density related to
the pressure p by an inverse energy κ , and the momentum
density �V = ρρρ�v is related to the velocity-field density �v by a
matrix of mass parameters ρρρ = [ρi

j ]. There are two allowed
types of source, a particle number (density) source QP and a
momentum (density) source �QV .

The differential equation, Eq. (2.13), is related to the
conservation of particle number (and conservation of mass)
in a microscopic acoustic model, and Eq. (2.14) ensures
conservation of momentum. The third equation shows the
p acoustics analog of charge, and, just as for the EM case,
where we are interested primarily in freely propagating fields,
we set these to zero ( �� = 0,�σ = 0).

The most general constitutive relations for coupling be-
tween the scalar and vector fields, can be written

P = κ−1p − κ−1 �α · �v → p = κP + �α · �v, (2.16)

�V = �βκ−1p + ρρρ ′ · �v → �V = �βP + ρρρ · �v, (2.17)

where ρρρ · �v = ρρρ ′ · �v + �β(�α · �v)/κ . Although in many circum-
stances the first (LH) form might be used, for the tensor form
discussed next the second (RH) form is instead preferred. The
vector �α parameterizes some kind of a velocity → pressure
coupling, and �β parameterizes a pressure → momentum
density coupling.

Here the physical meanings of �v, �V , and p,P mean that
both Eq. (2.13) and Eq. (2.14) transform like densities, but the
constitutive relations Eqs. (2.16) and (2.17) do not, just as for
EM.

Just as for EM, we can now embed P,�v into a tensor
density, which, to ensure compatible notation, we call ∗F, with
contravariant components ∗Fαβ . We also embed the density
fields p, �V into a tensor density G with components Gαβ and
populate a constitutive tensor χ with κ,ρρρ,�α, �β appropriately.
The p-acoustic differential equations now appear in the same
form as for EM, being

∂α∗Fαβ = J β, ∂βGαβ = Kα, (2.18)

with source terms J α,Kα . The constitutive relations are

Gαβ = χ
αβ

γ δ∗Fγδ. (2.19)

Here the only differences from EM are the internal structure—
how the tensors are populated—and no factor of one half in
the constitutive relations. Again, the G and ∗F tensor densities
and their differential equation must transform like densities,
but the constitutive tensor χ does not.

In [t,x,y,z] coordinates the tensor ∗Fαβ and density tensor
Gαβ can be written out using field matrices

[∗Fαβ] =

⎡
⎢⎣

P 0 0 0
vx 0 0 0
vy 0 0 0
vz 0 0 0

⎤
⎥⎦,

[Gαβ] =

⎡
⎢⎣

0 0 0 0
Vx p 0 0
Vy 0 p 0
Vz 0 0 p

⎤
⎥⎦, (2.20)

with source terms J 0 = QP and �K = [Ki] = �QV . However,
both �J = [J i] = 0 and K0 = 0.

Here the constitutive tensor χ
αβ

γ δ relates the P element from
∗Fγδ to the p from Gαβ , and is thus ∼κ; likewise, the vi

elements from ∗Fγδ are related to Vi from Gαβ by ∼ρ.
Note, however, that while this conveniently encodes the

model of pressure acoustics we consider here, it is not the
most general that might be formulated. The most general
theory would be to consider field tensors that are symmetric,
to contrast with the EM representation using antisymmetric
field tensors. This would give not two sets of four amplitudes
(i.e., P and vi , with p and Vi), but two sets of ten amplitudes.
However, we leave discussion of such details to a later work,
including describing how pentamode acoustics [26] can be
represented in this way.

As with EM, the tensor constitutive representation can be
compacted. Here we use the fact that the elements Gxx , Gyy ,
and Gzz are all just p and so write a compact vector for G
using this knowledge; we do similarly for ∗F. The resulting
field column vectors [GA], [∗FB] are

[GA] = [p,Vx,Vy,Vz]
T , (2.21)

[∗FB] = [P,vx,vy,vz]
T . (2.22)

The matrix representation of χ
αβ

γ δ has the upper index denoting
rows, and the lower index denoting columns, so that the 4 × 4
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constitutive matrix is[
χ

αβ

γ δ

] = [
χA

B

] =
[
κ �αT

�β ρρρ

]
; (2.23)

the matrix constitutive relation is

[GA] = [
χA

B

]
[∗FB] (2.24)

⎡
⎢⎣

Gww

Gxt

Gyt

Gzt

⎤
⎥⎦ =

⎡
⎢⎣

κ αx αy αz

βx ρxx ρxy ρxz

βx ρyx ρyy ρyz

βx ρzx ρzy ρzz

⎤
⎥⎦

⎡
⎢⎣

∗F tt

∗Fxt

∗Fyt

∗Fzt

⎤
⎥⎦. (2.25)

Note that we must remember that the Gww element can be
freely substituted by any of Gxx , Gyy , or Gzz; this acts as an
implicit constraint on allowed transformations, which are only
allowed to transform x, y, and z equivalently.2 In a scalar wave
theory such as p acoustics, all nonisotropic wave behavior has
to derive from the constitutive parameters �α, �β, or ρρρ, and not
from a transformation.

C. Transformations

With both of our preferred sorts of waves having been
expressed using the same mathematical machinery, we can
now investigate the effect of coordinate transformation in
either case simultaneously, leaving any more specific details
to a later stage. Deforming transformations (or, technically,
diffeomorphisms [27]) of the coordinates (and hence of the
matrix representations of the field and constitutive tensors)
are simple to handle. Transformations between the original
coordinates xα and new ones xα′

as are easily written as

T α′
α =

[
∂xα′

∂xα

]
, (2.26)

so that the field density tensors G and ∗F transform as

Gα′β ′ = �−1T α′
αT β ′

β Gαβ = L
α′ β ′
α β Gαβ, (2.27)

∗Fγ ′δ′ = �−1T
γ

γ ′T
δ
δ′ ∗Fγδ = M

γ δ

γ ′ δ′ ∗Fγδ. (2.28)

The factor � = |det(T )| occurs because the fields are repre-
sented by tensor densities rather than a pure tensor. Using the
modulus of the determinant ensures that parity transformations
changing the handedness still preserve positive volumes.

Now we can address the transformation of the constitutive
tensor χ . If for EM we set a = 2, and for p acoustics we set
a = 1, then

Gα′β ′ = 1

a
χ

α′β ′
γ ′δ′ ∗Fγ ′δ′

(2.29)

and χ
α′β ′
γ ′δ′ = T α′

α T
β ′
β χαβ

γδ
T

γ

γ ′T
δ
δ′ . (2.30)

Here we have seen how coordinate transformations can be
actualized by seeing how they affect the constitutive tensor.

2A more explicit version of the [GA] vector might have six elements,
the first three of which would represent Gxx , Gyy , or Gzz in turn, but
all being equal to p, and with [χA

B ] being a 6 × 4 matrix, the top three
rows being identical. We must take care to allow for this multiplicity
when transforming [GA].

However, there is also another part to the wave mechanics: the
differential equations.

If our coordinate transformation is not just a deformation
of our existing Cartesian coordinate system, but, e.g., a
change to cylindrical or polar coordinates, then the wave
equations change their form. Although such radical coordinate
conversions can be very useful, they are a reparametrization
of the host space-time and not a straightforward deformation,
hence the appearance of extra factors of r when converting
from Cartesians to cylindrical coordinates. For brevity, we do
not address this case here and focus instead on the deforming
transformations used to produce particular T devices.

Since the two field tensors might be compacted differently,
as happens for p acoustics, we need to allow for distinct
compacted deformation matrices, one for ∗F and another for
G. The compact deformation matrix equation for the vector
[∗FB] depends on a compacted Mα′

α
β ′
β and is

[∗FB ′
] = [

MB ′
B

]
[∗FB], (2.31)

but for the [GA] we instead compact Lα′
α

β ′
β to get

[GA′
] = [

LA′
A

]
[GA]. (2.32)

The matrix representation of χ
αβ

γ δ also transforms and is

[χ ′] = [
χA′

B ′
] = [

LA′
A

][
χA

B

][
MB ′

B

]−1
. (2.33)

So if we want to physically implement the transformation
T as a T device, for any possible states of the field tensors
∗F and G, we need to change the host material so that its
constitutive makeup is not simply the reference value χ , but
that of the transformed constitutive makeup χ ′. In what follows
we implement this for both purely spatial and the more exotic
space-time cloaks in a ground-plane reference geometry.

In EM we would typically start (as we do below) with
a reference material and solution based on a vacuum or a
uniform static nondispersive refractive index and—for carpet
T devices—a light-reflective surface. For acoustics we would
pick a stationary and featureless elastic medium or fluid with
an acoustically reflective surface. After applying the defor-
mation to the reference constitutive parameters, we will have
determined how the desired alterations to the wave mechanics
(the field propagation) can be induced by appropriate changes
to the propagation medium.

III. SPATIAL CARPET T DEVICES

“Carpet” or ground-plane transformation devices are es-
sentially surfaces that have been modified; in their original
conception they were engineered mirrors that appeared to give
simple reflections but were actually hiding some predefined
region [5]. More generally, though, it is not required for
the surface to be a mirror; the transformation respecifies the
properties inside a region where the light propagates, not what
happens outside that region. To make it clearer how our general
prescription can be applied, we first apply it to the familiar
spatial carpet cloak, although generalized to incorporate other
related T devices.

We start with a planar carpet that lies flat on the y-z plane at
x = 0 and decide to transform a localized region of space—the
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FIG. 1. (Color online) The (a) spatial carpet cloak, (b) spatial
periscope, (c) spatial tardis. Continuous lines show the actual
ray trajectories and dotted lines show the apparent (illusory) ray
trajectories. The periscope (b) needs to be embedded in a high-index
host medium to allow the internal rays to cover the greater distance
to the back surface than to the apparent surface.

cloak “halo”—reaching no higher than x = −H above the
plane and no further than y = ±� sideways; as shown by the
shaded regions in Fig. 1. First, we can choose to restrict the
space probed by incoming waves to that between the maximum
height H and some lower height x = h, but transform the
material so that the apparent space is expanded and extends
all the way from x = 0 to x = −H . This T device is the usual
carpet cloak with an offset h and scaling R = (H − h)/H < 1
[see Fig. 1(a)].

Second, we might expand the actual space probed by
incoming waves to that between the maximum height H and
to a penetration depth below the plane of x = h, but transform
the material to shrink the apparent space to only that between
x = 0 to x = −H . This T device is a cloaked “periscope” with
a negative offset h < 0 and scaling R = (H − h)/H > 1. See
Fig. 1(b), where we see that the periscope allows an observer
to remain below the ground plane while allowing them an
unrestricted view of their surroundings, just as if they were
exposed above it.

Third, we can define the actual space probed by incoming
waves to be just the same as if there were a flat plane, but
nevertheless transform the material so that the apparent space
extends below the plane by h. This T device might be called
a “tardis,” since it presents the illusion that it contains a
space bigger than it is on the outside; it uses an offset h > 0
and scaling R = (H − h)/H < 1. Its diagram is shown in
Fig. 1(c), where the transformation is the reverse of that for
the periscope, but in appearance it acts like a carpet cloak for
when the observer expects to see a dimple on the plane.

Last, we could define the space probed by incoming waves
to be just the same as if there were a flat plane, but nevertheless
transform the material so that the apparent space was shrunk

back as if there were a bump. This T device might be called
an “antitardis,” but for brevity we do not discuss such a device
here. Its diagram is not shown on Fig. 1, but note that its
transformation is the reverse of that for the carpet cloak but in
appearance it would act like a periscope for when the observer
expects to see a bump on the plane.

The deformation that stretches a uniform medium (un-
primed coordinates) into these T -device designs (primed
coordinates) is applied (only) inside the shaded halo regions
on Fig. 1 and keeps t ′ = t,y ′ = y,z′ = z, but deforms x so that

x ′ = Rx − C
�−y sgn(y)

�
h = Rx − Ch + rsy, (3.1)

where the ratio of actual depth (H − h) to apparent depth (H )
is R = (H − h)/H , r = Ch/�, and s = sgn(y). Here C is
set to 1 for the carpet cloak and periscope, but for the tardis
(where R > 1) it needs to be C = R. Using a general viewpoint
applicable to any of these three T devices, we see that R < 1
apparently expands the wave-accessible space, as needed for
a cloak or tardis, while R > 1 compresses it, as needed for a
periscope or antitardis.

The effect of this deformation from Eq. (3.1) is given by
T α′

α , which specifies the differential relationships between the
primed and unprimed coordinates, where α ∈ {t,x,y,z} and
α′ ∈ {t ′,x ′,y ′,z′}. If we let rows span the first (upper) index,
and columns the second (lower) index, then

T α′
α =

[
∂xα′

∂xα

]
=

⎡
⎢⎣

1 0 0 0
0 R rs 0
0 0 1 0
0 0 0 1

⎤
⎥⎦, (3.2)

and note that det(T α′
α ) = R. For some column 4-vector V α , we

have that,

e.g.,

⎡
⎢⎢⎣

V t ′

V x ′

V y ′

V z′

⎤
⎥⎥⎦ =

⎡
⎢⎣

1 0 0 0
0 R rs 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

V t

V x

V y

V z

⎤
⎥⎦. (3.3)

It is worth noting that inside the carpet cloak halo, where the
cloak affects the path of the rays, but not inside the cloak core,
where objects are hidden, the deformation consists solely of a
constant rescaling of x; the rest of the cloak design is defined
by its spatial layout, reversed properties in the upper and lower
halves, and its boundaries.

A. EM carpets

We expressed the EM constitutive tensor using a compact
6 × 6 matrix form; therefore, we also use compact 6 × 6 de-
formation (transformation) matrices [L],[M], being versions
of the product Lα′

α L
β ′
β . Note that the use of the unconventional

choice of (the dual) ∗Fαβ and (the mixed) χ
αβ

γ δ allows us to
calculate using straightforward matrix multiplication.

The two-dimensional matrix representation of the trans-
formation matrix, as compressed for EM, is best written
as an explicit transformation between the field 6-vectors to
avoid error. Thus, the compressed column 6-vector [GA] is
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transformed using3

[
LA′

A

] = 1

R

⎡
⎢⎢⎢⎢⎢⎣

R +rs 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 −rs R 0
0 0 0 0 0 R

⎤
⎥⎥⎥⎥⎥⎦, (3.4)

and where the matrix [M] that transforms [∗FB] is the
same. To transform [χ ], we need the inverse of [M],

which is

[
MA′

A

]−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 −rs 0 0 0 0
0 R 0 0 0 0
0 0 R 0 0 0
0 0 0 R 0 0
0 0 0 +rs 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦. (3.5)

Starting from simple uniform background medium de-
scribed only by ε and μ—perhaps a vacuum with ε = ε0 and
μ = μ0—the transformed constitutive matrix defining the EM
carpet T device is then

[
χA′

B ′
] = ε

R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −(R2 + r2) −rs 0

0 0 0 −rs 1 0

0 0 0 0 0 1

c2 −rsc2 0 0 0 0

−rsc2 c2(R2 + r2) 0 0 0 0

0 0 R2c2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.6)

So we see a need for birefringence, as defined by the off-
diagonal permittivity elements −εrs/R, and the off-diagonal
permeability contributions −εrsc2/R. To get a μ matrix, we
need to invert the η submatrix:

[μ]

μ0
=

⎡
⎢⎣

1/R −rs/R 0

−rs/R 1 + r2/R 0

0 0 R

⎤
⎥⎦

−1

= 1

R

⎡
⎢⎣

R2 + r2 +rs 0

+rs 1 0

0 0 1

⎤
⎥⎦. (3.7)

Note how the structure of the (sub)matrix [μ] matches up
with that of the (sub)matrix [ε], as we would expect as our
transformation process demands a preservation of impedance
matching. Numerical examples indicating how the EM fields
are distorted by the different carpet T devices are shown in
Fig. 2.

As is well known, the requirement for impedance matching
can be relaxed. Since the simple nature of the transformation
of Eq. (3.1) leads to a constitutive matrix with constant values,
this means that these carpet devices can be made for a specified
polarization using the natural birefringence of two correctly
shaped and oriented pieces of calcite, as already demonstrated
for a carpet cloak [28,29].

B. p-Acoustics carpets

For p-acoustic transformations, we need two compactified
transformation matrices, with correctly arranged ordering.
This is less straightforward than in EM, where rows and

3Remember that for EM, each element of [L] not only includes the
obvious contributions to Gα′β ′

from Gαβ , but also has a sign-flipped
one from Gβα . This accounts for the −rs entry in [L].

columns are indexed by the same list of coordinate pairs.
The vector [GA] is most compactly indexed by ww,xt,yt,zt ,
where “w” stands in for one of x, y, or z. Where this means
that some elements may have multiple values, we indicate this
using (e.g.) {R,1,1} for x, y, and z choices, respectively. To
transform this we need [LA′

A ], which is4

[
LA′

A

] = 1

R

⎡
⎢⎣

{R2 + r2,1,1} 0 0 0
0 R rs 0
0 0 1 0
0 0 0 1

⎤
⎥⎦. (3.8)

4Since w represents multiple coordinate choices, the w′w′ = x ′x ′

element of [L], i.e., Lw′w′
ww = R2 + r2, results from a sum over all

possible ww ∈ {xx,yy,zz}, in combination with Gxx = Gyy = p.

(b)(a) (c)

FIG. 2. (Color online) EM finite difference time domain (FDTD)
snapshots of the (a) spatial carpet cloak, (b) spatial periscope, and (c)
spatial tardis. The cloak and periscope panels (a),(b) show a burst of
exactly perpendicular plane waves just as the leading edge hits the
mirror surface. This makes it clear how the cloaking transformation
has ensured that the wave front conforms perfectly to the mirror
profile. In (c), we see the burst of plane waves after reflection,
where the extra virtual space created by the tardis transformation
has imprinted a dent on the wave front.
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To transform [∗FB], compactly indexed by t t,xt,yt,zt , we
need [MB ′

B ] (and also its inverse),

[
MB ′

B

] = 1

R

⎡
⎢⎣

1 0 0 0
0 R rs 0
0 0 1 0
0 0 0 1

⎤
⎥⎦. (3.9)

Starting from the simplest acoustic medium, i.e., one for
which �α = �β = �0 and ρρρ → ρ, the transformed constitutive
matrix defining the p-acoustic carpet T device is then

[
χA′

B ′
] = ρ

⎡
⎢⎣

{(R2 + r2),1,1}c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦, (3.10)

since c2 = κ/ρ.
Here we can immediately see that there is no way of

constructing a general carpet cloak (or related T device) with
p-acoustic waves. This is because the transformed energy
parameter κ ′ is required to have mutually incompatible values,
i.e., both (R2 + r2)ρc2 and ρc2 at the same time. We can avoid
this incompatibility by restricting ourselves to only 1D x-axis
propagation, so that the waves need experience only one of
these κ ′ values. Although such a 1D implementation might
technically match the original conception of a carpet cloak,
it is merely a static waveguide that appears longer than it
really is. However, as we see below, a linear space-time carpet
T device can be more interesting.

IV. SPACE-TIME CARPET T DEVICES

The basic design used here is geometrically related to that
described above, except that one of the two spatial coordinates
is replaced with the time coordinate. This means that waves
are not diverted around the event in a spatial sense; instead, the
leading waves (in an optical cloak, the “illumination”) are sped
up and the latter slowed down, creating a “dark” wave-free
interval in which timed events are obscured [3,4]. After the
event, the leading part of the illumination (whether sound or
light) is slowed and the latter sped up until the initial uniform,
seamless illumination has been perfectly reconstructed. For
an acoustics implementation, we should think of sonar-using
creatures such as bats or dolphins who rely on incoming sound
waves to locate and observe events; an acoustic event cloak
creates a quiet region from which no sound reflections can be
heard, all without leaving any telltale distortion of either the
background soundscape or deliberate sonar “pings.”

We assume a carpet that lies flat on the y-z plane at x = 0
and decide to cloak a region h deep and τ in duration, with
the cloak’s influence extending out as far as H + h above the
carpet. The deformation that stretches a uniform and static
medium (unprimed coordinates) into these T -device designs
(primed coordinates) is applied (only) inside the shaded “halo”
regions on Fig. 3 and keeps t ′ = t,y ′ = y,z′ = z, but deforms
x so that

x ′ = H − h

H
x − C

τ − t sgn(t)

τ
h = Rx − Ch + rst,

(4.1)

(a)

x

t

τ

h

H

(b)

x

t

τ

h<0
H

(c)

t

x

h
H

τ

FIG. 3. (Color online) The (a) space-time “event” carpet cloak,
(b) space-time periscope, and (c) space-time tardis. Continuous lines
show the actual ray trajectories and dotted lines show the apparent
(illusory) ray trajectories. The periscope (b) needs to be embedded
in a high-index host medium to allow the internal rays to cover the
greater distance to the back surface than to the apparent surface. For
the carpet cloak diagram (a), we have exaggerated the transformation
so that some rays are temporarily stopped, but note that any realistic
implementation will involve much weaker speed modulations.

where R = (H − h)/H is the ratio of actual depth to apparent
depth, and now r = Ch/τ and s = sgn(t). Here C is usually
set to 1; except for the space-time tardis, where it is R.

As in the spatial case, as well as the cloak shown on
Fig. 3(a), this deformation can also represent other T devices,
such as a space-time periscope, as shown on Fig. 3(b), and
a space-time tardis, as shown on Fig. 3(c), or perhaps even
a space-time antitardis. The space-time periscope allows an
observer to remain always below the ground plane while
temporarily allowing them an unrestricted view of their
surroundings, just as if they briefly put their head out above
it; it is specified using h < 0. Thus, for example, a sensor can
be briefly exposed to take readings while usually remaining
in shelter below the plane. The tardis gives the onlooker the
temporary impression of a space bigger than it actually is,
with the ground plane appearing to temporarily recede, this
requires that C = R. Although in this carpet implementation
the space-time tardis is the same as a space-time carpet cloak
for a dimple, in a noncarpet radial implementation the visual
effect is decidedly more startling.

Using a general viewpoint applicable to any of these three
T devices, we see that H is the apparent depth detectable by an
observer, positive-valued h apparently expands the accessible
space, and negative h apparently shrinks it.

To ensure that the deformed solution includes no waves
traveling faster than the maximum wave speed c, we also
specify that the aspect ratio (H − h)/cτ is less than 1. As
seen in Fig. 3(a), this deformation pushes a small triangular
space-time region—the hidden cloaked region—of the wave
illumination away from the carpet plane. However, note that
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if only the spatial extent is considered, the entire ground plane
itself moves out and then back to temporarily hide a slab of
space.

Despite all this trickery, as the (incoming) waves approach
the carpet plane from the (below) left, any deviations from
ordinary straight-line propagation that occur within the shaded
region are compensated for, so that when (outgoing) waves
emerge traveling towards the (top) left, they appear to have
reflected from a flat carpet plane. Note that the cloaking device
reverses the speed changes at t = 0: In the figure, at early times
t < 0, incoming waves are slowed or stopped and outgoing
waves are unaffected, but at late times t > 0, the outgoing
waves are slowed or stopped, with incoming waves traveling
normally. For the practical situation, i.e., cloaks where (H −
h) > h, waves are not stopped but slowed.

The effect of this deformation is given by the transformation
matrix T α′

α , which specifies the differential relationships
between the deformed (primed) and reference (unprimed)
coordinates, where α ∈ {t,x,y,z} and α′ ∈ {t ′,x ′,y ′,z′}. If we
let rows span the first (upper) index and columns span the
second (lower) index, then

T α′
α =

[
∂xα′

∂xα

]
=

⎡
⎢⎣

1 0 0 0
rs R 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦, (4.2)

and note that det(T α′
α ) = R. For some column 4-vector V α , we

have that,

e.g.,

⎡
⎢⎢⎣

V t ′

V x ′

V y ′

V z′

⎤
⎥⎥⎦ =

⎡
⎢⎣

1 0 0 0
rs R 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

⎡
⎢⎣

V t

V x

V y

V z

⎤
⎥⎦. (4.3)

Just as for the spatial carpet T devices in Sec. III, the
deformation consists solely of a constant rescaling of x

and so the transformed constitutive parameters again have

fixed values. However, in contrast to the spatial case, in
these space-time T devices the constitutive parameters toggle
between fixed values, and boundaries move. This is discussed
in Sec. V.

A. EM event carpets

We expressed the EM constitutive tensor using a compact
6 × 6 matrix form; therefore, we also use compact 6 × 6 de-
formation (transformation) matrices [L],[M], being versions
of the product Lα′

α L
β ′
β . Note that the use of the unconventional

choice of (the dual) ∗Fαβ and (the mixed) χ
αβ

γ δ allows us to
calculate using straightforward matrix multiplication.

The two-dimensional matrix representation of the transfor-
mation matrix, as compressed for EM, is best written as an
explicit transformation between the field 6-vectors to avoid
error. The compressed column 6-vector [GA] is transformed
using5

[
LA′

A

] = 1

R

⎡
⎢⎢⎢⎢⎢⎣

R 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −rs 0 R 0
0 +rs 0 0 0 R

⎤
⎥⎥⎥⎥⎥⎦ (4.4)

and where the matrix [M] that transforms [∗FB] is the same.
To transform [χ ], we need the inverse of [M], which is

[
MB ′

B

]−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 R 0 0 0 0
0 0 R 0 0 0
0 0 0 R 0 0
0 0 +rs 0 1 0
0 −rs 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦. (4.5)

Starting from simple background medium described only
by scalar ε and μ, the transformed constitutive matrix defining
the EM space-time carpet T device is then

[
χA′

B ′
] = ε

R

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 −R2 0 0
0 0 −rs 0 −1 0
0 +rs 0 0 0 −1
c2 0 0 0 0 0
0 R2c2 − r2 0 0 0 +rs

0 0 R2c2 − r2 0 −rs 0

⎤
⎥⎥⎥⎥⎥⎦. (4.6)

Here we see the slowing and/or speeding behavior of an
ordinary space-time cloak [3], but with a direction sensitivity
caused by magnetoelectric effects ±rsε/R in the material.
This direction-sensitivity reverses at t = 0, so that while the
incoming light travels slower than outgoing light when t < 0,
the incoming light travels faster for t > 0. An implementation
of this design is discussed in Sec. V.

B. p-Acoustic event carpets

For p-acoustic transformations, we need two compactified
transformation matrices, with correctly arranged ordering.
Again, and unlike EM, the compacted [GA] is indexed by

ww,xt,yt,zt , where “w” stands in for one of x, y, or z; and
any multiple valued elements are indicated using a setlike
notation. We need [LA′

A ] to transform [GA], and it is

[
LA′

A

] = 1

R

⎡
⎢⎣

{R2,1,1} {rsR,0,0} 0 0
0 R 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦. (4.7)

5Remember that for EM, each element of [L] not only includes the
obvious contributions to Gα′β ′

from Gαβ , but also has a sign-flipped
one from Gβα .
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The compact [∗FA], indexed by t t,xt,yt,zt , is transformed
using [MB ′

B ]

[
MB ′

B

] = 1

R

⎡
⎢⎣

1 0 0 0
rs R 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦, (4.8)

where

[
MB ′

B

]−1 = [
MB

B ′
] =

⎡
⎢⎣

R 0 0 0
−rs 1 0 0

0 0 R 0
0 0 0 R

⎤
⎥⎦. (4.9)

Hence, since c2 = κ/ρ, and as usual starting with a
simple background medium described only by κ and ρ, the
transformed constitutive matrix [χ ′] defining the p-acoustic
space-time carpet T device is

[
χA′

B ′
] = ρ

⎡
⎢⎢⎣

{
R2 − r2

c2 ,1,1
}
c2 {rs,0,0} 0 0

−rs 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦. (4.10)

Again we can see that there is no way of constructing a
general space-time carpet cloak (or related T device) with
p-acoustic waves, which we can see from the fact that the
modulus κ ′ and α′

x cross coupling are both required to have
two incompatible values. In contrast to the spatial carpet cloak,
a one-dimensional (in x) space-time carpet cloak can make
sense; just as the one-dimensional space-time EM cloak makes
sense [3,30–32]. However, the necessarily bidirectional nature
of the design means that we would require a controllable
coupling α′

x = rsρ enabling the velocity field vx ≡ ∗F tx to
affect the pressure p ≡ Gxx , as well as a β ′

x = −rsρ enabling
the density P ≡ ∗F tt to affect the momentum density Vx ≡
Gxt .

V. IMPLEMENTATION

Unlike the standard space-time cloak [3] and related T

devices [4], these space-time carpet T devices cannot easily
be simplified by choosing a preferred direction. Although
they also use speed control of the illumination to operate, a
significant complication is that a carpet device is unavoidably
bidirectional due to the reflection at the ground plane. Each
location within the cloak halo needs to set the speed of
incoming illumination and outgoing illumination differently,
as can be seen in Fig. 3. This makes it more demanding to
implement than either a purely spatial carpet device or an
ordinary space-time cloak.

Conceptually, the necessary properties could be achieved
by making the space-time carpet T device using a moving
medium, but that would require material speeds comparable to
the wave speed. Given the problems of sourcing and sinking
the medium at its moving boundaries, this is unlikely to be
straightforward; although we presume that it would be less
difficult for water waves than for EM. Because of this, the more
obvious approach would seem to be to design a switchable
metamaterial system.

As a simple case, consider a space-time carpet cloak added
to the end of a 1D waveguide terminated by a reflector, as

cloak

en
d 

re
fl

ec
to

r

before

background

waveguide

after

reflector

shadow region

speed control

background

Metamaterial cell state:

FIG. 4. (Color online) A linear (1 + 1D) waveguide acting as a
space-time carpet cloak. Each horizontal bar represents the waveguide
at a moment in time, with early times at the bottom and later times
at the top. The changing state of the waveguide’s metamaterial cells
is indicated by the different colors (shades), with the small arrows
indicating the direction-sensitive speed contrast.

depicted in Fig. 4. If we break up the cloaking segment of the
waveguide into a chain of metamaterial cells, we find that each
cell will need to support either three or four states:

(1) a state that mimics or matches the properties of the rest
of the waveguide, i.e., the “background”;

(2) a state that has a direction-dependent speed as defined
by the cloak design, with incoming illumination slowed and
outgoing illumination sped up;

(3) a complementary state with the reverse direction-
dependent speeds to state 2;

(4) a state matching the behavior of the end of the
waveguide, which in most cases would be imagined to be
a reflector. This capability is only needed for cells that will
at some stage form part of the inner boundary of the cloaked
region.

For an EM carpet, magnetoelectric effects are required
in the design presented in Sec. IV. However, this means
of achieving direction-dependent speeds is usually hard to
engineer, even having relaxed the requirement for impedance
matching. As an alternative, we could distinguish ingoing from
outgoing light by altering its frequency by some convenient
mechanism (as for, e.g., [30]) or by using the polarization.
In a 1D waveguide carpet we could control ingoing light by
making it plane polarized in y (hence controlling speed using
εy) and, with the help of an engineered polarization-switching
reflection [33], control the outgoing speed with z polarization
and εz. The necessary polarization conversion at the entry
and exit of the carpet can be applied using a Faraday rotator
or comparable device. However, using plane-polarized light
means that the reflective state of those carpet cells needs to
also be polarization switching. Since the engineering of a
four-state metamaterial cell is already a challenge, we would
prefer to avoid making one of those states more complicated
than necessary.

Therefore, we could instead use chiral metamaterial cells
with incoming light distinguished by being (e.g.) RH circularly
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Ex

Ey

Hz

Hx

Hy

Ez

FIG. 5. (Color online) Incoming and outgoing fields for a 1 + 2D
EM space-time carpet cloak implementation, but drawn as if for a
spatial carpet cloak for clarity. In the space-time carpet of Sec. IV,
the reflective carpet pushes out to x = −L (dashed line) and back
for all y equally. Incoming fields are controlled by εz acting on Ez,
while the outgoing fields are controlled by μz acting on Hz; the field
polarization is switched on reflection from the carpet.

polarized and outgoing light being LH circularly polarized.
This scheme means that an ordinary mirrorlike cell state is
sufficient to reflect the outgoing light into the correct (opposite)
circular polarization. A further advantage is that it can be
implemented as a purely dielectric device, so avoiding any
need to engineer a controllable magnetic response.

For an all-angle 2D space-time carpet T device, the
implementation gets harder; we can no longer rely on using
circularly polarized light and a chiral medium. However, if
we revert to linear polarization and manage to implement
the polarization-switching reflector state, it can be achieved
by means of a kind of birefringence that creates the speed
contrast between incoming and outgoing illumination. Here,
as depicted in Fig. 5, we control the incoming illumination by
making the electric field component z-polarized and modulat-
ing the speed using εz. Since the magnetic field component is

then in the xy plane, we set μx and μy to a background value,
so that the inward speed will remain angle-independent. Next,
the outgoing illumination is controlled by making the magnetic
field component z polarized and modulating the speed using
μz. Since the electric field component is then in the xy plane,
we set εx and εy to a background value so that the outward
speed will remain angle independent.

While this will certainly be challenging to construct,
one important simplification is that the dynamic εz and μz

properties required are matched in strength to each other,
which will hopefully simplify the necessary technology.

In p acoustics, the scalar nature of the wave’s pressure
component prohibits us from accessing a similar trick, and so
there is no alternative but to consider how we might achieve
the unconventional coupling where the velocity field would be
able to cause changes to the pressure. Once again, although the
general nature of the mathematical formalism has enabled us
to unify the transformation aspects of our chosen T device, the
specific physics of a given type of wave nevertheless restricts
what can be done in principle, as well as in practice.

VI. SUMMARY

We have derived the material parameters needed for new
kind of event cloak—the space-time carpet cloak—and shown
what material properties are required to implement it. By
unifying the mathematical treatment of EM and a scalar wave
theory such as pressure acoustics, we have also shown the
way towards a means of unifying transformation theories for
different wave types. The unified transformation mechanics
theory was applied to a range of spatial T devices based on
the ordinary carpet cloak, e.g., the periscope and the tardis. As
noted in the original event cloak paper [3], a covariant wave
notation greatly facilitates the design of space-time T devices
[4], which is further emphasized here, with a scalar wave
theory being matched up with the usual covariant formulation
of EM and the subsequent ease of comparison and contrast
between the spatial carpet T devices from Sec. III and the
space-time carpet T devices from Sec. IV. We also proposed
(in Sec. V) a scheme laying out the required metamaterial
properties needed when implementing an electromagnetic
space-time carpet T device.
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